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Abstract. The Rand index is a measure commonly used to compare
crisp partitions. Campello (2007) and Hüllermeier and Rifqi (2009) res-
pectively, proposed two extensions of this index capable to compare fuzzy
partitions. These approaches are useful when continuous values of attri-
butes are discretized using fuzzy sets. In previous works we experimented
with these extensions and compared their accuracy with the one of the
crisp Rand index. In this paper we propose the ε-procedure, an alter-
native way to deal with attributes taking continuous values. Accuracy
results on some known datasets of the Machine Learning repository us-
ing the ε-procedure as crisp discretization method jointly with the crisp
Rand index are comparable to the ones given using the crisp Rand in-
dex and its fuzzifications with standard crisp and fuzzy discretization
methods respectively.
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1 Introduction

Knowledge representation of domain objects often involves the use of continuous
values. One of the most widely used techniques to deal with continuous values
is the discretization, consisting on building intervals of values that should be
considered as equivalent. There are two kinds of discretization: crisp and fuzzy.
In crisp discretization the range of a continuous value is split into several inter-
vals. Elements of an interval are considered as equivalent and each interval is
handled as a discrete value. There are different methods of crisp discretization.
For instance, some of them take into account the length of the interval, or the
frequency of the values, while others are entropy-based (for more information
see [1]). In some domains, the crisp discretization shows some counter-intuitive
behavior around the thresholds of the intervals: values around the threshold of
two adjacent intervals are considered as different but may be they are not so.
For this reason, sometimes it is interesting to build a fuzzy discretization from
a crisp one, as it is done for instance in [2].

Given an attribute taking continuous values, let α1, . . . , αn be the thresholds
determining the discretization intervals for that attribute. Let α0 and αn+1 be
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the minimum and maximum of the values that this attribute takes in its range.
To fuzzy discretize the attribute, assuming that the fuzzy sets are trapezoidal,
the membership vector is calculated in the following way:

F1(x) =

⎧
⎨

⎩

1, when α0 ≤ x ≤ α1 − δ1,
α1+δ1−x

2δ1
, when α1 − δ1 < x < α1 + δ1,

0, when α1 + δ1 ≤ x.

Fi(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, when x ≤ αi−1 − δi−1,
x−(αi−1−δi−1)

2δi−1
, when αi−1 − δi−1 < x < αi−1 + δi−1,

1, when αi−1 + δi−1 ≤ x ≤ αi − δi
αi+δi−x

2δi
, when αi − δi < x < αi + δi ,

0, when αi + δi ≤ x.

(1)

Fn+1(x) =

⎧
⎨

⎩

0, when x ≤ αn − δn,
x−(αn−δn)

2δn
, when αn − δn < x < αn + δn,

1, when αn + δn ≤ x ≤ αn+1.

In these formulas, the parameters δi represents the overlapping degree between
contiguous fuzzy sets and they are computed as follows: δi = p · |αi−αi−1|, being
the factor p a percentage that we can adjust.

Intuitively, since the representation using fuzzy sets is smooth around the
thresholds of discretization intervals, it seems more appropriate than the crisp
discretization in some domains. Nevertheless, the use of fuzzy sets implies that
for each attribute value it is necessary to deal with the membership of this value
to each fuzzy set representing the attribute. As we will see later, for the fuzzy
extensions of the Rand index, this situation produces an increment of the run
time with respect to the crisp version of the Rand index. For this reason, we
have searched for an alternative method of discretization such that:

a) it retains as much as possible the advantages of the discretization methods
using fuzzy sets,

b) it can be used with crisp measures such as the Rand index and, therefore,
c) it involves a reduction of the run time associated to the fuzzy measures.

As a concrete alternative, in the current paper we propose the ε-procedure, a
method of discretization that induces classical partitions from continuous values
of attributes. It consists on a refinement of the crisp discretization obtained
by any standard discretization method. From a set of discretization thresholds
α1, α2, . . . , αn, the ε-procedure introduces the intervals (αi− δi, αi+ δi] being δi
a parameter that depends on the length of the interval (αi−1, αi].

In [3] we experimented with the Rand Index and two fuzzy extensions of it:
one proposed by Campello [4] and the other proposed by Hüllermeier and Rifqi
[5]. These experiments have been performed in the framework of a lazy learning
method called LID. For this reason in the present paper we have carried out
similar experiments with the ε-procedure in order to compare its behavior with
the one obtained using standard discretization methods.
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Function LID (p, Di, SDi, C)
  if stopping-condition (SDi) then return class (SDi)
       else  fd := Select-attribute (p, SDi, C)
               Di+1 := Add-attribute (fd, Di)
               SDi+1 := Discriminatory-set (Di+1, SDi)
               LID (p, Di+1, SDi+1, C)
  end-if
end-function

Fig. 1. The LID algorithm. On the right there is the intuitive idea of LID.

The paper is organized as follows. Section 2 contains preliminary concepts.
In Sec. 3 the ε-procedure is presented. Section 4 contains the explanation of the
experiments and a discussion of the results. The last section contains conclusions
and future work.

2 Preliminary Concepts

In this section we explain the algorithm of the method LID used in the experi-
ments. LID uses a mesure Δ to compare partitions. In the experiments we have
used asΔ the Rand index and two of its fuzzifications, one proposed by Campello
in [4] an the other by Hüllermeier and Rifqi in [5]. In this section we also explain
these three measures in some detail.

2.1 Lazy Induction of Descriptions

Lazy Induction of Descriptions (LID) is a lazy learning method for classification
tasks. LID determines which are the most relevant attributes of a problem (i.e.,
an object to be classified) and searches in a case base for cases sharing these
relevant attributes. The problem is classified when LID finds a set of relevant
attributes shared by a subset of cases all of them belonging to the same class.
We call similitude term the description formed by these relevant features and
discriminatory set the set of cases satisfying the similitude term.

Given a problem for solving p, LID (Fig. 1) initializes D0 as a description with
no attributes, the discriminatory set SD0 as the set of cases satisfying D0, i.e.,
all the available cases, and C as the set of solution classes into which the known
cases are classified. Let Di be the current similitude term and SDi be the set of
all the cases satisfying Di. When the stopping condition of LID is not satisfied,
the next step is to select an attribute for specializing Di. The specialization of
Di is achieved by adding attributes to it. Given the set F of attributes candidate
to specialize Di, the next step of the algorithm is the selection of an attribute
f ∈ F . Selecting the most discriminatory attribute in F is heuristically done
using a measure Δ to compare each partition Pf induced by an attribute f
with the correct partition Pc. The correct partition has as many sets as solution



Refining Discretizations of Continuous-Valued Attributes 261

classes. Each attribute f ∈ F induces in the discriminatory set a partition Pf

with as many sets as the number of different values that f takes in the cases.
Given a measure Δ and two attributes f and g inducing respectively parti-

tions Pf and Pg, we say that f is more discriminatory than g iff Δ(Pf ,Pc) <
Δ(Pg,Pc). This means that the partition Pf is closer to the correct partition
than the partition Pg. LID selects the most discriminatory attribute to specialize
Di. Let fd be the most discriminatory attribute in F . The specialization of Di

defines a new similitude term Di+1 by adding to Di the attribute fd. The new
similitude term Di+1 = Di∪{fd} is satisfied by a subset of cases in SDi , namely
SDi+1 . Next, LID is recursively called with SDi+1 and Di+1. The recursive call of
LID has SDi+1 instead of SDi because the cases that are not satisfied by Di+1 will
not satisfy any further specialization. Notice that the specialization reduces the
discriminatory set at each step, i.e., we get a sequence SDn ⊂ SDn−1 ⊂ . . . ⊂ SD0 .

LID has two stopping situations: 1) all the cases in the discriminatory set
SDj belong to the same solution class Ci, or 2) there is no attribute allowing the
specialization of the similitude term. When the stopping condition 1) is satisfied,
p is classified as belonging to Ci. When the stopping condition 2) is satisfied,
SDj contains cases from several classes; in such situation the majority criteria
is applied, and p is classified in the class of the majority of cases in SDj . When
there is a tie between two classes, LID gives a multiple solution proposing both
classes as the classification for p.

In our experiments we have taken the Rand index as the measure Δ that
supports the selection of relevant attributes. This index is introduced in the
next section.

2.2 The Rand Index

The Rand index [6] was conceived to compare clusterings produced by several
automatic methods. The basic assumptions for using the Rand index are the
following: 1) the clusterings to be compared are crisp in the sense that the set
of clusters is a crisp partition of the domain; 2) the clusters are defined by both
the objects that they contain and the objects that they do not contain; and
3) all objects are equally important in determining the clustering. From these
assumptions it follows that a basic unit of comparison between two clusterings
is how pairs of objects are clustered. If a pair of objects are placed together in
a class in each one of the two clusterings, or if they are assigned to different
classes in both clusterings, this represents a similarity between the clusterings.
The opposite case is the one in which a pair of objects are in the same class in
one clustering and in different classes in the other one. From this point of view,
a measure of the similarity between two clusterings of the same data set can be
defined as the number of equal assignments of object pairs normalized by the
total number of object pairs.

Let X be a finite set X = {x1, . . . , xn}; P = {P1, . . . , Pk} be a partition of X
in k sets; and Q = {Q1, . . . , Qh} a partition of the same set X in h sets. Given
two objects x and x′ we say that both objects are paired in a partition when
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Fig. 2. Examples of paired and impaired objects: 1) a and b are paired in both parti-
tions; 2) e and f are paired in P and impaired in Q; 3) c and d are paired in Q and
impaired in P ; 4) d and f are impaired in both partitions.

both objects belong to the same class of the partition (see Fig. 2). Otherwise,
we say that both objects are impaired.

Now, let us consider the set C := {(xi, xj) ∈ X ×X : 1 ≤ i < j ≤ n} which
can be identified with the set of unordered pairs {x, y}, with x, y ∈ X . The Rand
index among the partitions P and Q is defined as follows:

R(P ,Q) =
a+ d

a+ b+ c+ d
(2)

where,

– a is the number of pairs (x, x′) ∈ C such that x and x′ are paired in both
partitions.

– b is the number of pairs of objects (x, x′) ∈ C such that x and x′ are paired
in P and impaired in Q.

– c is the number of pairs of objects (x, x′) ∈ C such that x and x′ are impaired
in P and paired in Q.

– d is the number of pairs of objects (x, x′) ∈ C such that x and x′ are impaired
in both partitions.

The Rand index is commonly used to compare clusterings formed by automatic
systems. It gives a measure of how similar are two clusterings. Inside LID, the
Rand index is used to compare the partitions induced by each one of the at-
tributes describing the objects with the correct partition. However, when con-
tinuous values are represented by means of fuzzy sets the partitions induced are
fuzzy and in this situation the Rand index is not appropriate to make compar-
isons involving fuzzy partitions. In the next sections we will explain two proposals
of fuzzification of the Rand index.

2.3 The Campello’s Fuzzy Rand Index

In [4] Campello extends the Rand index to make it feasible to compare fuzzy
partitions. Given a finite data set X = {x1, . . . , xn}, a fuzzy partition on X (in
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the sense of Ruspini [7]) is any finite collection P = {P1, . . . , Pk} of fuzzy subsets

on X such that
∑k

i=1 Pi(xj) = 1, for each j, 1 ≤ j ≤ n. To the end to define
a fuzzy extension, Campello first rewrites the original formulation of the Rand
index in an equivalent form by using basic concepts of set theory. Given the crisp
partitions P , with k sets, and Q, with h sets, Campello defines the following sets
of pairs:

V : pairs (x, x′) ∈ C paired in P , W : pairs (x, x′) ∈ C impaired in P ,
Y : pairs (x, x′) ∈ C paired in Q, Z: pairs (x, x′) ∈ C impaired in Q,

where C is the set of pairs of elements of X defined in Sec. 2.2.
According to the sets above, the coefficients a, b, c and d of the Rand index

in Eq. (2) can be rewritten in the following way: a = |V ∩ Y |, b = |V ∩ Z|,
c = |W ∩ Y |, and d = |W ∩ Z|.

When we consider fuzzy partitions, the sets above are fuzzy sets. Let Pi(x) ∈
[0, 1] denote the membership degree of the object x ∈ X to the set Pi. Then,
Campello defines the fuzzy binary relations V,W, Y and Z on the set C by using
the following expressions involving a t-norm ⊗ and a t-conorm ⊕:

V (x, x′) =
⊕k

i=1(Pi(x) ⊗ Pi(x
′)), W (x, x′) =

⊕
1≤i�=j≤k(Pi(x)⊗ Pj(x

′)),
Y (x, x′) =

⊕h
i=1(Qi(x) ⊗Qi(x

′)), Z(x, x′) =
⊕

1≤i�=j≤h(Qi(x)⊗Qj(x
′)).

Now, as it is usually done, Campello calculates the intersection of two fuzzy
relations by using the t-norm (applied to the membership degrees of each pair
to each relation). Then, using the sigma-count principle for defining the fuzzy
set cardinality, he obtains the coefficients a, b, c, and d in the following way:

a = |V ⋂
Y | = ∑

(x,x′)∈C(V (x, x′)⊗ Y (x, x′))
b = |V ⋂

Z| = ∑
(x,x′)∈C(V (x, x′)⊗ Z(x, x′))

c = |W ⋂
Y | = ∑

(x,x′)∈C(W (x, x′)⊗ Y (x, x′))
d = |W ⋂

Z| = ∑
(x,x′)∈C(W (x, x′)⊗ Z(x, x′))

Then, the fuzzy version of the Rand index is also defined by Eq. (2), giving a
measure of the similarity between two partitions. Since LID uses a normalized
distance measure, we have to take 1−R(P ,Q). Nevertheless, as Campello himself
warns in [4], his fuzzy formulation of the Rand index does not satisfies some basic
metric properties and it is properly defined only for the comparison of a fuzzy
partition with a non-fuzzy reference partition (see also [5] for a discussion on this
subject). However, notice that the correct partition in classification problems is
commonly crisp; thus the use of the distance associated to the Rand index of
Campello inside LID is justified. From now on, we denote as CI the distance
associated with the Campello Rand index.

2.4 The Hüllermeier-Rifqi’s Fuzzy Rand Index

Hüllermeier and Rifqi proposed in [5] a different fuzzy version for the Rand index
which allows the comparison of two fuzzy partitions and satisfies all the desirable
metric properties. In the next we recall the definition of this fuzzy version.
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Given a fuzzy partition P = {P1, P2, . . . , Pk}, each object x is characterized
by its membership vector P(x) = (P1(x), P2(x), ..., Pk(x)) ∈ [0, 1]k where Pi(x)
is the membership degree of x to the cluster Pi. Given two objects x and x′ and
two fuzzy partitions P and Q, the degree of concordance of both objects in these
partitions is defined by means the expression 1 − |EP(x, x′) − EQ(x, x′)| where
EP is the fuzzy equivalence relation defined by EP(x, x′) := 1−‖P(x)−P(x′)‖
being ‖.‖ a distance on [0, 1]k. Thus, two objects are equivalent to a degree 1
when both have the same membership degrees in all the sets of the partition.
This fuzzy equivalence is used to define the notion of concordance as a fuzzy
binary relation, which generalizes the crisp binary relation (induced by a crisp
partition) defined on the set C of unordered pairs of objects of X using the
notions of paired and unpaired. Then, a distance measure on fuzzy partitions
using the degree of discordance is defined as |EP(x, x′)−EQ(x, x′)|. Thus, given
a data set X of n elements, and two fuzzy partitions P and Q on X , the distance
between both partitions is the normalized sum of degrees of discordance:

d(P ,Q) =

∑
(x,x′)∈C |EP(x, x′)− EQ(x, x′)|

n(n− 1)/2
. (3)

As it is shown in [5,11], the function (3) is a pseudometric, that is, it satisfies
reflexivity, simmetry and triangular inequality, but it is not a metric because
in general it does not satisfies the property of separation (d(P ,Q) = 0 implies
P = Q). A fuzzy partition in the sense of Ruspini P = {P1, . . . , Pk} is called
normal if it has a prototypical element, i.e., for every Pi ∈ P , there exists
an x ∈ X such that Pi(x) = 1. Hüllermeier and Rifqi show that for normal
partitions, taking the equivalence relation on X defined by

EP(x, x′) = 1− 1

2

k∑

i=1

|Pi(x)− Pi(x
′)|, (4)

the distance defined by Eq. (3) is a metric. From now on, we will call HRI (for
Hüllermeier-Rifqui Index) this distance measure.

In addition to the extensions of the Rand Index presented by Campello and
Hülermeier and Rifqi, other extensions of the Rand index have been proposed in
the literature [8,9,10]. In the article [11] a comparative study of the indices pre-
sented in the mentioned papers in relation to the indexes proposed by Campello
and Hülermeier and Rifqi is performed.

3 The ε-Procedure

Our goal is to design a procedure allowing the discretization of continuous va-
lues. The idea is, on the one hand, to keep the advantages provided by the fuzzy
set representation and, on the other hand, to generate crisp partitions in order to
use standard crisp measures to compare them. There are related works as the one
from Ishibuchi and Yamamoto [12], that propose a method to construct fuzzy
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Fig. 3. The upper part shows the effect of a crisp discretization using three intervals.
The lower part shows the discretization proposed by the ε-procedure.

discretizations from crisp ones. The authors consider that sometimes experts
cannot give the discretization thresholds and they propose to dynamically obtain
them. In [2] Kuajima et al. analyze the effects of fuzzy discretization on rule-
based classifiers performance. The authors define the fuzzification grade as the
overlap between adjacent fuzzy sets and they conduct experiments taking several
of these grades.

The ε-procedure we introduce in the present paper discretizes continuous val-
ues by considering intermediate intervals that could be interpreted as the over-
lapping of two contiguous fuzzy sets. The partition generated in this way is crisp,
therefore the standard Rand index can be used. Let f be an attribute taking
continuous values, α1, α2, . . . , αn be the discretization values for f , and α0 and
αn+1 be the minimum and maximum respectively of the values of f . The ε-
procedure considers the following intervals: [α0, α1− δ1], (α1− δ1, α1+ δ1], (α1+
δ1, α2 − δ2], (α2 − δ2, α2+ δ2] . . . (αn + δn, αn+1], where δi = p · |αi −αi−1|, being
p an adjustable percentage. In order to avoid some undesired overlappings, the
parameter p must respect the following constraint:

p ≤ 1

2
· |αi+1 − αi|
|αi − αi−1| . (5)

Notice that whereas with the usual discretization the values v = αi − ε and
v′ = αi + ε, being ε sufficiently small, belong to different intervals, using the
ε-procedure both v and v′ belong to the same partition when ε < δ. Figure 3
shows an example where a crisp discretization produces three intervals and for
the same range of values, the ε-procedure introduces the intervals I12 and I23
that contain values around the thresholds α1 and α2. These new intervals join
values that in the first discretization belong to different intervals.

4 Experiments

We have performed experiments with the goal of proving the feasibility of the
ε-procedure as an alternative to fuzzy discretization. In previous works [3] we
have shown that the fuzzifications of the Rand index have good predictivity but
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Table 1. The left column shows the discretization method used in each one of the four
situations. The central column shows the index used as Δ-measure. The right column
corresponds to the label assigned to each situation.

discretization method Δ-measure label

Crisp intervals given by an standard method Rand Index CRI
Fuzzy intervals built over the crisp ones CI FCI
Fuzzy intervals built over the crisp ones HRI FHRI
Crisp intervals built with the ε-procedure Rand Index εRI

they also have a high computational cost mainly due to the fact that they need
to operate with all the membership degrees of all pairs of objects. Instead, the
ε-procedure uses the crisp Rand index.

In the experiments we used four data sets, iris, heart-statlog, glass, and thy-
roids coming from the UCI Repository [13], where objects are described by
attributes having continuous values. The discretization thresholds have been ob-
tained with the MDL discretization method proposed by Fayyad and Irani’s [14]
and we have used the implementation of it given by Weka [15,16]. These thresh-
olds have been taken as basis to define the fuzzy sets used by CI and HRI, and
also for the ε-procedure to induce the new discretization intervals. The target
of the experiments is to compare the predictivity of LID in the following four
situations, which are summarized in Table 1:

1. The attributes with continuous values are discretized by using the thresholds
given by a standard discretization method. Then LID runs using the Rand
index (RI) as measure Δ to compare the partitions induced by the attibutes
with the correct partition. So, in this case we have a crisp discretization and
Δ = RI. We denote this procedure by CRI (the “C” stands by Crisp).

2. The attributes with continuous values are discretized by using the fuzzy sets
built from the thresholds given by a standard discretization method. Then
LID runs using CI as measure Δ with the Minimum and the Maximum as
t-norm and t-conorm, respectively. We denote this procedure with the label
FCI (the “F” stands by Fuzzy).

3. The attributes with continuous values are discretized by using the fuzzy sets
built as in the previous procedure. Then LID runs using the Hüllermeier-Rifqi
index (HRI) as measure Δ. So, in this case we have a fuzzy discretization
and Δ = HRI. We denote this procedure by FHRI.

4. The attributes with continuous values are discretized by using the thresholds
given by a standard discretization method and refined by the ε-procedure.
Then LID runs using the Rand index (RI) as measure Δ. So, in this case
we have the crisp discretization given by the ε-procedure, and Δ = CI. We
denote this procedure with the label εRI.

As we have mentioned before, in the formulas (1) each δi is computed by δi =
p · |αi−αi−1|, being the factor p a percentage that we can adjust and that must
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Table 2. Mean accuracy of LID corresponding to the procedures labeled by CRI, FCI,
FHRI, and εRI after seven trials of 10-fold cross-validation. The table shows the best
results; the corresponding p is indicated between parenthesis.

dataset CRI FCI FHR εRI

glass 35.460 25.696 (0.10) 38.644 (0.10) 49.373 (0.10)
heart-statlog 65.397 62.857 (0.05) 65.026 (0.05) 65.555 (0.10)
iris 88.780 91.917 (0.10) 94.482 (0.10) 96.286 (0.10)
thyroids 86.562 81.447 (0.05) 82.331 (0.10) 84.935 (0.15)

satisfy the constraint (5). We have experimented with p = 0.05, 0.10 and 0.15.
All these values of p satisfy (5) for all the considered data sets. In the fuzzy
version of LID, the correct partition is the same than in the crisp case since each
object belongs to a unique solution class. However, when the partitions induced
by each attribute are fuzzy, an object can belong (to a certain degree) to more
than one partition set. The algorithm of the fuzzy LID is the same explained in
Sec. 2.1 but using a particular representation for the fuzzy cases.

Table 2 shows the mean accuracy of LID corresponding to the procedures
labeled by CRI, FCI, FHRI, and εRI after seven trials of 10-fold cross-validation.
The accuracy depends on the value of p and this may be different for each
domain. In the table we show the best results and we indicate the corresponding
p between parenthesis. Thus, for instance, the best result on iris for FCI is taking
p = 0.10 whereas the best accuracy for FCI on heart-statlog is taking p = 0.05.
In our experiments we have seen that for each data set there is a value of p that
represents an inflection point on the accuracy. For instance, on the iris data set
using εRI, the accuracy taking p = 0.05 is 93.720 and taking p = 0.15 is 95.333.
The best value for p is different for each data set and also for each method. So,
in practice, we should try with several values of p in order to find the best one.

Experiments show that the ε-procedure gives good predictive results outper-
forming all the fuzzy versions (FCI and FHRI) in all domains. Moreover, εRI
also outperforms the procedure CRI except for the thyroids data set and for the
heart-statlog where the accuracy of both is not significantly different.

LID can produce two kinds of outputs: the classification in one (correct or
incorrect) class or a multiple classification. Multiple classification means that
LID has not been capable to classify the input object in only one class, i.e., most
of the time it could be considered as a no answer of the system. This explains
the low accuracy percentage given by all measures on the glass domain since
most of times LID produces multiple classifications.

The computational complexity of the crisp Rand index is O((k + h) · n2),
where k and h are the cardinalities of the partitions P and Q respectively; the
cost of CI is O((max(k, h))2 · n2); and the cost of the HRI is O(max(k, h) · n2).
Notice that, in the worst case, both the Rand index and HRI have the same cost
whereas the cost of CI is higher than them. In practice, the Rand index has lower
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Table 3. Mean runtime necessary (in seconds) to evaluate a complete trial of 10-fold
cross-validation on the datasets iris and thyroids

Dataset CRI FCI FHRI εRI

iris 2.624 226.773 77.463 14.358
thyroids 27.219 1092.055 383.037 165.348

cost than HRI mainly due to the lower complexity of the input data since fuzzy
representations have to take into account membership degrees. Table 3 shows the
mean runtime necessary to evaluate a complete trial of 10-fold cross-validation
on the data sets iris and thyroids. These times have been obtained using a Mac
with a processor Intel Core 2 Duo of 2.93 GHz.

5 Conclusions and Future Work

In this paper we have introduced a method, called ε-procedure, that constructs
classical partitions on the range of an attribute taking continuous values. These
partitions can be seen as refinements of the ones given by the expert or the ones
given by a standard method of discretization. Moreover, the method can be seen
as “similar” to the fuzzy methods of discretization since the ε-procedure takes
into account the neighborhood of the thresholds given by the crisp discretiza-
tion methods. The ε-procedure runs inside the LID method allowing it to deal
with cases having attributes that take continuous values. We have carried on
experiments with LID comparing its performance when dealing with both cases
whose continuous attributes have been discretized and cases whose continuous
attributes have been represented as fuzzy sets.

As future work we plan to conduct experiments to analyze in depth the effect
of the value of δ in the accuracy of the ε-procedure.We think that this effect could
also depend on the particular characteristics of the domain at hand. A different
research line is to experiment with different Δ measures after the discretization
produced by the ε-procedure. In particular we plan to experiment with the López
de Mántaras (LM) distance [17] and to compare the results with those produced
by a fuzzification of LM proposed in [18].
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11. Hüllermeier, E., Rifqi, M., Henzgen, S., Senge, R.: Comparing Fuzzy Partitions:
A Generalization of the Rand Index and Related Measures. IEEE Transactions on
Fuzzy Systems 20(3), 546–556 (2012)

12. Ishibuchi, H., Yamamoto, T.: Deriving fuzzy discretization from interval discretiza-
tion. In: Proceedings of FUZZ-IEEE 2003, vol. 1, pp. 749–754 (2003)

13. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)
14. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued at-

tributes for classification learning. In: Proceedings of IJCAI 1993, pp. 1022–1029
(1993)

15. Witten, I., Frank, E., Trigg, L., Hall, M., Holmes, G., Cunningham, S.: Weka:
Practical machine learning tools and techniques with java implementations (1999)

16. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: An update. SIGKDD Explorations 11(1), 10–18
(2009)
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18. Armengol, E., Dellunde, P., Garćıa-Cerdaña, À.: Towards a Fuzzy Extension of
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