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Abstract. Possibilistic Defeasible Logic Programming (P-DeLP) is an argumen-
tation framework based on logic programming which incorporates a treatment of
possibilistic uncertainty at object-language level. In P-DeLP, the closure of justi-
fied conclusions is not always consistent, which has been detected to be an anomaly
in the context of so-called rationality postulates for rule-based argumentation sys-
tems. In this paper we present a novel level-based approach to computing war-
ranted arguments in P-DeLP which ensures the above rationality postulate. We also
show that our solution presents some advantages in comparison with the use of a
transposition operator applied on strict rules.
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1. Introduction and motivation

Possibilistic Defeasible Logic Programming (P-DeLP) [1] is an argumentation frame-
work based on logic programming which incorporates the treatment of possibilistic un-
certainty at the object-language level. Indeed, P-DeLP is an extension of Defeasible
Logic Programming (DeLP) [9], a logic programming approach to argumentation which
has been successfully used to solve real-world problems in several contexts such as
knowledge distribution [3] and recommendations systems [8], among others. As in the
case of DeLP, the P-DeLP semantics is skeptical, based on a query-driven proof proce-
dure which computes warranted (justified) arguments. Following the terminology used
in [5], P-DeLP can be seen as a member of the family ofrule-based argumentation sys-
tems, as it is based on a logical language defined over a set of (weighed) literals and the
notions ofstrict anddefeasiblerules, which are used to characterize a P-DeLP program.

Recently Caminada & Amgoud have defined severalrationality postulates[5] which
every rule-based argumentation system should satisfy. One of such postulates (calledIn-
direct Consistency) involves ensuring that the closure of warranted conclusions be guar-
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anteed to be consistent. Failing to satisfy this postulate implies some anomalies un un-
intuitive results (e.g. the modus ponens rule cannot be applied based on justified conclu-
sions). A number of rule-based argumentation systems are identified in which such pos-
tulate does not hold (including DeLP [9] and Prakken & Sartor [11], among others). As
an alternative to solve this problem, the use oftransposed rulesis proposed to extend the
representation of strict rules. For grounded semantics, the use of a transposition operator
ensures that all rationality postulates to be satisfied [5, pp.294].

In this paper we present a novel level-based approach to computing warranted argu-
ments in P-DeLP which ensures the above rationality postulate without requiring the use
of transposed rules. Additionally, in contrast with DeLP and other argument-based ap-
proaches, we do not require the use of dialectical trees as underlying structures for char-
acterizing our proof procedure. We show that our solution presents some advantages in
comparison with the use of a transposition operator applied on strict rules, which might
lead to unintuitive results in some cases. In particular, we show that adding transposed
rules can turn a valid (consistent) P-DeLP program into an inconsistent one, disallowing
further argument-based inferences on the basis of such a program.

The rest of the paper is structured as follows. Section 2 summarizes the main el-
ements of P-DeLP. Section 3 discusses the role of the rationality postulate of indirect
consistency introduced in [4], and the solution provided in terms of a transposition op-
eratorCltp. We also show some aspects which may be problematic from this approach
in P-DeLP. Section 4 presents our new level-based definitions of warrant for P-DeLP, as
well as some illustrative examples. We also show that this characterization ensures that
the above postulate can be now satisfied without requiring the use of transposed rules nor
the computation of dialectical trees. Finally Section 5 discusses some related work and
concludes.

2. Argumentation in P-DeLP: an overview

In order to make this paper self-contained, we will present next the main definitions
that characterize the P-DeLP framework. For details the reader is referred to [1]. The
language of P-DeLP is inherited from the language of logic programming, including the
usual notions of atom, literal, rule and fact, but over an extended set of atoms where a
new atom “∼p” is added for each original atomp. Therefore, aliteral in P-DeLP is either
an atomp or a (negated) atom of the form∼p, and agoal is any literal.

A weightedclause is a pair of the form(ϕ, α), whereϕ is a ruleQ ← P1 ∧ . . . ∧ Pk

or a factQ (i.e., a rule with empty antecedent), whereQ,P1, . . . , Pk are literals, and
α ∈ [0, 1] expresses a lower bound for the necessity degree ofϕ. We distinguish between
certain anduncertainclauses. A clause(ϕ, α) is referred as certain ifα = 1 and un-
certain, otherwise. A set of P-DeLP clausesΓ will be deemed ascontradictory, denoted
Γ ` ⊥, if , for some atomq, Γ ` (q, α) andΓ ` (∼q, β), with α > 0 andβ > 0, where
` stands for deduction by means of the following particular instance of thegeneralized
modus ponens rule:

(Q ← P1 ∧ · · · ∧ Pk , α)
(P1, β1), . . . , (Pk, βk)
(Q, min(α, β1, . . . , βk))

[GMP]
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Formally, we will writeΓ ` (Q,α), whereΓ is a set of PGL clauses,Q is a literal
andα > 0, when there exists a finite sequence of PGL clausesC1, . . . , Cm such that
Cm = (Q,α) and, for eachi ∈ {1, . . . ,m}, eitherCi ∈ Γ, orCi is obtained by applying
theGMP rule to previous clauses in the sequence.

A P-DeLP programP (or just programP) is a pair (Π,∆), whereΠ is a non-
contradictory finite set of certain clauses, and∆ is a finite set of uncertain clauses. For-
mally, given a programP = (Π, ∆), we say that a setA ⊆ ∆ of uncertain clauses is an
argumentfor a goalQ with necessity degreeα > 0, denoted〈A, Q, α〉, iff:

1. Π ∪ A is non contradictory;
2. α = max{β ∈ [0, 1] | Π∪A ` (Q, β)}, i.e.α is the greatest degree of deduction

of Q from Π ∪ A;
3. A is minimal wrt set inclusion, i.e. there is noA1 ⊂ A such thatΠ∪A1 ` (Q,α).

Moreover, if〈A, Q, α〉 and〈S, R, β〉 are two arguments wrt a programP = (Π,∆),
we say that〈S, R, β〉 is a subargumentof 〈A, Q, α〉, denoted〈S, R, β〉 v 〈A, Q, α〉,
wheneverS ⊆ A. Notice that the goalR may be any subgoal associated with the goal
Q in the argumentA. From the above definition of argument, note that if〈S, R, β〉 v
〈A, Q, α〉 it holds that: (i)β ≥ α, and (ii) if β = α, thenS = A iff R = Q.

Let P be a P-DeLP program, and let〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 be two ar-
guments wrtP. We say that〈A1, Q1, α1〉 counterargues〈A2, Q2, α2〉1 iff there ex-
ists a subargument (calleddisagreement subargument) 〈S, Q, β〉 of 〈A2, Q2, α2〉 such
that Q1 = ∼ Q. Moreover, if the argument〈A1, Q1, α1〉 counterargues the argument
〈A2, Q2, α2〉 with disagreement subargument〈A, Q, β〉, we say that〈A1, Q1, α1〉 is
a proper (respectivelyblocking) defeaterfor 〈A2, Q2, α2〉 whenα1 > β (respectively
α1 = β).

In P-DeLP, as in other argumentation systems [7,12], argument-based inference in-
volves a dialectical process in which arguments are compared in order to determine
which beliefs or goals are ultimately accepted (orjustifiedor warranted) on the basis of a
given program and is formalized in terms of an exhaustive dialectical analysis of all pos-
sible argumentation lines rooted in a given argument. Anargumentation linestarting in
an argument〈A0, Q0, α0〉 is a sequence of argumentsλ = [〈A0, Q0, α0〉, 〈A1, Q1, α1〉,
. . . , 〈An, Qn, αn〉, . . .] such that each〈Ai, Qi, αi〉 is a defeater for the previous argu-
ment〈Ai−1, Qi−1, αi−1〉 in the sequence,i > 0. In order to avoidfallaciousreasoning
additional constraints are imposed, namely:

1. Non-contradiction: given an argumentation lineλ, the set of arguments of the
proponent (respectively opponent) should benon-contradictorywrt P. 2

2. Progressive argumentation:(i) every blocking defeater〈Ai, Qi, αi〉 in λ with
i > 0 is defeated by a proper defeater3 〈Ai+1, Qi+1, αi+1〉 in λ; and (ii) each
argument〈Ai, Qi, αi〉 in λ, with i ≥ 2, is such thatQi 6=∼Qi−1.

1In what follows, for a given goalQ, we will write∼Q as an abbreviation to denote “∼ q", if Q ≡ q, and
“q", if Q ≡ ∼q.

2Non-contradiction for a set of arguments is defined as follows: a setS =
⋃n

i=1
{〈Ai, Qi, αi〉 } is contra-

dictorywrt P iff Π ∪
⋃n

i=1
Ai is contradictory.

3It must be noted that the last argument in an argumentation line is allowed to be a blocking defeater for the
previous one.
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The non-contradiction condition disallows the use of contradictory information on
either side (proponent or opponent). The first condition of progressive argumentation
enforces the use of a proper defeater to defeat an argument which acts as a blocking
defeater, while the second condition avoids non optimal arguments in the presence of
a conflict. An argumentation line satisfying the above restrictions is calledacceptable,
and can be proven to be finite. The set of all possible acceptable argumentation lines
results in a structure calleddialectical tree. Given a programP = (Π,∆) and a goalQ,
we say thatQ is warrantedwrt P with a maximum necessity degreeα iff there exists
an argument〈A, Q, α〉, for someA ⊆ ∆, such that: i) every acceptable argumentation
line starting with〈A, Q, α〉 has an odd number of arguments; and ii) there is no other
argument of the form〈A1, Q, β〉, with β > α, satisfying the above. In the rest of the
paper we will writeP |∼w 〈A, Q, α〉 to denote this fact.

3. Indirect consistency as rationality postulate. Transposition of strict rules

In a recent paper Caminada and Amgoud [5] have defined a very interesting characteri-
zation of threerationality postulatesthat –according to the authors– any rule-based ar-
gumentation system should satisfy in order to avoid anomalies and unintuitive results.
We will summarize next the main aspects of these postulates, and their relationship with
the P-DeLP framework. Their formalization is intentionally generic, based on adefea-
sible theoryT = 〈S,D〉, whereS is a set of strict rules andD is a set of defeasible
rules. The notion of negation is modelled in the standard way by means of a function
“−”. An argumentation systemis a pair〈Args, Def〉, whereArgs is a set of arguments
(based on a defeasible theory) andDef ⊆ Args × Args is a defeat relation. Theclo-
sure of a set of literalsL under the setS, denotedCLS(L) is the smallest set such
thatL ⊆ CLS(L), and if φ1, . . . , φn → ψ ∈ S, andφ1, . . . , φn ∈ CLS(L), then
ψ ∈ CLS(L). A set of literalsL is consistentiff there not existψ, φ ∈ L such that
ψ = −φ, otherwise it is said to beinconsistent. An argumentation system〈Args, Def〉
can have differentextensionsE1, E2, . . . , En (n ≥ 1) according to the adopted seman-
tics. The conclusions associated with those arguments belonging to a given extension
Ei are defined asConcs(Ei), and theoutput of the argumentation system is defined
skeptically asOutput =

⋂
i=1...n Concs(Ei).

On the basis of the above concepts, Caminada & Amgoud [5, pp.294] present three
important postulates:direct consistency, indirect consistencyand closure. Let T be a
defeasible theory,〈Args,Def〉 an argumentation system built fromT , Output the set of
justified (warranted) conclusions, andE1, . . . , En its extensions under a given semantics.
Then these three postulates are defined as follows:

• 〈Args, Def〉 satisfiesclosure iff (1) Concs(Ei) = CLS(Concs(Ei)) for each
1 ≤ i ≤ n and (2)Output = CLS(Output).

• 〈Args, Def〉 satisfiesdirect consistencyiff (1) Concs(Ei) is consistent for each
1 ≤ i ≤ n and (2)Output is consistent.

• 〈Args, Def〉 satisfiesindirect consistencyiff (1) CLS(Concs(Ei)) is consis-
tent for each1 ≤ i ≤ n and (2)CLS(Output) is consistent.

Closure accounts for requiring that the set of justified conclusions as well as the set
of conclusions supported by each extension are closed. Direct consistency implies that
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the set of justified conclusions and the different sets of conclusions corresponding to each
extension are consistent. Indirect consistency involves a more subtle case, requiring that
the closure of bothConcs(Ei) andOutput is consistent.

Caminada and Amgoud show that many rule-based argumentation system (e.g.
Prakken & Sartor [11] and DeLP [9]) fail to satisfy indirect consistency, detecting as a
solution the definition of a specialtransposition operatorCltp for computing the clo-
sure of strict rules. This accounts for taking every strict ruler = φ1, φ2, . . . , φn →
ψ as a material implication in propositional logic which is equivalent to the dis-
junction φ1 ∨ φ2 ∨ . . . , φn ∨ ¬ψ. From that disjunction different rules of the form
φ1, . . . , φi−1,¬ψ, φi+1, . . . , φn → ¬φi can be obtained (transpositionsof r). If S is
a set of strict rules,Cltp is the minimal set such that (1)S ⊆ Cltp(S) and (2) If
s ∈ Cltp(S) andt is a transposition ofs, thent ∈ Cltp(S). The use of such an operator
allows the three rationality postulates to be satisfied in the case of the grounded extension
(which corresponds to the one associated with systems like DeLP or P-DeLP).

Theorem 1 [5] Let 〈Args,Def〉 be an argumentation system built from〈Cltp(S),D〉,
whereCltp(S) is consistent,Output is the set of justified conclusions andE its grounded
extension. Then〈Args, Def〉 satisfies closure and indirect consistency.

Caminada & Amgoud show that DeLP does not satisfy the indirect consistency
postulate. The same applies for P-DeLP, as illustrated next. Consider the program
P = (Π,∆), whereΠ = { (y, 1), (∼y ← a ∧ b, 1) } and ∆ = { (a, 0.9), (b, 0.9) }.
It is easy to see that arguments〈{(a, 0.9)}, a, 0.9〉 and〈{(b, 0.9)}, b, 0.9〉 have no de-
featers wrtP. Thus{y, a, b} = Output turns out to be warranted, and it holds that
y,∼y ∈ CLCltp(Π)({y, a, b}), so that indirect consistency does not hold.

We think that Caminada & Amgoud’s postulate of indirect consistency is indeed
valuable for rule-based argumentation systems, as in some sense it allows to perform
“forward reasoning” from warranted literals. However, P-DeLP and DeLP areHorn-
based systems, so that strict rules should be read as inference rules rather than as material
implications. In this respect, the use of transposed rules might lead to unintuitive situa-
tions in a logic programming context. Consider e.g. the programP = { (q ← p ∧ r , 1),
(s ← ∼r , 1), (p, 1), (∼q, 1), (∼s, 1) }. In P-DeLP, the facts(p, 1), (∼q, 1) and(∼s, 1)
would be warranted literals. However, the closure under transpositionCltp(P) would
include the rule(∼r ← p∧ ∼q , 1), resulting in inconsistency (both(∼s, 1) and(s, 1)
can be derived), so that the whole program would be deemed as invalid. Our goal is to
retain a Horn-based view for a rule-based argumentation system like P-DeLP, satisfying
at the same time the indirect consistency postulate. To do this we will not take into ac-
count transposed rules, introducing instead the notion oflevel-basedwarranted literals,
as discussed in the next Section.

4. A level-based approach to computing warranted arguments

In a logic programming system like P-DeLP the use of transposed rules to ensure in-
direct consistency may have some drawbacks that have to be taken into consideration.
Apart from the problem mentioned at the end of last section of turning an apparently
valid program into a non-valid one, there are two other issues: (i) a computational lim-
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itation, in the sense that extending a P-DeLP program with all possible transpositions
of every strict rule may lead to an important increase in the number of arguments to be
computed; and (ii) when doing so, the system can possibly establish as warranted goals
conclusions which are not explicitly expressed in the original program. For instance,
consider the programP = {(∼y ← a ∧ b, 1), (y, 1), (a, 0.9), (b, 0.7)}. Transpositions
of the strict rule(∼y ← a ∧ b, 1) are(∼a ← y ∧ b, 1) and(∼b ← y ∧ a, 1). Then, the
argument〈A,∼b, 0.9〉 , withA = {(y, 1), (a, 0.9), (∼b ← a ∧ y , 1)}, is warranted wrt
P, although no explicit information is given for the literal∼b in P. In this paper we will
provide a new formal definition of warranted goal with maximum necessity degree which
will take into account direct and indirect conflicts between arguments. Indirect conflicts
will be detected without explicitly transposing strict rules, distinguishing betweenwar-
rantedandblockedgoals.

Direct conflicts between arguments refer to the case of both proper and blocking
defeaters. For instance, consider the programP = {(a ← b, 0.9), (b, 0.8), (∼b, 0.8)}.
Thus arguments〈{(b, 0.8)}, b, 0.8〉 and〈{(∼b, 0.8)},∼b, 0.8〉 are a pair of blocking de-
featers expressing (direct) contradictory information, and thereforeb and∼b will be con-
sidered a pair of blocked goals with maximum necessity degree0.8. Note that although
the argument〈{(∼b, 0.8)},∼b, 0.8〉 is a blocking defeater for the argument〈A,a, 0.8〉,
with A = {(a ← b, 0.9), (b, 0.8)}, goalsa and∼ b do not express contradictory infor-
mation, and thereforea is a neither blocked nor warranted goal with necessity degree
0.8.

On the other hand, we will refer to indirect conflicts between arguments when
there exists an inconsistency emerging from the set of certain (strict) clauses of
a program and arguments with no defeaters. For instance, consider the program
P = (Π, ∆) with Π = {(∼y ← a ∧ b, 1), (y, 1), (∼x ← c ∧ d , 1), (x, 1)} and∆ =
{(a, 0.7), (b, 0.7), (c, 0.7), (d, 0.6)}. In standard P-DeLP [1], (i.e. without extending the
program with transpositions of rules ofΠ) 〈{(a, 0.7)}, a, 0.7〉 and 〈{(b, 0.7)}, b, 0.7〉
are arguments with no defeaters and therefore their conclusions would be warranted.
However, sinceΠ ∪ {(a, 0.7), (b, 0.7)} ` ⊥, arguments〈{(a, 0.7)}, a, 0.7〉 and
〈{(b, 0.7)}, b, 0.7〉 express (indirect) contradictory information. Moreover, as both goals
are supported by arguments with the same necessity degree0.7, none of them can be
warranted nor rejected, and therefore we will refer to them as (indirect) blocked goals
with maximum necessity degree0.7. On the other hand, a similar situation appears with
〈{(c, 0.7)}, c, 0.7〉 and〈{(d, 0.6)}, d, 0.6〉. As before,Π ∪ {(c, 0.7), (d, 0.6)} ` ⊥, but
in this case the necessity degree of goalc is greater than the necessity degree of goald.
Thereforec will be considered a warranted goal with maximum necessity degree0.7.

Let ARG(P) = {〈A, Q, α〉 | A is an argument forQ with necessityα wrt P} and
let Concl(P) = {(Q,α) | 〈A, Q, α〉 ∈ ARG(P)}. An outputfor a P-DeLP programP
will be a pair(Warr,Block), whereWarr,Block ⊆ Concl(P), denoting respectively
a set of warranted and blocked goals (together with their degrees) and fulfilling a set
of conditions that will ensure a proper handling of the problem of global inconsistency
discussed earlier, and that will specified in the following definition. Since the intended
construction of the setsWarr,Block is done level-wise, starting from the first level and
iteratively going from one level to next level below, we introduce some useful notation.
Indeed, if1 ≥ α1 > α2 > . . . > αp > 0 are the weights appearing in arguments from
ARG(P), we can stratify the sets by puttingWarr = Warr(α1)∪ . . .∪Warr(αp) and
similarly Block = Block(α1)∪ . . .∪Block(αp), whereWarr(αi) andBlock(αi) are
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respectively the sets of the warranted and blocked goals with maximum degreeαi. We
will also write Warr(> αi) to denote∪β>αiWarr(β), and analogously forBlock(>
αi). In what follows, given a programP = (Π,∆) we will denote byrules(Π) and
facts(Π) the set of strict rules and strict facts ofP respectively.

Definition 1 (Warranted and blocked goals)Given a programP = (Π, ∆), an output
for P is a pair (Warr,Block) where the setsWarr(αi) andBlock(αi), for i = 1 . . . p
are required to satisfy the following constraints:

1. An argument〈A,Q,αi〉 ∈ ARG(P) is called acceptable if it satisfies the follow-
ing three conditions:

(i) (Q, β) 6∈ Warr(> αi) ∪Block(> αi) and(∼Q, β) 6∈ Block(> αi), for all
β > α

(ii) for any subargument〈B, R, β〉 v 〈A,Q, αi〉 such thatR 6= Q, (R, β) ∈
Warr(β)

(iii) rules(Π) ∪Warr(> αi) ∪ {(R, αi) | 〈B, R, αi〉 v 〈A,Q,αi〉} 6` ⊥.

2. For each acceptable〈A,Q,αi〉 ∈ ARG(P), (Q,αi) ∈ Block(αi) whenever

(i) either there exists an acceptable〈B,∼Q,αi〉 ∈ ARG; or
(ii) there existsG ⊆ {(P, αi) | 〈C, P, αi〉 ∈ ARG is acceptable and∼ P /∈

Block(αi)} such thatrules(Π) ∪ Warr(> αi) ∪ G 6` ⊥ and rules(Π) ∪
Warr(> αi) ∪G ∪ {(Q,αi)} ` ⊥;

otherwise,(Q,αi) ∈ Warr(αi).

Note that in Def. 1 the notion of argument ensures that for each argument〈A,Q,α〉 ∈
ARG, the goalQ is non-contradictory wrt the setΠ of certain clauses ofP. However,
it does not ensure non-contradiction wrtΠ together with the setWarr(> α) of war-
ranted goals with degree greater thanα (as required by the indirect consistency postu-
late [5]). Therefore, for each argument〈A,Q,α〉 ∈ ARG satisfying that each subgoal
is warranted, the goalQ can be warranted at levelα only after explicitly checking in-
direct conflicts wrt the setWarr(> α), i.e. after verifying thatrules(Π) ∪ Warr(>
α) ∪ {(Q,α)} 6` ⊥. For instance, consider the programP = (Π, ∆) with

Π = {(y, 1), (∼y ← a ∧ c, 1)} and
∆ = {(a, 0.9), (b, 0.9), (c ← b, 0.8)}.

According to Def. 1, the goaly is warranted with necessity degree1 and goalsa andb
are warranted with necessity degree0.9. Then

〈{(b, 0.9), (c ← b, 0.8)}, c, 0.8〉

is an argument forc such that the subargument〈{(b, 0.9)}, b, 0.9〉 is warranted. However,
asrules(Π)∪{(y, 1), (a, 0.9), (b, 0.9)}∪{(c, 0.8)} ` ⊥, the goalc is neither warranted
nor blocked wrtP.

Suppose now in Def. 1, that an argument〈A,Q,α〉 ∈ ARG involves a warranted
subgoal with necessity degreeα. ThenQ can be warranted only after explicitly checking
indirect conflicts wrt its set of subgoals, i.e. after verifying thatrules(Π)∪Warr(> α)∪
{(R,α) | 〈B, R, α〉 v 〈A,Q,α〉} 6` ⊥. For instance, consider the programP = (Π,∆),
with
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Π = {(y, 1), (∼y ← a ∧ b, 1)} and
∆ = {(a, 0.7), (b ← a, 0.7)}.

Theny anda are warranted goals with necessity degrees1 and0.7, respectively, and
although it is not possible to compute a defeater for the argument

〈{(a, 0.7), (b ← a, 0.7)}, b, 0.7〉

in P and the subgoala is warranted with necessity degree0.7, b is not warranted since
{(∼y ← a ∧ b, 1)}∪{(y, 1)}∪{(a, 0.7)}∪{(b, 0.7)} ` ⊥. Finally, note that in Def. 1,
direct conflicts invalidate possible indirect conflicts in the following sense. Consider the
programP = (Π, ∆), with

Π = {(y ← a, 1), (∼y ← b ∧ c, 1)} and
∆ = {(a, 0.7), (b, 0.7), (c, 0.7), (∼c, 0.7)}.

Then,c and∼ c are blocked goals with necessity degree0.7 and thusa, b andy are
warranted goals with necessity degree0.7. The next example illustrates some interesting
cases of the notion of warranted and blocked goals in P-DeLP.

Example 2 Consider the programP1 = (Π1, ∆1), with

Π1 = {(y, 1), (∼y ← a ∧ b, 1)} and
∆1 = {(a, 0.7), (b, 0.7), (∼a, 0.5)}.

According to Def. 1,(y, 1) is warranted and(a, 0.7) and (b, 0.7) are blocked. Then,
as a is blocked with necessity degree0.7, 〈{(∼a, 0.5)},∼a, 0.5〉 is not an acceptable
argument and hence the goal∼a is neither warranted nor blocked wrtP1.
Now consider the programP2 = (Π2,∆2) with

Π2 = {(y, 1), (∼y ← a ∧ c, 1)} and
∆2 = {(a, 0.9), (b, 0.9), (c ← b, 0.9)}.

According to Def. 1,(y, 1) and(b, 0.9) are warranted. On the other hand,〈{(a, 0.9)}, a, 0.9〉
is an argument fora with an empty set of subarguments and〈{(b, 0.9), (c ← b, 0.9)}, c, 0.9〉
is an argument forc satisfying that the subargument〈{(b, 0.9)}, b, 0.9〉 is warranted.
However, as{(∼y ← a ∧ c, 1)} ∪ {(y, 1), (b, 0.9)} ∪ {(a, 0.9), (c, 0.9)} ` ⊥, a andc
are a pair of blocked goals wrtP2 with necessity degree0.9.
Finally, consider the programP3 = (Π2, ∆3) with

∆3 = {(a, 0.9), (c, 0.9), (b ← c, 0.9), (d ← a ∧ c, 0.9)}.

In that case(y, 1) is warranted and(a, 0.9) and(c, 0.9) are blocked. Then, according to
Def. 1, asc is a blocked goal with necessity0.9, 〈{(c, 0.9), (b ← c, 0.9)}, b, 0.9〉 is not
an acceptable argument and hence the goalb is neither warranted nor blocked wrtP3.
Notice that sincea and c are contradictory wrtΠ2, no argument can be computed for
goald.

It can be shown that if(Warr,Block) is an output of a P-DeLP program, the set
Warr of warranted goals (according to Def. 1) is indeed non-contradictory and satisfies
indirect consistency with respect to the set of strict rules.
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Proposition 3 (Indirect consistency)Let P = (Π, ∆) be a P-DeLP program and let
(Warr,Block) be an output forP. Then:

(i) facts(Π) ⊆ Warr,
(ii) Warr 6` ⊥, and
(iii) rules(Π) ∪Warr ` (Q,α) implies(Q, β) ∈ Warr, for someβ ≥ α.

Actually, (iii) above can be read also as saying thatWarr satisfies (somewhat softened)
theclosurepostulate with respect to the set of strict rules. Indeed, it could be recovered
in the full sense if the deduction characterized by` would be defined taking only into
account those derivations yielding maximum degrees of necessity.

Proof: We prove (ii) and (iii), as (i) is straighforward.

(ii) Suppose that for some goalQ, {(Q,α), (∼Q, β)} ⊆ Warr. Then, there should exist
A ⊆ ∆ andB ⊆ ∆ such thatΠ ∪ A ` (Q,α) andΠ ∪ B ` (∼ Q, β). If α = β,
〈A,Q,α〉 and〈B,∼Q, β〉 are a pair of blocking arguments; otherwise, one is a proper
defeater for the other one andrules(Π) ∪ {(Q,α), (∼Q, β)} ` ⊥. Hence, by Def. 1,
{(Q,α), (∼Q, β)} 6⊆ Warr.

(iii) Suppose that, for some goalQ, rules(Π)∪Warr ` (Q,α) and(Q, β) 6∈ Warr, for
all β ≥ α. Then, there should exist a strict rule inΠ of the form(Q ← P1 ∧ . . . ∧ Pk , 1)
such that either for eachi = 1, . . . , k, (Pi, αi) ∈ Warr or, recursively,rules(Π) ∪
Warr ` (Pi, αi), andmin(α1, . . . , αk) = α. Now, if (Q, α) 6∈ Warr, by Def. 1, it
follows that either(Q, β) ∈ Warr or (∼Q, β) ∈ Warr for someβ > α, or rules(Π)∪
Warr ` (∼ Q,α). As α = min(α1, . . . , αk), it follows thatα = αi, for some1 ≤
i ≤ k. Then, if (∼Q, β) ∈ Warr, with β > α, or Π ∪ Warr ` (∼Q,α), by Def. 1,
there should exist, at least, a goalPi, with 1 ≤ i ≤ k, such that(Pi, αi) 6∈ Warr and
rules(Π) ∪ Warr 6` (Pi, αi). Hence, ifrules(Π) ∪ Warr ` (Q,α), then(Q, β) ∈
Warr, for someβ ≥ α. 2

Next we show that if(Warr,Block) is an output of a P-DeLP programP = (Π,∆),
the setWarr of warrented goals contains indeed each literalQ satisfying thatP? |∼w

〈A, Q, α〉 andΠ ∪ A ` (Q, α), with P? = (Π ∪ Cltp(rules(Π)), ∆) and whenever
Π ∪ Cltp(rules(Π)) is non-contradictory.

Proposition 4 LetP = (Π, ∆) be a P-DeLP program such thatΠ ∪ Cltp(rules(Π)) is
non-contradictory and letQ be a literal such thatP? |∼w 〈A, Q, α〉. If Π∪A ` (Q,α),
(Q,α) ∈ Warr for all output(Warr,Block) ofP.4

Notice that the inverse of Prop. 4 does not hold; i.e. assuming thatΠ∪Cltp(rules(Π))
is non-contradictory it can be the case that(Q,α) ∈ Warr and(Q,α) is not warranted
wrt the extended programP?. This is due to the fact that the new level-wise approach
for computing warranted goals allows us to consider a more specific treatment of both
direct and indirect conflicts between literals. In particular we have that each blocked
literal invalidates all rules in which the literal occurs. For instance, consider the program
P1 = (Π1,∆1), with

4In what follows, proofs are omitted for space reasons
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Π1 = {(y, 1), (∼y ← a ∧ b, 1)} and
∆1 = {(a, 0.7), (b, 0.7), (∼b, 0.7)}.

According to Def. 1,(y, 1) and (a, 0.7) are warranted and(b, 0.7) and (∼ b, 0.7) are
blocked. However, when considering the extended programP?

1 = (Π1∪Cltp(rules(Π1)), ∆1)
one is considering the transposed rule(∼a ← y ∧ b, 1) and therefore,

λ1 = [〈{(a, 0.7)}, a, 0.7〉, 〈{(b, 0.7)},∼a, 0.7〉]

is an acceptable argumentation line wrtP?
1 with an even number of arguments, and thus,

(a, 0.7) is not warranted wrtP?
1 . Another case that can be analyzed is the following one:

Consider now the programP2 = (Π1,∆2), with

∆2 = {(a, 0.7), (b ← a, 0.7), (∼b, 0.7)}.
According to Def. 1,(y, 1) and(a, 0.7) are warranted and, as indirect conflicts are not
allowed,〈B, b, 0.7〉 with B = {(b ← a, 0.7), (a, 0.7)} is not an acceptable argument for
(b, 0.7), and therefore(∼b, 0.7) is warranted. However, when considering the extended
programP?

2 = (Π1 ∪ Cltp(rules(Π1)), ∆2),

λ2 = [〈{(∼b, 0.7)},∼b, 0.7〉, 〈B, b, 0.7〉]

is an acceptable argumentation line wrtP?
2 with an even number of arguments, and thus,

(∼b, 0.7) is not warranted wrtP?
2 .

Actually, the intuition underlying Def. 1 can be defined as follows: An argument
〈A, Q, α〉 is warranted or blocked if each subargument〈B, R, β〉 v 〈A, Q, α〉, with Q 6=
R, is warranted. Then, it is warranted if it does not induce direct nor indirect conflicts
and blocked, otherwise. The following results provide an interesting characterization of
the relationship between warranted and blocked goals in a P-DeLP program.

Proposition 5 Let P = (Π, ∆) be a P-DeLP program and let(Warr,Block) be an
output forP. Then:

1. If (Q,α) ∈ Warr∪Block, then there exists〈A,Q,α〉 ∈ ARG(P) and, for each
subargument〈B, R, β〉 v 〈A,Q, α〉 with R 6= Q, (R, β) ∈ Warr.

2. If (Q,α) ∈ Warr∪Block, then for every argument〈A, Q, β〉, withβ > α, there
exists a subargument〈B, R, γ〉 v 〈A,Q, β〉 with R 6= Q, such that(R, γ) 6∈
Warr.

3. If (Q,α) ∈ Warr, there is noβ > 0 such that(Q, β) ∈ Block or (∼Q, β) ∈
Block

4. If (Q,α) 6∈ Warr ∪ Block for eachα > 0, then either(∼ Q, β) ∈ Block
for someβ > 0, or for each argument〈A, Q, α〉, there exists a subargument
〈B, R, β〉 v 〈A, Q, α〉 with R 6= Q, such that(R, β) 6∈ Warr, or rules(Π) ∪
Warr(≥ α) ∪ {(Q, α)} ` ⊥.

Finally, we will come to the question of whether a programP always has aunique
output(Warr,Block) according to Def. 1. In general, the answer is yes, although we
have identified some recursive situations that might lead to different outputs. For in-
stance, consider the program



11

P = {(p, 0.9), (q, 0.9), (∼p ← q , 0.9), (∼q ← p, 0.9)}.

Then, according to Def. 1,p is a warranted goal iffq and∼q are a pair of blocked goals
and viceversa,q is a warranted goal iffp and∼p are a pair of blocked goals. Hence, in
that case we have two possible outputs:(Warr1, Block1) and(Warr2, Block2) where

Warr1 = {(p, 0.9)}, Block1 = {(∼q, 0.9), (q, 0.9)}
Warr2 = {(q, 0.9)}, Block2 = {(p, 0.9), (∼p, 0.9)}

In such a case, eitherp or q can be warranted goals (but just one of them).5 Thus,
although our approach is skeptical, we can get sometimes alternative extensions for war-
ranted beliefs. A natural solution for this problem would be adopting the intersection of
all possible outputs in order to define the set of those literals which are ultimately war-
ranted. Namely, LetP be a P-DeLP program, and letoutputi(P) = (Warri, Blocki)
denote all possible outputs forP, i = 1 . . . n. Then theskeptical outputof P could be de-
fined asoutputskep(P) = (

⋂
i=1...n Warri,

⋂
i=1...n Blocki). It can be shown that that

outputskep(P) satisfies by construction also Prop. 3 (indirect inconsistency). It remains
as a future task to study the formal properties of this definition.

5. Related Work. Conclusions

We have presented a novel level-based approach to computing warranted arguments in
P-DeLP. In order to do so, we have refined the notion of conflict among arguments, pro-
viding refined definitions of blocking and proper defeat. The resulting characterization
allows to compute warranted goals in P-DeLP without making use of dialectical trees as
underlying structures. More importantly, we have also shown that our approach ensures
the satisfiability of the indirect consistency postulate proposed in [4,5], without requiring
the use of transposed rules.

Assigning levels or grades to warranted knowledge has been source of research
within the argumentation community in the last years, and to the best of our knowledge
can be traced back to the notion ofdegree of justificationaddressed by John Pollock [10].
In this paper, Pollock concentrates on the “on sum” degree of justification of a conclu-
sion in terms of the degrees of justification of all relevant premises and the strengths of
all relevant reasons. However, his work is more focused on epistemological issues than
ours, not addressing the problem of indirect inconsistency, nor using the combination of
logic programming and possibilistic logic to model argumentative inference. An alterna-
tive direction is explored by Besnard & Hunter [2] by characterizingaggregation func-
tions such as categorisers and accumulators which allow to define more evolved forms
of computing warrant (e.g. counting arguments for and against, etc.). However, this re-
search does not address the problem of indirect consistency, and performs the grading on
top of a classical first-order language, where clauses are weighed as in our case. More
recently, the research work of Cayrol & Lagasquie-Schiex [6] pursues a more ambitious
goal, providing a general framework for formalizing the notion ofgraduality in valua-
tion models for argumentation frameworks, focusing on the valuation of arguments and

5A complete characterization of these pathological situations is a matter of current research.
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the acceptability according to different semantics. The problem of indirect consistency
is not addressed here either, and the underlying system is Dung’s abstract argumentation
systems, rather than a logic programming framework as in our case.

We contend that our level-based characterization of warrant can be extended to other
alternative argumentation frameworks in which weighted clauses are used for knowledge
representation. Part of our current research is focused on finding a suitable generalization
for capturing the results presented in this paper beyond the P-DeLP framework.
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