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Abstract

We propose a general semantic notion of
modal many-valued logic. Then, we explore
the difficulties to characterize this notation
in a syntactic way and analyze the existing
literature with respect to this framework.
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1 Introduction

The purpose of this research is the search of a syntac-
tic notion of modal many-valued logic1 that generalizes
the notion of (normal) modal logic [5, 1]. Our search
is motivated by semantic issues. That is, we under-
stand modal many-valued logics as logics defined by
Kripke frames (possibly with many-valued accessibil-
ity relations) where every world follows the rules of a
many-valued logic, this many-valued logic being the
same for every world. The reader will find the details
of this approach in Section 2.

Throughout the paper we will show the reader the dif-
ficulties of this search and we will try to specify which
conditions should satisfy this syntactic notion. We will
also review the works in the literature that fits inside
our framework.

Unfortunately, we have not been able to found a syn-
tactic characterization of the notion of modal many-
valued logic and so the question remains open.

2 A semantic approach

In this section we start giving the definition of the
modal many valued logic Log2(A,F) associated with
an algebra A and a class of A-valued Kripke frames
F.

1In particular, modal fuzzy logics will be inside this
class.

The language of this new logic is, by definition, the
propositional language generated by a set V ar of
propositional variables2 together with the connectives
given by the algebraic signature of A expanded with
a new unary connective: the necessity3 operator 2.
The set of formulas of the resulting language will be
denoted by Fm2.

We point out that the intended meaning of the uni-
verse A is a set of truth-values. The only require-
ments in our definition will be that the algebra A is a
complete lattice, and that the algebraic language of A
contains, besides meet ∧ and join ∨, a constant 1 and
an implication →.

We stress that these conditions are quite weak and a
lot of well-known algebras satisfy them, for instance,
complete FL-algebras [20] and complete BL-algebras
[13]. Hence, in particular we can consider that A
is any of the three basic continuous t-norm algebras:
 Lukasiewicz algebra [0,1] L, product algebra [0,1]Π
and Gödel algebra [0,1]G. We also note that due to
the fact that the free algebra with countable gener-
ators (i.e., the Lindenbaum-Tarski algebra) of any of
the previous varieties of algebras is not complete it is
not included in our framework.

An A-valued Kripke frame is a pair F = 〈W,R〉 where
W is a set (of worlds) and R is a binary relation val-
ued in A (i.e., R : W ×W −→ A) called accessibility
relation. It is said that the Kripke frame is classical in
case that the range of R is included in {0, 1}4. When-
ever A is fixed, we will denote by Fr and CFr the classes
of all A-valued Kripke frames and all A-valued clas-
sical Kripke frames. For the rest of the paper we will
mainly focus on these two classes since they provide
in some sense minimal logics.

Before introducing Log2(A,F) we need to define what

2In most cases it is assumed that V ar = {p0, p1, p2, . . .}.
3Later on we will give some ideas about how to develop

these ideas with the possibility operator 3.
4Here 0 means the minimum of A and 1 its maximum.
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is an A-valued Kripke model. An A-valued Kripke
model is a triple M = 〈W,R, e〉 where 〈W,R〉 is an A-
valued Kripke frame and e is a map, called valuation,
assigning to each variable in V ar and each world in W
an element of A. The map e can be uniquely extended
to a map ē : Fm2 ×W −→ A satisfying that:

• ē is an algebraic homomorphism, in its first com-
ponent, for the connectives in the algebraic signa-
ture of A, and

• ē(2ϕ,w) =
∧
{R(w,w′) → ē(ϕ,w′) : w′ ∈W}.

Although the functions e and ē are different there will
be no confusion between them, and so sometimes we
will use the same notation e for both.

Following the same definitions than in the Boolean
modal case [5, 1] it is clear how to define validity of a
Fm2-formula in an A-valued Kripke model and in an
A-valued Kripke frame.

Now we are ready to introduce the modal many-valued
logic Log2(A,F). It is defined as the set of formulas
ϕ ∈ Fm2 satisfying that for every A-valued Kripke
model 〈W,R, e〉 over a frame 〈W,R〉 in F and for every
world w in W , it holds that e(ϕ,w) = 1.

Remark 1 For the sake of simplicity in this paper we
restrict ourselves to adding the necessity operator 2,
but analogously we could have considered a possibility
operator ruled by the condition5

e(3ϕ,w) =
∨
{R(w,w′)� e(ϕ,w′) : w′ ∈W}.

Note 2 We stress that for the case that A is the
Boolean algebra of two elements all previous defini-
tions correspond to the standard terminology in the
field of modal logic (cf. [5, 1]). As far as the authors
know the first one to talk about this way of extending
the valuation e into the modal many-valued realm was
M. Fitting in [9].

Up to now we have considered a logic as a set of for-
mulas. Besides this way to consider logics, it is also
common to consider them as consequence relations,
e.g., [2]. Following this approach next we define two
different consequence relations.

The modal many-valued local consequence |=l(A,F) as-
sociated with an algebra A and a class of A-valued
Kripke frames F is defined by the following equiva-
lence:

Γ |=l(A,F) ϕ iff

5The connective � is what sometimes is called in the
literature fusion, multiplicative conjunction, etc. (see [13,
20]).

for every A-valued Kripke model 〈W,R, e〉 over a
frame 〈W,R〉 in F and for every world w in W , it

holds that if e(γ,w) = 1 for every γ ∈ Γ, then
e(ϕ,w) = 1.

The modal many-valued global consequence |=g(A,F) as-
sociated with an algebra A and a class of A-valued
Kripke frames F is given by the following definition:

Γ |=g(A,F) ϕ iff

for every A-valued Kripke model 〈W,R, e〉 over a
frame 〈W,R〉 in F, it holds that if e(γ,w) = 1 for

every γ ∈ Γ and every world w in W , then
e(ϕ,w) = 1 for every world w in W .

We point out that the set of theorems of both conse-
quence relations is precisely the set Log2(A,F).

3 Differences with the modal Boolean
case

General Considerations. Let us assume that we
have fixed an algebra A satisfying the previous require-
ments. In order to simplify our discussion we will also
assume that it is a FLew-algebra [20]6, i.e., a residu-
ated lattice. This hypothesis will allow us to use the
residuation law.

In order to find a successful syntactic definition of the
notions introduced in the previous section7 first of all
we would need to settle a completeness theorem for
the logics introduced in the previous section. In par-
ticular, we should know how to axiomatize the min-
imal one Log2(A,Fr). What formulas must we add
to an axiomatization of the many-valued logic defined
by A in order to obtain a complete axiomatization of
Log2(A,Fr)?

The fact that the famous modal axiom (K) (sometimes
called normality axiom)

2(ϕ→ ψ) → (2ϕ→ 2ψ) (K)

does not in general belong to Log2(A,Fr) is what
makes difficult even to suggest an axiomatization of
Log2(A,Fr). As a simple counterexample we can con-
sider the logic Log2([0,1] L,Fr) and the Kripke model
given by W = {a, b}, R(a, a) = 1, R(a, b) = 1/2,
e(p0, a) = 1, e(p0, b) = 1/2, e(p1, a) = 1 and e(p1, b) =
0. Then, e(2(p0 → p1) → (2p0 → 2p1), a) = 1/2.

6We remind the reader that in particular all BL-
algebras [13] are FLew-algebras.

7In the modal Boolean case it is well-known the exis-
tence of modal logics that are Kripke frame incomplete.
Hence, the searched definition of modal many-valued logic
will have to include more logics that the ones introduced
in Section 2.
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It is easy to check that the necessity rule, from ϕ fol-
lows 2ϕ, holds for Log2(A,Fr). Another property
that holds for Log2(A,Fr) is the monotonicity of the
necessity operator, i.e., if ϕ → ψ is in the logic then
also 2ϕ→ 2ψ is in the logic. Moreover, it is possible
to see that

(2ϕ ∧2ψ) ↔ 2(ϕ ∧ ψ)

is valid under our semantics. However, in general

(2ϕ�2ψ) → 2(ϕ� ψ)

and
(2(ϕ→ ψ)�2ϕ) → 2ψ

fail. The reader can notice that the last formula is
equivalent to (K) thanks to the residuation law.

Although in general (K) does not belong to
Log2(A,Fr), let us remark two particular cases where
(K) holds. For these two cases the difficulties disap-
pear quite a lot as we will see in examples of Section 4.
The first one is when � and ∧ coincide in the alge-
bra A. In particular this means that (K) belongs to
Log2([0,1]G,Fr). And the second one is when F is the
class of classical Kripke frames CFr, i.e., for any alge-
bra A all A-valued classical Kripke frames satisfy the
normality condition. In particular this means that (K)
belongs to Log2([0,1] L,CFr) and Log2([0,1]Π,CFr).

Transfer Properties. We are going to show with
three counterexamples that in general metalogical
properties are lost when we move from the modal
Boolean case to the modal many-valued one. This im-
plies that in order to attack future problems for modal
many-valued logics we will need to introduce new ma-
chinery, what makes this new field a really exciting
and appealing one.

First of all we point out that the fact that two al-
gebras A and B generate the same variety does not
imply that Log2(A,CFr) = Log2(B,CFr). As a coun-
terexample we can consider A as the standard Gödel
algebra [0,1]G and B as its subalgebra of universe
{0}∪[1/2, 1]. It is not hard to see that 2¬¬p→ ¬¬2p
belongs to Log2(B,CFr) while fails in Log2(A,CFr).

Secondly we notice that it can happen that two classes
F1 and F2 of classical Kripke frames have different
modal many-valued logics for an algebra A while for
the case of the Boolean algebra of two elements they
share the same logic. Why? It is well-known that
the modal logic S4 is generated both by the class F1

of finite quasi-orders (perhaps fails the antisymmetric
property) and the class F2 of infinite partial orders.
However, 2¬¬p→ ¬¬2p belongs to Log2([0,1]G,F1)
while fails in Log2([0,1]G,F2).

Table 1: Fitting systems (A = {t1, . . . , tn})

ϕ⇒ ϕ

Γ ⇒ ∆

Γ,Γ′ ⇒ ∆,∆′

Γ ⇒ ∆, ϕ Γ, ϕ⇒ ∆

Γ ⇒ ∆

ϕ1 ⊃ ϕ2, ϕ2 ⊃ ϕ3 ⇒ ϕ1 ⊃ ϕ3

Γ, ti ⊃ ϕ⇒ ∆, ti ⊃ ψ for every i ∈ {1, . . . , n}
Γ ⇒ ∆, ϕ ⊃ ψ

Γ, ψ ⊃ ti ⇒ ∆, ϕ ⊃ ti for every i ∈ {1, . . . , n}
Γ ⇒ ∆, ϕ ⊃ ψ

⇒ ϕ ∧ ψ ⊃ ϕ
⇒ ϕ ∧ ψ ⊃ ψ

ϕ3 ⊃ ϕ1, ϕ3 ⊃ ϕ2 ⇒ ϕ3 ⊃ (ϕ1 ∧ ϕ2)

⇒ ϕ ⊃ ϕ ∨ ψ
⇒ ψ ⊃ ϕ ∨ ψ

ϕ1 ⊃ ϕ3, ϕ2 ⊃ ϕ3 ⇒ (ϕ1 ∨ ϕ2) ⊃ ϕ3

⇒ ti ⊃ tj , if ti ≤ tj
ti ⊃ tj ⇒ , if ti 6≤ tj

(ϕ1 ∧ ϕ2) ⊃ ϕ3 ⇒ ϕ1 ⊃ (ϕ2 ⊃ ϕ3)
ϕ1 ⊃ (ϕ2 ⊃ ϕ3) ⇒ (ϕ1 ∧ ϕ2) ⊃ ϕ3

ϕ⇒ (true ⊃ ϕ)
(true ⊃ ϕ) ⇒ ϕ

⇒ ϕ
⇒ 2ϕ

⇒ 2(ϕ ⊃ ψ) ⊃ (2ϕ ⊃ 2ψ)
⇒ (ti ⊃ 2ϕ) ≡ 2(ti ⊃ ϕ), if i ∈ {1, . . . , n}

Lastly we remark that it is possible to have that
Log2(2,F) enjoys the finite Kripke frame property
while Log2(A,F) does not. A counterexample is given
by the standard Gödel algebra [0,1]G and the class
F of classical quasi-orders. The failure of the finite
Kripke frame property of Log2([0,1]G,F) is witnessed,
for instance, by the formula 2¬¬p→ ¬¬2p.

4 Examples in the literature

In the last years there has been a growing number of
papers about combining modal and many-valued log-
ics. Some approaches differ from ours, like [6, 19],
but others stay as particular cases of our framework.
Among the ones that fit in our framework we can
cite [9, 10, 14, 11, 12, 15, 4].

Next we will discuss the known axiomatizations in the
literature of logics of the form Log2(A,F) where A is
non Boolean and F is the class of all Kripke frames or
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the class of all classical Kripke frames8. Indeed, the
only known ones are for logics satisfying axiom (K),
i.e., the authors are unaware of any axiomatization
for a case where axioms (K) fails. This remains as a
challenge.

A is a finite Heyting algebra. This case was con-
sidered by M. Fitting in [10, Section6]. The language
includes constants for every element of the fixed alge-
bra A (i.e., for every truth value), what simplifies the
proofs and allows to give a unified presentation of the
calculus to axiomatize Log2(A,Fr). The last state-
ment refers to the fact that all these calculus share the
same schemes without constants. The calculus is given
using sequents and can be found in Table 1. Complete-
ness of this calculus means that Log2(A,Fr) coincides
with the set of formulas ϕ ∈ Fm2 such that the se-
quent ⇒ ϕ is derivable using the calculus in Table 1.
We notice that using the constants it is very easy to
see that Log2(A,Fr) 6= Log2(A,CFr). Other papers
that study these cases are [17, 18, 16].

Log2([0,1]G,Fr). This case has been studied by X.
Caicedo and R. Rodŕıguez in [4]. They have proved
that this logic is axiomatized by the calculus given in
Table 2. The proof is based on the construction of
a canonical model9, which indeed is classical. From
here it follows that for every class of Kripke frames F,
it holds that Log2([0,1]G,Fr) = Log2([0,1]G,CFr)10.
Therefore, for the case of [0,1]G we already know how
to introduce the notion of modal many-valued logic: it
is any set of Fm2-formulas that contains the formulas
in Table 2 and is closed under the rules in Table 2.

Log2([0,1] L,CFr). The recent paper [15] by G.
Hansoul and B. Teheux axiomatizes the normal
modal logic Log2([0,1] L,CFr) with the infinite calcu-
lus given in Table 3. The proof is based on the con-
struction of a classical canonical model. Surprisingly
this proof does not need the presence in the language
of constants for every truth value. The trick to avoid
the introduction of constants is based on a result of [21]
(see [15, Definition 5.3]).

A slightly different approach. As we have
claimed before it is unknown how to manage the re-
sulting non-normal logics. One possibility to avoid this

8Hence, we do not consider cases where the class of
frames satisfy some extra conditions, e.g., reflexive and �-
transitive frames. The reason why we do not talk about
them is because we want to consider the minimal logics.

9This technique also gives strong completeness in the
sense that the caculus in Table 2 axiomatizes |=l([0,1]G,Fr).

10We stress that this does not contradict facts like that
2p→ p and 2¬p→ ¬p define, over [0,1]G, the same class
of classical Kripke frames while they define different classes
of Kripke frames.

Table 2: Inference Rules of Log2([0,1]G,Fr)

(ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ))
ϕ→ (ψ → ϕ)

(ϕ ∧ ψ) → (ψ ∧ ϕ)
(ϕ ∧ (ψ ∧ χ)) → ((ψ ∧ ϕ) ∧ χ)

(ϕ→ (ψ → χ)) ↔ ((ϕ ∧ ψ) → χ)
((ϕ→ ψ) → χ) → (((ψ → ϕ) → χ) → χ)

0 → ϕ
ϕ→ (ϕ ∧ ϕ)
¬ϕ↔ (ϕ→ 0)

2(ϕ→ ψ) → (2ϕ→ 2ψ)
¬¬2ϕ→ 2¬¬ϕ
From ϕ infer 2ϕ

From ϕ and ϕ→ ψ, infer ψ

Table 3: Inference Rules of Log2([0,1] L,CFr)

(ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ))
ϕ→ (ψ → ϕ)

((ϕ→ ψ) → ψ) → ((ψ → ϕ) → ϕ)
(¬ϕ→ ¬ψ) → (ψ → ϕ)

2(ϕ→ ψ) → (2ϕ→ 2ψ)
2(ϕ� ϕ) ↔ (2ϕ� 2ϕ)
2(ϕ⊕ ϕ) ↔ (2ϕ⊕ 2ϕ)

2(ϕ⊕ ϕm) ↔ (2ϕ⊕ (2ϕ)m) for every m ≥ 0
From ϕ infer 2ϕ

From ϕ and ϕ→ ψ, infer ψ

difficulty is to introduce graded modalities 2t (where
t ∈ A) corresponding to the cuts of the many-valued
accessibility relation, i.e., using

e(2tϕ,w) =
∧
{e(ϕ,w′) : R(w,w′) ≥ t}

to extend the valuation. Then, it is easy to see that all
modalities 2t are normal. We notice that in some par-
ticular cases, axiomatizations for these graded modal-
ities has been found in the literature (see for in-
stance [8, 22, 3]). The case considered in [3] corre-
sponds to consider the n-valued  Lukasiewicz chain al-
gebra Ln−1 (see [7]) and having constants in the lan-
guage for every element in the n-valued  Lukasiewicz
algebra. The axiomatization given in [3] is shown in
Table 4. An interesting fact about this case is that 2

is definable in the new language because

(2ϕ) ↔
∧
{t→ 2tϕ : t ∈  Ln−1}

is valid under our semantics.

5 Main Open Problems

In opinion of the authors the main open problems
in this field are the search of axiomatizations for
Log2([0,1] L,Fr) and Log2([0,1]Π,Fr) in case they are
recursively axiomatizable. The main difficulties here
are the lack of normality of these logics.
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Table 4: Inference Rules for 20, . . . ,21 (t ∈ Ln−1)

(ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ))
ϕ→ (ψ → ϕ)

((ϕ→ ψ) → ψ) → ((ψ → ϕ) → ϕ)
(¬ϕ→ ¬ψ) → (ψ → ϕ)

(¬ϕ) ↔ (ϕ→ 0)
(ϕ� ψ) ↔ ¬(ϕ→ ¬ψ)

n.ϕ→ (n− 1).ϕ
(m.ϕm−1)n ↔ (n.ϕm), 2 ≤ m ≤ n− 2 and m6 |(n− 1)

(ti → tj) ↔ tk, if tk = ti → tj
2t(ϕ→ ψ) → (2tϕ→ 2tψ)
(2tϕ� 2tψ) → 2t(ϕ� ψ)
2tiϕ→ 2tjϕ, if ti ≤ tj

20ϕ→ ϕ
¬20¬ϕ→ 20¬20¬ϕ

2ti(tj → ϕ) ↔ (tj → 2tiϕ)
From ϕ infer 2tϕ

From ϕ and ϕ→ ψ, infer ψ

Once there is an axiomatization for them (if any) it
seems easy to find the right definition of modal many-
valued logic. And once we know the definition of the
class of modal many-valued logics the next step will
be their study with all possible techniques: algebras11,
Kripke frames, Kripke models, sequent calculus, etc
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