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Abstract. Possibilistic Defeasible Logic Programming (P-DeLP) is an argumen-
tation framework based on logic programming which incorporates a treatment of
possibilistic uncertainty at object-language level. In P-DeLP, the closure of justi-
fied conclusions is not always consistent, which has been detected to be an anomaly
in the context of so-called rationality postulates for rule-based argumentation sys-
tems. In this paper we present a novel level-based approach to computing war-
ranted arguments in P-DeLP which ensures the above rationality postulate. We also
show that our solution presents some advantages in comparison with the use of a
transposition operator applied on strict rules.
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1. Introduction and motivation

Possibilistic Defeasible Logic Programming (P-DeLP) [1] is an argumentation frame-
work based on logic programming which incorporates the treatment of possibilistic un-
certainty at the object-language level. Indeed, P-DeLP is an extension of Defeasible
Logic Programming (DeLP) [9], a logic programming approach to argumentation which
has been successfully used to solve real-world problems in several contexts such as
knowledge distribution [3] and recommendations systems [8], among others. As in the
case of DeLP, the P-DelLP semantics is skeptical, based on a query-driven proof proce-
dure which computes warranted (justified) arguments. Following the terminology used
in [5], P-DeLP can be seen as a member of the familsutd-based argumentation sys-
tems as it is based on a logical language defined over a set of (weighed) literals and the
notions ofstrict anddefeasibleules, which are used to characterize a P-DeLP program.
Recently Caminada & Amgoud have defined sevextibnality postulate$5] which
every rule-based argumentation system should satisfy. One of such postulatedifealled
direct Consistengyinvolves ensuring that the closure of warranted conclusions be guar-
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anteed to be consistent. Failing to satisfy this postulate implies some anomalies un un-
intuitive results (e.g. the modus ponens rule cannot be applied based on justified conclu-
sions). A number of rule-based argumentation systems are identified in which such pos-
tulate does not hold (including DeLP [9] and Prakken & Sartor [11], among others). As
an alternative to solve this problem, the usé¢rafisposed rules proposed to extend the
representation of strict rules. For grounded semantics, the use of a transposition operator
ensures that all rationality postulates to be satisfied [5, pp.294].

In this paper we present a novel level-based approach to computing warranted argu-
ments in P-DeLP which ensures the above rationality postulate without requiring the use
of transposed rules. Additionally, in contrast with DeLP and other argument-based ap-
proaches, we do not require the use of dialectical trees as underlying structures for char-
acterizing our proof procedure. We show that our solution presents some advantages in
comparison with the use of a transposition operator applied on strict rules, which might
lead to unintuitive results in some cases. In particular, we show that adding transposed
rules can turn a valid (consistent) P-DeLP program into an inconsistent one, disallowing
further argument-based inferences on the basis of such a program.

The rest of the paper is structured as follows. Section 2 summarizes the main el-
ements of P-DelLP. Section 3 discusses the role of the rationality postulate of indirect
consistency introduced in [4], and the solution provided in terms of a transposition op-
eratorCl,,. We also show some aspects which may be problematic from this approach
in P-DeLP. Section 4 presents our new level-based definitions of warrant for P-DeLP, as
well as some illustrative examples. We also show that this characterization ensures that
the above postulate can be now satisfied without requiring the use of transposed rules nor
the computation of dialectical trees. Finally Section 5 discusses some related work and
concludes.

2. Argumentation in P-DeLP: an overview

In order to make this paper self-contained, we will present next the main definitions
that characterize the P-DeLP framework. For details the reader is referred to [1]. The
language of P-DeLP is inherited from the language of logic programming, including the
usual notions of atom, literal, rule and fact, but over an extended set of atoms where a
new atom ~p” is added for each original atom Therefore, diteral in P-DeLP is either
an atormp or a (negated) atom of the formp, and agoalis any literal.

A weightedclause is a pair of the forrfy, «), wherepisaruleQ) — P; A ... A Py
or a fact@ (i.e., a rule with empty antecedent), whepe P, ..., P, are literals, and
a € [0, 1] expresses a lower bound for the necessity degree\dfe distinguish between
certain anduncertainclauses. A clausgp, «) is referred as certain it = 1 and un-
certain, otherwise. A set of P-DeLP claugewill be deemed asontradictory denoted
' L, if, for some atomy, T' + (¢, «) andl" - (~gq, 3), with « > 0 and > 0, where
F stands for deduction by means of the following particular instance of¢heralized
modus ponens rule

(Q— Py A+ APya)
(P, B1)s -5 (Pr, Br)
(Qamin(a7ﬁla e 7/6k))

[GMP]



Formally, we will writeT" F (Q, ), wherel is a set of PGL clause§) is a literal
anda > 0, when there exists a finite sequence of PGL cladsges. ., C,, such that
Cm = (Q,a) and, foreach € {1,...,m}, eitherC; € T, or C; is obtained by applying
the GM P rule to previous clauses in the sequence.

A P-DeLP program P (or just programP) is a pair (II, A), whereII is a non-
contradictory finite set of certain clauses, ahds a finite set of uncertain clauses. For-
mally, given a prograrn® = (II, A), we say that a set C A of uncertain clauses is an
argumentfor a goal@ with necessity degree > 0, denoted A4, Q, «), iff:

1. IT U A is non contradictory;

2. a=max{f €[0,1] | TUAF (Q, )}, i.e.ais the greatest degree of deduction
of Q fromII U A;

3. Ais minimal wrt set inclusion, i.e. thereis oy C A suchthallUuA; + (Q,

[0
)

Moreover, if(A, Q, «) and(S, R, 3) are two arguments wrt a prografh= (II, A),
we say that(S, R, 3) is asubargumenbdf (A, Q, «), denoted(S, R, 8) C (A, Q, ),
wheneverS C A. Notice that the goak may be any subgoal associated with the goal
@ in the argumentd. From the above definition of argument, note thatSf R, 5) C
(A, @, ) it holds that: (i) > «, and (ii) iIf 5 = «, thenS = Aiff R = Q.

Let P be a P-DeLP program, and lé#;, Q1, ;1) and (As, Q2, a2) be two ar-
guments wrtP. We say that(A;,Q1,a;) counterargues.As, Qq, az)! iff there ex-
ists a subargument (calletisagreement subargumentS, @, 5) of (As, Q2, as) such
that@Q; = ~ Q. Moreover, if the argumentA;, @1, a;) counterargues the argument
(As, Q2,an) with disagreement subargumed, Q, 3), we say that(A;, Q1,a1) is
a proper (respectivelyblocking defeaterfor (A5, @2, as) whena; > (3 (respectively
a1 = B)

In P-DeLP, as in other argumentation systems [7,12], argument-based inference in-
volves a dialectical process in which arguments are compared in order to determine
which beliefs or goals are ultimately acceptedj@stifiedor warranted on the basis of a
given program and is formalized in terms of an exhaustive dialectical analysis of all pos-
sible argumentation lines rooted in a given argumentafgumentation linestarting in
an argumen{ Ay, Qo, ag) is a sequence of arguments= [(Ag, Qo, @), (A1, Q1, 1),
coor (An, Qnyan), ...] such that eachiA;, Q;, ;) is a defeater for the previous argu-
ment(A,;_1,Q;_1,a;—1) in the sequence, > 0. In order to avoidallaciousreasoning
additional constraints are imposed, namely:

1. Non-contradiction: given an argumentation ling, the set of arguments of the
proponent (respectively opponent) shouldhoa-contradictorywrt P. 2

2. Progressive argumentation:(i) every blocking defeatefA;, Q;, «;) in A with
i > 0 is defeated by a proper defe&€r; 1, Q;+1,i+1) in A; and (i) each
argument A;, Q;, «;) in A\, with ¢ > 2, is such that); #~Q;_1.

1In what follows, for a given goaf), we will write ~ Q as an abbreviation to denote/'y", if Q = ¢, and
“q"if Q = ~q.

ZNon-contradiction for a set of arguments is defined as follows: &'set J\" | {(Ai, Qi, ;) } is contra-
dictorywrt P iff ITTU (", A; is contradictory.

31t must be noted that the last argument in an argumentation line is allowed to be a blocking defeater for the
previous one.



The non-contradiction condition disallows the use of contradictory information on
either side (proponent or opponent). The first condition of progressive argumentation
enforces the use of a proper defeater to defeat an argument which acts as a blocking
defeater, while the second condition avoids non optimal arguments in the presence of
a conflict. An argumentation line satisfying the above restrictions is caltedptable
and can be proven to be finite. The set of all possible acceptable argumentation lines
results in a structure callatlalectical tree Given a progranP = (II, A) and a goaty,
we say thaty) is warrantedwrt P with a maximum necessity degreeiff there exists
an argument A, Q, ), for someA C A, such that: i) every acceptable argumentation
line starting with(A4, @, «) has an odd number of arguments; and ii) there is no other
argument of the form{4,, Q, ), with 3 > «, satisfying the above. In the rest of the
paper we will writeP |~" (A, Q, «) to denote this fact.

3. Indirect consistency as rationality postulate. Transposition of strict rules

In a recent paper Caminada and Amgoud [5] have defined a very interesting characteri-
zation of threerationality postulateghat —according to the authors— any rule-based ar-
gumentation system should satisfy in order to avoid anomalies and unintuitive results.
We will summarize next the main aspects of these postulates, and their relationship with
the P-DeLP framework. Their formalization is intentionally generic, based adefea-

sible theoryT = (S, D), whereS is a set of strict rules an® is a set of defeasible
rules. The notion of negation is modelled in the standard way by means of a function
“—". An argumentation systeis a pair(Args, Def), whereArgs is a set of arguments
(based on a defeasible theory) abdf C Args x Args is a defeat relation. Thelo-

sureof a set of literalsC under the setS, denotedC'Ls(L) is the smallest set such
that L C CLs(L), and if ¢1,...,¢, — ¢ € S, and¢y,...,¢, € CLs(L), then

¥ € CLs(L). A set of literalsL is consistentff there not existy, ¢ € £ such that

1 = —¢, otherwise it is said to beconsistentAn argumentation systefirgs, De f)

can have differengéxtensions?y, E, ..., E, (n > 1) according to the adopted seman-
tics. The conclusions associated with those arguments belonging to a given extension
E; are defined a€oncs(E;), and theoutput of the argumentation system is defined
skeptically aOutput = (,_, ,, Concs(E;).

On the basis of the above concepts, Caminada & Amgoud [5, pp.294] present three
important postulateddirect consistengyindirect consistencynd closure Let 7 be a
defeasible theory,Args, Def) an argumentation system built fraf Output the set of
justified (warranted) conclusions, afd, . . ., F,, its extensions under a given semantics.
Then these three postulates are defined as follows:

e (Args, Def) satisfiesclosureiff (1) Concs(E;) = C'Ls(Concs(E;)) for each
1 <4 < nand (2)Output = CLs(Output).

e (Args, Def) satisfiegdirect consistencyiff (1) Concs(E;) is consistent for each
1 < i < nand (2)Output is consistent.

e (Args, Def) satisfiesindirect consistencyiff (1) C'Ls(Concs(E;)) is consis-
tent for eachl < < n and (2)C'Ls(Output) is consistent.

Closure accounts for requiring that the set of justified conclusions as well as the set
of conclusions supported by each extension are closed. Direct consistency implies that



the set of justified conclusions and the different sets of conclusions corresponding to each
extension are consistent. Indirect consistency involves a more subtle case, requiring that
the closure of botiConcs(F;) andOutput is consistent.

Caminada and Amgoud show that many rule-based argumentation system (e.g.
Prakken & Sartor [11] and DeLP [9]) fail to satisfy indirect consistency, detecting as a
solution the definition of a specislansposition operatolC'l,, for computing the clo-
sure of strict rules. This accounts for taking every strict rule ¢1, ¢o,..., ¢, —

1) as a material implication in propositional logic which is equivalent to the dis-
junction g1 V ¢o V ..., ¢, V —1p. From that disjunction different rules of the form
D1y Gim1, W, Dix1, ..., 0p — —p; Ccan be obtainedtfanspositionsof 7). If S is

a set of strict rulesC!,, is the minimal set such that (1§ C Cl;,(S) and (2) If

s € Cly,(S) andt is a transposition of, thent € C1,,(S). The use of such an operator
allows the three rationality postulates to be satisfied in the case of the grounded extension
(which corresponds to the one associated with systems like DeLP or P-DelLP).

Theorem 1 [5] Let (Args, Def) be an argumentation system built frgi@il,, (S), D),
whereCl,,(S) is consistentQutput is the set of justified conclusions afdts grounded
extension. ThefArgs, Def) satisfies closure and indirect consistency.

Caminada & Amgoud show that DelLP does not satisfy the indirect consistency
postulate. The same applies for P-DelLP, as illustrated next. Consider the program
P = (II,A), wherell ={ (y,1), (~y — aAb,1)}and A ={ (a,0.9), (b,0.9) }.

It is easy to see that argumenr{i§a,0.9)}, a,0.9) and({(,0.9)},b,0.9) have no de-
featers wrtP. Thus{y, a,b} = Output turns out to be warranted, and it holds that
Y, ~Y € CLCltp(H)({y, a, b}), so that indirect consistency does not hold.

We think that Caminada & Amgoud’s postulate of indirect consistency is indeed
valuable for rule-based argumentation systems, as in some sense it allows to perform
“forward reasoning” from warranted literals. However, P-DeLP and Del PHzma-
based systems, so that strict rules should be read as inference rules rather than as material
implications. In this respect, the use of transposed rules might lead to unintuitive situa-
tions in a logic programming context. Consider e.g. the progfam{ (¢ — p A r, 1),

(s —~r,1),(p, 1), (~q,1), (~s,1) }. In P-DeLP, the factgp, 1), (~¢q, 1) and(~s,1)

would be warranted literals. However, the closure under transpositigs{’?) would
include the rulg(~r «— pA ~¢, 1), resulting in inconsistency (botfxs,1) and(s, 1)

can be derived), so that the whole program would be deemed as invalid. Our goal is to
retain a Horn-based view for a rule-based argumentation system like P-DeLP, satisfying
at the same time the indirect consistency postulate. To do this we will not take into ac-
count transposed rules, introducing instead the notidewafl-basedvarranted literals,

as discussed in the next Section.

4. Alevel-based approach to computing warranted arguments

In a logic programming system like P-DeLP the use of transposed rules to ensure in-
direct consistency may have some drawbacks that have to be taken into consideration.
Apart from the problem mentioned at the end of last section of turning an apparently
valid program into a non-valid one, there are two other issues: (i) a computational lim-
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itation, in the sense that extending a P-DeLP program with all possible transpositions
of every strict rule may lead to an important increase in the number of arguments to be
computed; and (ii) when doing so, the system can possibly establish as warranted goals
conclusions which are not explicitly expressed in the original program. For instance,
consider the prograr® = {(~y «— a A b,1), (y,1), (a,0.9), (b,0.7)}. Transpositions

of the strictrule(~y < a A b,1) are(~a «— y A b,1)and(~b < y A a,1). Then, the
argumentl A, ~b,0.9) , with A = {(y, 1), (a,0.9), (~b — a A y, 1)}, is warranted wrt

P, although no explicit information is given for the literal in . In this paper we will
provide a new formal definition of warranted goal with maximum necessity degree which
will take into account direct and indirect conflicts between arguments. Indirect conflicts
will be detected without explicitly transposing strict rules, distinguishing betwesen
rantedandblockedgoals.

Direct conflicts between arguments refer to the case of both proper and blocking
defeaters. For instance, consider the progfam: {(a — b,0.9), (b,0.8), (~b,0.8)}.

Thus argument§{(b,0.8)},b,0.8) and({(~b,0.8)}, ~b,0.8) are a pair of blocking de-
featers expressing (direct) contradictory information, and theréfanel~ b will be con-
sidered a pair of blocked goals with maximum necessity deggedNote that although
the argument{(~b,0.8)}, ~b,0.8) is a blocking defeater for the argumept a, 0.8),

with A = {(a < 5,0.9), (b,0.8)}, goalsa and~ b do not express contradictory infor-
mation, and therefore is a neither blocked nor warranted goal with necessity degree
0.8.

On the other hand, we will refer to indirect conflicts between arguments when
there exists an inconsistency emerging from the set of certain (strict) clauses of
a program and arguments with no defeaters. For instance, consider the program
P = ILA)withIl = {(~y — aAb1),(y1),(~z—cAd1),(z,1)} andA =
{(a,0.7),(b,0.7), (¢,0.7), (d,0.6) }. In standard P-DeLP [1], (i.e. without extending the
program with transpositions of rules ®f) ({(a,0.7)},a,0.7) and ({(b,0.7)},b,0.7)
are arguments with no defeaters and therefore their conclusions would be warranted.
However, sincell U {(a,0.7),(b,0.7)} F L, arguments{{(a,0.7)},a,0.7) and
({(b,0.7)},b,0.7) express (indirect) contradictory information. Moreover, as both goals
are supported by arguments with the same necessity dédrerone of them can be
warranted nor rejected, and therefore we will refer to them as (indirect) blocked goals
with maximum necessity degrée7. On the other hand, a similar situation appears with
({(¢,0.7)},¢,0.7) and ({(d,0.6)},d, 0.6). As before, T U {(c,0.7), (d,0.6)} -+ L, but
in this case the necessity degree of goa greater than the necessity degree of gbal
Thereforec will be considered a warranted goal with maximum necessity ddégvee

Let ARG(P) = {(A4,Q,a) | Ais an argument fo€ with necessityx wrt P} and
let Concl(P) = {(Q,a) | {(A,Q,a) € ARG(P)}. An outputfor a P-DeLP prograr®
will be a pair(Warr, Block), whereWarr, Block C Concl(P), denoting respectively
a set of warranted and blocked goals (together with their degrees) and fulfilling a set
of conditions that will ensure a proper handling of the problem of global inconsistency
discussed earlier, and that will specified in the following definition. Since the intended
construction of the setd arr, Block is done level-wise, starting from the first level and
iteratively going from one level to next level below, we introduce some useful notation.
Indeed, ifl > a; > as > ... > o, > 0 are the weights appearing in arguments from
ARG(P), we can stratify the sets by puttifgarr = Warr(ai)U...UWarr(a,) and
similarly Block = Block(a1) U ... U Block(cy,), whereWarr(a;) andBlock(a;) are



7

respectively the sets of the warranted and blocked goals with maximum degré&e
will also write Warr(> «;) to denoteUgs.o, Warr(3), and analogously foBlock(>
a;). In what follows, given a prograr® = (II, A) we will denote byrules(II) and
facts(II) the set of strict rules and strict factsBfrespectively.

Definition 1 (Warranted and blocked goals) Given a programP = (II, A), an output
for P is a pair (Warr, Block) where the set¥ arr(«;) and Block(«;), fori =1...p
are required to satisfy the following constraints:

1. Anargument A Q, «;) € ARG(P) is called acceptable if it satisfies the follow-
ing three conditions:

() (Q,B) € Warr(> «;) U Block(> «;) and(~Q, 8) € Block(> «;), for all
8>«

(i) for any subargument3, R, ) C (A Q, ;) such thatR # Q, (R,() €
Warr(B)

(i) rules(Il) UWarr(> a;) U{(R, ) | (B,R, ;) C (A Q, )} I/ L.

2. For each acceptabléAd Q, a;) € ARG(P), (Q, «;) € Block(c;) whenever

(i) either there exists an acceptalB, ~Q, ;) € ARG; or

(i) there exists& C {(P, ;) | (C,P,a;) € ARG is acceptable and- P ¢
Block(a;)} such thatrules(II) U Warr(> «;) UG t# L andrules(Il) U
Warr(> a;) UGU{(Q,a;)} F L;

otherwise(Q, «;) € Warr(a;).

Note that in Def. 1 the notion of argument ensures that for each argymepi o) €
ARG, the goal@ is non-contradictory wrt the sét of certain clauses oP. However,
it does not ensure non-contradiction Wtttogether with the selVarr(> «) of war-
ranted goals with degree greater thaifas required by the indirect consistency postu-
late [5]). Therefore, for each argumef @, o) € ARG satisfying that each subgoal
is warranted, the god) can be warranted at level only after explicitly checking in-
direct conflicts wrt the seVarr(> «), i.e. after verifying that-ules(IT) U Warr(>
a)U{(Q,a)} I# L. Forinstance, consider the progrém= (II, A) with

II={(y,1),(~y <~ aAc1)}and
A = {(a,0.9), (b,0.9), (¢ < b,0.8)}.

According to Def. 1, the goa} is warranted with necessity degréeand goals: andb
are warranted with necessity degfe@. Then

({(5,0.9), (¢ < 5,0.8)},¢,0.8)

is an argument fof such that the subargumefi(v, 0.9)}, b, 0.9) is warranted. However,
asrules(II) U{(y, 1), (a,0.9), (,0.9)} U{(c¢,0.8)} - L, the goak is neither warranted
nor blocked wrtP.

Suppose now in Def. 1, that an argumést @, ) € ARG involves a warranted
subgoal with necessity degreeThen@ can be warranted only after explicitly checking
indirect conflicts wrt its set of subgoals, i.e. after verifying thales(IT) UW arr (> a)U
{(R,a) | (B,R,c) C (AQ,a)} I/ L. Forinstance, consider the progrdm= (II, A),
with



II={(y,1),(~y < anb,1)}and
A ={(a,0.7), (b — a,0.7)}.

Theny anda are warranted goals with necessity degréesd 0.7, respectively, and
although it is not possible to compute a defeater for the argument

{(a,0.7), (b — a,0.7)},b,0.7)

in P and the subgoal is warranted with necessity degréd, b is not warranted since
{(~y —anb1)}U{(y,1)}U{(a,0.7)}U{(b,0.7)} + L. Finally, note that in Def. 1,
direct conflicts invalidate possible indirect conflicts in the following sense. Consider the
programP = (II, A), with

II={(y < a,1),(~y < bAc1)}and
A = {(a,0.7), (b,0.7), (¢, 0.7), (~c,0.7)}.

Then,c and ~ ¢ are blocked goals with necessity degfe@ and thusa, b andy are
warranted goals with necessity degfe® The next example illustrates some interesting
cases of the notion of warranted and blocked goals in P-DeLP.

Example 2 Consider the prograr®; = (II;, A;), with

M, = {(y,1),(~y <~ aAb,1)}and
Ay = {(a,0.7),(b,0.7), (~a,0.5)}.

According to Def. 1(y,1) is warranted and(a,0.7) and (b,0.7) are blocked. Then,
asa is blocked with necessity degréer, ({(~a,0.5)},~a,0.5) is not an acceptable
argument and hence the goak: is neither warranted nor blocked wi; .

Now consider the progra®, = (Il, As) with

I, = {(y,1),(~y <~ aA¢1)}and
Ay ={(a,0.9),(0,0.9), (c < b,0.9)}.

According to Def. 1(y, 1) and(b, 0.9) are warranted. On the other han¢{(a,0.9)}, a,0.9)
is an argument for with an empty set of subarguments dith, 0.9), (¢ <+ 5,0.9)}, ¢, 0.9)
is an argument for satisfying that the subargumenf(b,0.9)},0,0.9) is warranted.
However, as{(~y «— a A ¢, 1)} U{(y,1),(5,0.9)} U {(a,0.9),(c,0.9)} - L, a andc
are a pair of blocked goals wfP, with necessity degre9.

Finally, consider the prograr®; = (Ilz, A3) with

As ={(a,0.9),(c,0.9), (b « ¢,0.9),(d «— a A ¢, 0.9)}.

In that casg(y, 1) is warranted anda, 0.9) and(c, 0.9) are blocked. Then, according to
Def. 1, asc is a blocked goal with necessity9, ({(c,0.9), (b < ¢,0.9)},,0.9) is not
an acceptable argument and hence the dgosl neither warranted nor blocked wits.
Notice that since: and ¢ are contradictory wrtll,, ho argument can be computed for
goald.

It can be shown that ifWarr, Block) is an output of a P-DeLP program, the set
Warr of warranted goals (according to Def. 1) is indeed non-contradictory and satisfies
indirect consistency with respect to the set of strict rules.
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Proposition 3 (Indirect consistency)Let P = (I, A) be a P-DeLP program and let
(Warr, Block) be an output fofP. Then:

(i) facts(Il) C Warr,
@iy Warrt/ L, and
(i) rules(Il) U Warr - (Q, ) implies(Q, 8) € Warr, for some3 > a.

Actually, (iii) above can be read also as saying thétrr satisfies (somewhat softened)
the closurepostulate with respect to the set of strict rules. Indeed, it could be recovered
in the full sense if the deduction characterized-owould be defined taking only into
account those derivations yielding maximum degrees of necessity.

Proof: We prove (ii) and (iii), as (i) is straighforward.

(i) Suppose that for some go@, {(Q, ), (~Q, 3)} € Warr. Then, there should exist
AC AandB C Asuchthafllu A F (Q,a) andTIU B + (~ @, 3). If a = 8,
(A Q,a) and(B,~Q, 5) are a pair of blocking arguments; otherwise, one is a proper
defeater for the other one amdles(IT) U {(Q, o), (~ @, 3)} F L. Hence, by Def. 1,

{(Q, ), (~Q,8)} L Warr.

(iii) Suppose that, for some go@\, rules(II)UWarr F (Q, ) and(Q, 5) & Warr, for
all 3 > «. Then, there should exist a strict rulelinof the form(Q — P; A ... A Py, 1)
such that either for each= 1,...,k, (P;, ;) € Warr or, recursively,rules(II) U
Warr b (P;,«;), andmin(ay, . ..,ar) = a. Now, if (Q,a) € Warr, by Def. 1, it
follows that eithel(@Q, 5) € Warr or (~Q, 8) € Warr for somes > «, orrules(II) U
Warr F (~Q,a). AS o = min(aq,...,az), it follows thata = «;, for somel <
i < k. Then, if(~Q,3) € Warr, with 8 > «, orTIU Warr F (~Q, «), by Def. 1,
there should exist, at least, a gd3l| with 1 < i < k, such that P;, ;) ¢ Warr and
rules(Il) U Warr t/ (P;, ;). Hence, ifrules(Il) U Warr F (Q,«), then(Q, 5) €
Warr, for somes > a. O

Next we show that ifW arr, Block) is an output of a P-DeLP prografh= (II, A),
the setiWarr of warrented goals contains indeed each lit€)aatisfying thatP* |~
(A,Q,a) andIl U A + (Q, «), with P* = (IT U Clyy(rules(Il)), A) and whenever
IT U Clyp(rules(II)) is non-contradictory.

Proposition 4 LetP = (II, A) be a P-DeLP program such th&t U Cly, (rules(II)) is
non-contradictory and lef) be a literal such thaP* |~ (A4, Q, a). I ITUAF (Q, «),
(Q, a) € Warr for all output(Warr, Block) of P.4

Notice that the inverse of Prop. 4 does not hold; i.e. assumingithatl,, (rules(II))
is non-contradictory it can be the case th@t o) € Warr and(Q, «) is not warranted
wrt the extended prograrR*. This is due to the fact that the new level-wise approach
for computing warranted goals allows us to consider a more specific treatment of both
direct and indirect conflicts between literals. In particular we have that each blocked
literal invalidates all rules in which the literal occurs. For instance, consider the program
P = (111, A1), with

4In what follows, proofs are omitted for space reasons
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I = {(y,1), (~y < aAb,1)} and
Ay = {(a,0.7), (b,0.7), (~b,0.7)}.

According to Def. 1,(y,1) and (a,0.7) are warranted an¢,0.7) and (~ b,0.7) are
blocked. However, when considering the extended prograre: (I1, UC1y, (rules(I11)), A1)
one is considering the transposed r(#ez < y A b, 1) and therefore,

A1 = [({(a,0.7)},a,0.7), ({(b,0.7)}, ~a, 0.7)]

is an acceptable argumentation line @it with an even number of arguments, and thus,
(a,0.7) is not warranted wrP;. Another case that can be analyzed is the following one:
Consider now the prograf, = (I1;, Ay), with

Ay = {(a,0.7), (b — a,0.7), (~b,0.7)}.

According to Def. 1y, 1) and(a,0.7) are warranted and, as indirect conflicts are not
allowed,(B,b,0.7) with B = {(b < a,0.7), (a,0.7)} is not an acceptable argument for
(b,0.7), and thereforg¢~b,0.7) is warranted. However, when considering the extended
programPs = (II; U Clyp(rules(Ily)), Ag),

A2 = [({(~),0.7)},~b,0.7), (B, ,0.7)]

is an acceptable argumentation line #t with an even number of arguments, and thus,
(~b,0.7) is not warranted wrP3.

Actually, the intuition underlying Def. 1 can be defined as follows: An argument
(A, Q, o) is warranted or blocked if each subargum@htR, 3) C (A, Q, «), with Q #
R, is warranted. Then, it is warranted if it does not induce direct nor indirect conflicts
and blocked, otherwise. The following results provide an interesting characterization of
the relationship between warranted and blocked goals in a P-DeLP program.

Proposition 5 Let P = (II, A) be a P-DeLP program and €V arr, Block) be an
output forP. Then:

1. If (@, ) € WarrU Block, then there existé4 @, o) € ARG(P) and, for each
subargumentB, R, 3) C (A Q,«) with R # Q, (R, 8) € Warr.

2. If (Q, ) € WarrU Block, then for every argumenrtd, Q, 3), with 8 > «, there
exists a subargumen3, R,v) C (A Q,B) with R # @, such that(R, ) ¢
Warr.

3. If (Q, ) € Warr, there is nog > 0 such that(Q, 8) € Block or (~Q, ) €
Block

4. If (Q,a) ¢ Warr U Block for eacha > 0, then either(~ Q,3) € Block
for someps > 0, or for each argumentA, Q, «), there exists a subargument
(B,R,3) C (A,Q,a) with R # @, such that(R, 3) & Warr, or rules(II) U
Warr(> o) U{(Q,a)} F L.

Finally, we will come to the question of whether a progrénalways has ainique
output (Warr, Block) according to Def. 1. In general, the answer is yes, although we
have identified some recursive situations that might lead to different outputs. For in-
stance, consider the program
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P ={(p,0.9), (¢,0.9), (~p — ¢,0.9), (~q — p,0.9)}.

Then, according to Def. Iy is a warranted goal iff and~ ¢ are a pair of blocked goals
and viceversa; is a warranted goal ifp and~ p are a pair of blocked goals. Hence, in
that case we have two possible outpi&:arry, Block;) and(Warrs, Blocks) where

Warry = {(p,0.9)}, Block; = {(~q,0.9),(q,0.9)}
Warre = {(g,0.9)}, Blocks = {(p,0.9), (~p,0.9)}

In such a case, eitheror ¢ can be warranted goals (but just one of thérithus,
although our approach is skeptical, we can get sometimes alternative extensions for war-
ranted beliefs. A natural solution for this problem would be adopting the intersection of
all possible outputs in order to define the set of those literals which are ultimately war-
ranted. Namely, LeP be a P-DeLP program, and letitput;(P) = (Warr;, Block;)
denote all possible outputs f@, i = 1...n. Then theskeptical outpubf P could be de-
fined asoutputspep(P) = (N;—1._,, Warri,(\;—,_, Block;). It can be shown that that
output e, (P) satisfies by construction also Prop. 3 (indirect inconsistency). It remains
as a future task to study the formal properties of this definition.

5. Related Work. Conclusions

We have presented a novel level-based approach to computing warranted arguments in
P-DeLP. In order to do so, we have refined the notion of conflict among arguments, pro-
viding refined definitions of blocking and proper defeat. The resulting characterization
allows to compute warranted goals in P-DeLP without making use of dialectical trees as
underlying structures. More importantly, we have also shown that our approach ensures
the satisfiability of the indirect consistency postulate proposed in [4,5], without requiring
the use of transposed rules.

Assigning levels or grades to warranted knowledge has been source of research
within the argumentation community in the last years, and to the best of our knowledge
can be traced back to the notiondsgree of justificatioaddressed by John Pollock [10].

In this paper, Pollock concentrates on the “on sum” degree of justification of a conclu-
sion in terms of the degrees of justification of all relevant premises and the strengths of
all relevant reasons. However, his work is more focused on epistemological issues than
ours, not addressing the problem of indirect inconsistency, nor using the combination of
logic programming and possibilistic logic to model argumentative inference. An alterna-
tive direction is explored by Besnard & Hunter [2] by characterizggregation func-

tions such as categorisers and accumulators which allow to define more evolved forms
of computing warrant (e.g. counting arguments for and against, etc.). However, this re-
search does not address the problem of indirect consistency, and performs the grading on
top of a classical first-order language, where clauses are weighed as in our case. More
recently, the research work of Cayrol & Lagasquie-Schiex [6] pursues a more ambitious
goal, providing a general framework for formalizing the notiorgodduality in valua-

tion models for argumentation frameworks, focusing on the valuation of arguments and

5A complete characterization of these pathological situations is a matter of current research.
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the acceptability according to different semantics. The problem of indirect consistency
is not addressed here either, and the underlying system is Dung’s abstract argumentation
systems, rather than a logic programming framework as in our case.

We contend that our level-based characterization of warrant can be extended to other
alternative argumentation frameworks in which weighted clauses are used for knowledge
representation. Part of our current research is focused on finding a suitable generalization
for capturing the results presented in this paper beyond the P-DeLP framework.
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