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Abstract. The operation of base contraction was successfully character-
ized for a very general class of logics using the notion of remainder sets.

Although, in the general case, this notion is inadequate for revision,

where it is replaced by maximal consistent subsets. A natural ques-
tion is wether this latter notion allows for a definition of contraction-

like operators and, in case it does, what differences there exist w.r.t.

standard contraction. We make some steps towards this direction for
the case of graded logic RPL: we characterize contraction operators

with a fixed security-threshold ε > 0; we prove soundness of (an opti-
mal) ω-contraction operation, and a collapse theorem from ω- to some

ε-contraction for finite theories.
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Introduction

The field of Belief Change studies how can a set of sentences -in some fixed logic
S- (i) adapt to make room for some new input in a consistent way (revision),
or (ii) stop making some old claim provable anymore (contraction). This field
originated in the work of Alchourrón, Gärdenfors and Makinson, theory change,
for deductively closed sets of sentences. In this

A base is a simply a set of sentences T in the language of S: that is, it is not
required to be CnS -closed. (For convenience, in this paper we will also use theory
to refer to bases; this convention does not apply to theory change, though.) Base
belief change is an important area of research that has attained a high level of
generality in its objects of study. It is known that for any logic satisfying rather
weak conditions, base belief change operators (revision and contraction) can be
characterized by the method of partial meet (from [1] in their study of theory
change). There exist in the literature many other variants of change operations.
We refer the reader to [9] for an overview.

Formal results for logics with the deduction property (e.g. classical proposi-
tional logic) are extremely simple and elegant. This simplicity is lost when we
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move to a maximally general class of logics. For instance, identity between change
operators defined by (i) remainders, or (ii) maximal consistent subsets (coherers,
henceforth), holds for logics with the deduction property but fails in general. In
the general case, remainders are natural candidates to understand contraction [6],
while coherers are the natural choice for the case of revision [6,2,7]. Nonetheless,
researching (slightly different) change operators from the non-natural tool is in-
teresting in itself. In this paper, we make some steps towards a consistency-based
definition of contraction-like operators in  Lukasiewicz t-norm based fuzzy logics
 L(C) expanded with truth-constants r for each r ∈ C ⊆ [0, 1], for a suitable (count-
able) set C, see [3]. Rational Pavelka Logic RPL, introduced in [5] (simplifying
previous work in [8] for R ∩ [0, 1]), is the case C = [0, 1] ∩ Q. In graded logics, it
makes sense to consider contraction-like operators with a security-threshold ε > 0.
We characterize first this class of ε-contraction operators, for ε > 0. This is a first
step towards an optimal contraction operation, ω-contraction, which is proved to
be sound w.r.t. a list of axioms (slightly different to standard, Rem-based contrac-
tion from Hansson and Wasserman [6]). Finally, a finite-collapse result is proved
showing that for each finite theory, any ω-contraction operator collapses to some
ε-contraction operator.

1. Preliminaries: the (local) deduction property.

One of the main differences between the original results and the current, more
general, point of view originates in the deduction properties assumed to hold in
the class of logics where characterization is possible. With more detail, logics were
assumed first to have the (classical) deduction property. This property consists
in satisfying the (classical) deduction theorem2. Some logics do not have a con-
tractive conjunction (e.g.  Lukasiewicz or product logics): 0S ϕ → ϕn, where ϕn

stands for ϕ& · · ·&ϕ (n times). These logics can be characterized by a weaker
property: satisfying the local deduction theorem, defined next.

Definition 1.1. A logic S satisfies the deduction theorem iff for all T ⊆ Fm, and
ϕ,ψ ∈ Fm, we have: T ∪ {ϕ} `S ψ ⇔ T `S ϕ → ψ. Logic S satisfies the local
deduction theorem iff for all T, ϕ, ψ as above, T ∪ {ϕ} `S ψ ⇔ (∃n ∈ ω)T `S
ϕn → ψ.

Under the deduction property, the original tool used to define partial meet,
remainder sets, becomes dual to that of maximal consistent subsets of T (intro-
duced in [10]; see also [2])

Definition 1.2. Let S be some finitary monotonic logic, and T ⊆ FmS be some
theory and ϕ ∈ Fm some input. A remainder set X for T and ϕ is a subset of T

2Following [4], we define a logic as a finitary and structural consequence relation `S⊆
P(Fm)× Fm, for some algebra of formulas Fm. That is, S satisfies (1) If ϕ ∈ Γ then Γ `S ϕ,
(2) If Γ `S ϕ and Γ ⊆ ∆ then ∆ `S ϕ, (3) If Γ `S ϕ and for every ψ ∈ Γ, ∆ `S ψ then ∆ `S ϕ
(consequence relation); (4) If ΓSϕ then for some finite Γ0 ⊆ Γ we have Γ0 `S ϕ (finitarity);
(5) If Γ `S ϕ then e[Γ] `S e(ϕ) for all substitutions e ∈ Hom(Fm,Fm) (structurality). In
addition, we assume that logics contain the following symbols in its language: conditional →,

and falsum 0.



⊆-maximal w.r.t. the property: X 0S ϕ. A coherer set X for T and ϕ is a subset
T ⊆-maximal w.r.t. the property: X ∪ {ϕ} 0S 0. We denote by Rem(T, ϕ) and
Con(T, ϕ) the set of remainders and coherers of T and ϕ.

Lemma 1.3. Let S be some logic having the deduction property. Then Rem(T,¬ϕ) =
Con(T, ϕ).

Definition 1.4. For a given set X of families of sets, a selection function γ is a
function selecting a non-empty subset of each family in X.

γ : X −→
⋃

X∈X
P(X), with ∅ 6= γ(X) ⊆ X

A Rem-selection function for T takes X = {Con(T, ϕ) | ϕ ∈ Fm}. The
definition of Con-selection functions (for some T ) is analogous.

Each Rem-selection function γ induces a contraction operator by means of
the following

T 	γ ϕ =
⋂
γ(Rem(T, ϕ))

and each Con-selection function γ gives rise to a revision operator

T ~γ ϕ =
⋂
γ(Con(T, ϕ)) ∪ {ϕ}

The operation of expansion is simply defined as T ⊕ ϕ = T ∪ {ϕ}. Observe this
operation does not depend on any selection function; in contrast to the other
operations, expansion cannot be guaranteed to output consistent theories (even
if input ϕ is consistent).

Now, assume remainders (unprovability) to be the natural tool for partial
meet contraction, while coherers naturally define partial meet revision. The fol-
lowing identities remain (provably) true under this assumption.

Theorem 1.5. (Levi and Harper identities) If S has the deduction property, then:

(Levy) T ~γ ϕ = (T 	γ ¬ϕ)⊕ ϕ
(Harper) T 	γ ¬ϕ = (T ~ ϕ) ∩ T

The following example shows this coincidence between Rem and Con need
not hold for logics satisfying only the local deduction theorem (as  Lukasiewicz):

Exemple 1.6. (In ( L)) Let T = {p2 → L 0}. We have Rem(T, p → L 0) = {T},
but Con(T, p) = {∅}. Since there is only one remainder for T , namely T itself,
applying Levy’s RHS leads to (T 	 ¬p) ⊕ p = T ∪ {p} which is an inconsistent
base3.

The next result, whose proof depends upon Zorn’s Lemma (i.e. the Axiom of
Choice in ZFC set theory), is extensively used later on.

3The reason is simple: (1) since p ∈ T ∪ {p} we have T ∪ {p} ` L pn; (2) since T ∪ {p} ` L

p2 → L 0, by modus ponens with (1) we derive 0.



Lemma 1.7. (From [7]) Let S be some finitary logic and T0 a theory. For any
X ⊆ T0, if X ∪ T1 is consistent, then X can be extended to some Y with Y ∈
Con(T0, T1).

In the remaining of the paper we make some steps into obtaining consistency-
based contraction operators for a particularly suited logic, RPL. This is motivated
by the possibility of defining an a Con-based operation of contraction which differs
from the Rem-based operation as characterized by Hansson and Wasserman.

The idea, roughly, is as follows: we first characterize ε-contraction, which
is a suboptimal operation of contraction, in the sense that a security-threshold
ε > 0 must be fixed beforehand. Then we try to recover optimality in contraction
by defining another operation, ω-contraction, as the limit of an infinite series of
ε-contraction operators.

2. Success-based contraction: ε-contraction

We introduce an involutive graded negation ¬ε for  Lukasiewicz t-norm based
graded logics like RPL.

Definition 2.1. Given a logic  L(C) for some suitable C, we denote by (ϕ, r) the
sentence r → L ϕ. Now, given some graded sentece (ϕ, r), we define

¬ε(ϕ, r) = (¬ϕ, 1− r + ε) for ε ∈ [0, r]

In the remaining of the paper, we denote by selection function a Con-selection
function γ for T , taking X = {Con(T, ϕ) | ϕ ∈ Fm} and defining a base ε-
contraction operator for T :

T 	ε
γ (ϕ, r) =

⋂
γ(Con(T,¬ε(ϕ, r)))

Definition 2.2. Given  L(C), let T be a base. We define a (partial meet) base ε-
contraction operator for T as a function 	ε : Fm → P(Fm) such that there is
some selection function γ for T with

T 	ε (ϕ, r) = T 	ε
γ (ϕ, r), for any (ϕ, r) ∈ Fm.

In general, it is important that the ε-parameter is positive, ε > 0. This enforces
the property of (Success) to hold. For the case ε = 0, consider the next example:

Example 2.3. Let ε = 0 and T = {ϕ} with ϕ = (p, r). Then Con(T, (¬ϕ, 1− r)) =
{T}. Hence, γ is unique and contraction becomes

⋂
{T} = T . But then, the axiom

of (Success) is not fulfilled, since T 	0 (p, r) `RPL (p, r).

Consider the next axiom list, defined for each ε ∈ [0, r].



(G1ε) T 	ε (ϕ, r) ∪ {¬ε(ϕ, r)} is consistent, if ¬ε(ϕ, r) is (ε-Consistency)
(G2ε) T 	ε (ϕ, r) ⊆ T (Inclusion)
(G3ε) For all (ψ, s) ∈ Fm, if (ψ, s) ∈ T − T 	ε (ϕ, r),

then there exists T ′(T 	ε (ϕ, r) ⊆ T ′ ⊆ T
with T ′ ∪ {¬ε(ϕ, r)} consistent and
T ′ ∪ {¬ε(ϕ, r), (ψ, s)} inconsistent (ε-Relevance)

(G4ε) If, for all T ′ ⊆ T we have
( T ′ ∪ {¬ε(ϕ, r)} 0S 0 iff T ′ ∪ ¬ε(ϕ′, r′) 0S 0 )
then T 	ε (ϕ, r) = T 	ε (ϕ′, r′) (ε-Uniformity)

Theorem 2.4. For any operator (for T ) 	ε : Fm→ P(Fm) we have the following:

	ε satisfies (G1ε)− (G4ε) iff 	ε = 	ε
γ for some selection function γ for T

Proof. (Soundness) (G1ε) Since for all X ∈ Con(T,¬ε(ϕ, r)), we have X ∪
{¬ε(ϕ, r)} is consistent, the same holds for X ∈ γ(Con(T,¬ε(ϕ, r))). Hence,⋂
γ(Con(T,¬ε(ϕ, r))) ∪ {¬ε(ϕ, r)} is consistent. (G2ε) Trivial, by definition

of 	ε
γ . (G3ε) Let (ψ, s) ∈ T − T 	ε

γ (ϕ, r). Then, (ψ, s) /∈ X, for some
X ∈ γ(Con(T,¬ε(ϕ, r))). In consequence, X ∪ {¬ε(ϕ, r)} is consistent. On the
other side, since (ψ, s) ∈ T , from (ψ, s) /∈ X we infer X ∪ {¬ε(ϕ, r), (ψ, s)} is
inconsistent. Such X is what we are looking for, so we put T ′ = X. (G4ε) Assume
for all T ′ ⊆ T we have T ′ is consistent with ¬ε(ϕ, r) iff it is consistent with
¬ε(ϕ′, r′). Then by Lemma [7, 6], we have Con(T,¬ε(ϕ, r)) = Con(T,¬ε(ϕ′, r′)).
Since γ is a function, applying γ to both sets preserves the identity. Finally, ap-
plying

⋂
to each side of the corresponding equation preserves identity too, so

T 	ε
γ (ϕ, r) = T 	ε

γ (ϕ′, r′).

(Completeness) Let 	ε be an operator (for T ) 	ε : Fm→ P(Fm) satisfying
(G1ε)− (G4ε). We define a function γ

γ(Con(T,¬ε(ϕ, r))) = {X ∈ Con(T,¬ε(ϕ, r)) : X ⊇ T 	ε (ϕ, r)}

We have to show that for γ for T , γ is both (1) well-defined (for ¬ε-sentences),
(2) a ¬ε-selection function for T , and (3) that for all (ϕ, r) ∈ Fm, we have
T 	ε (ϕ, r) = T 	ε

γ (ϕ, r).
(1) γ is well-defined (for ¬ε-sentences). Let Con(T,¬ε(ϕ, r)) = Con(T,¬ε(ϕ′, r′)).
By Lemma 6 in [7], since 	ε satisfies (G4ε), we infer T 	ε (ϕ, r) = T 	ε (ϕ′, r′).
From this and the initial assumption we obtain, using the above definition of γ,
that γ(Con(T,¬ε(ϕ, r))) = γ(Con(T,¬ε(ϕ′, r′))). (2) γ is a ¬ε-selection function
for T (for ¬ε-sentences). Let Con(T,¬ε(ϕ, r)) be non-empty. Since, by (G1ε),
T 	ε (ϕ, r) ∪ {¬ε(ϕ, r)} 0S 0, we obtain from Lemma 1.7 that T 	ε (ϕ, r) ⊆ X ∈
Con(T,¬ε(ϕ, r)), for some X ∈ Con(T,¬ε(ϕ, r)). By the above definition of γ, this
implies X ∈ γ(T,¬ε(ϕ, r)), so this set is not empty.(3) We check the T 	ε

γ (ϕ, r) ⊆
T 	ε (ϕ, r) first. Let (ψ, s) ∈ T 	ε

γ (ϕ, r). Hence, (ψ, s) in T . Now, assume the
contrary of what we want to prove: (ψ, s) /∈ T 	ε (ϕ, r). Then, by (G3ε), there is
T ′ with T	ε (ϕ, r) ⊆ T ′ ⊆ T . Then we have (i) T ′∪{¬ε(ϕ, r)} consistent while (ii)
T ′∪{¬ε(ϕ, r), (ψ, s)} is inconsistent. We have that (i) plus T 	ε (ϕ, r) ⊆ T (which
holds by (G2ε)) jointly imply T	ε(ϕ, r) ⊆ X ∈ Con(T,¬ε(ϕ, r)). We also have (ii)
implies X ∪{¬ε(ϕ, r), (ψ, s)} is inconsistent, so (ψ, s) /∈ X. Since X ⊇ T 	ε

γ (ϕ, r)



we have that X ∈ γ(Con(T,¬ε(ϕ, r))). But then (ψ, s) /∈
⋂
γ(Con(T,¬ε(ϕ, r))),

thus contradicting the initial assumption (ψ, s) ∈ T 	ε
γ (ϕ, r). In consequence,

(ψ, s) ∈ T 	ε (ϕ, r). For the other direction T 	ε (ϕ, r) ⊆ T 	ε
γ (ϕ, r) consider:

(ψ, s) ∈ T 	ε (ϕ, r). Then, let X ∈ γ(Con(T,¬ε(ϕ, r))). Since X ⊆ T 	ε (ϕ, r), we
have (ψ, s) ∈ X. In consequence (ψ, s) ∈

⋂
γ(Con(T,¬ε(ϕ, r))), so that (ψ, s) ∈

T 	ε
γ (ϕ, r).

Let (Success) be the (G1)-like axiom (ϕ, r) /∈ T 	 (ϕ, r).

Lemma 2.5. For each logic S =  L(C), any ε > 0 and any contraction operator 	
the following hold:

(i) if 	 satisfies (G1ε), then it also satisfies (Success)
(ii) if 	 satisfies (Success), then it also satisfies (G10)
(iii) if 	 satisfies (G1ε), then it also satisfies (G1ε′) for any ε′ < ε.

Proof. (i) Let 	 satisfy (G1ε) for some ε > 0. Then T 	 (ϕ, r) is consistent with
¬ε(ϕ, r). This implies (ϕ, r) /∈ CnS(T 	 (ϕ, r)). (ii) Assume (ϕ, r) /∈ CnS(T 	
(ϕ, r)). We use Lemma 3.3.7 from [5] to obtain T 	(ϕ, r)∪{ϕ→ L r} is consistent.
Since internal negation ¬ is involutive (ϕ → L r) is equivalent to (¬ϕ, 1 − r) =
¬0(ϕ, r). But then T 	 (ϕ, r) is consistent with ¬0(ϕ, r). Hence, 	 |= (G10). (iii)
This is obvious.

Levi and Harper identities hold between ε-contraction of (ϕ, r) and revision
by ¬ε(ϕ, r). The former T 	ε

γ (ϕ, r)∪ {¬ε(ϕ, r)} = T ~γ ¬ε(ϕ, r) follows from the
definitions. For the latter, we have the following result.

Proposition 2.6. For any theory T , ε > 0 and selection function γ, we have that

T 	ε
γ (ϕ, r) = T ~γ ¬ε(ϕ, r) ∩ T

Proof. We have (ψ, s) ∈ (
⋂
γ(Con(T,¬ε(ϕ, r))) ∪ {¬ε(ϕ, r)}) ∩ T iff (ψ, s) ∈

(
⋂
γ(Con(T,¬ε(ϕ, r))) ∩ T ) ∪({¬ε(ϕ, r)} ∩ T ). Now consider the next possibili-

ties: Case ¬ε(ϕ, r) ∈ T . Then, by maximality, for each X ∈ Con(T,¬ε(ϕ, r)) we
have ¬ε(ϕ, r) ∈ X, so that ¬ε(ϕ, r) ∈

⋂
γ(Con(T,¬ε(ϕ, r))); and T ~γ ¬ε(ϕ, r) =

T 	ε
γ (ϕ, r). Case ¬ε(ϕ, r) /∈ T . Then, trivially the last identity is also the case

since {¬ε(ϕ, r)} ∩ T = ∅. In both cases the identity T 	ε
γ (ϕ, r) = T ~γ ¬ε(ϕ, r)

holds.

We saw in Example 2.3 the need for a fixed ε to be > 0. Doing so, though, a
positive value for ε may result in unnecessary contractions:

Example 2.7. Let T = {(p, 0.9)} and ϕ = (p, 0.93). In case ε > 0.3, we have
T 	ε ϕ = ∅; otherwise, for ε ≤ 0.3, the output is again T . Intuitively the former
case output ∅, where ε > 0.3, is wrong due to ε being too high. By setting ε ≤ 0.3
we have T ∪{¬εϕ} is consistent. Observe in this example, one can safely set ε = 0,
which looks optimal4.

4This suggests the possibility of defining, alternatively,



For comparison purposes between the mentioned Rem-based contraction and
our Con-based proposal, consider the notion of deg-closed bases. This condition
requires bases to be closed in the following sense: if (ϕ, r) ∈ T and s ≤ r, then
(ϕ, s) ∈ T . We denote by CnQ(T ) the deg-closure of T ; then, a base T is deg-
closed if T = CnQ(T ). This notion was introduced in [2] as an essential component
in the framework adopted therein (see [7] for a comparison with pure bases in
the case of revision). The condition of being deg-closed makes change operations
less drastic, since (possibly) lower but maximally consistent degrees are kept for
formulas being targeted by the operation in question. Normal bases, as Example
2.7 shows, suffer major changes. Now, under the condition of deg-closure, Con-
based contraction may be preferred over Rem-based contraction, since only the
former operation preserves the property of being finitely axiomatizable (for deg-
closed bases):

Example 2.8. Let T = {(p, s) : s ≤ 0.9} and ϕ = (p, 0.9). Then, CnQ(T ) 	ε ϕ =
CnQ(T r {(p, s) : s > 0.9 − ε}). Observe this is just CnQ({(p, 0.9 − ε)}). On the
other side, for Rem-based contraction, we would have T 	 ϕ = {(p, s) : s < 0.9}
which cannot be finitely axiomatized.

Finally, an example showing the convenience of an alternative contraction
which does not commit oneself to any given ε > 0.

Example 2.9. Let T = {(pn,
1
2n ) | n ∈ ω, n > 0} and ϕn = (pn,

1
2n + δn). We have

T 	ε ϕn =

{
T r {(pn,

1
2n )}, for ε > δn, and

T otherwise

Now, if we let δn = 1
2n , then for each ε > 0 there is an n ∈ ω such that for input

ϕn: T	εϕn = Tr{(pn,
1
2n )}, this not being necessary, since we have: T 0RPL ϕn.

3. Towards Con-based (optimal) ω-contraction.

A problem posed by ε-contraction operators is their lack of flexibility: if we are
to choose the value of ε beforehand, we may find that a given problem -say, ε-
contraction of T by (ϕ, r)- is not optimally solved (ε being unnecessarily high,
hence violating the principle of minimizing information loss. (Observe this prob-
lem does not affect Rem-based contraction operators from [6].) To solve this in-
convenience we will define a contraction operation which is not committed to any
particular ε.

Definition 3.1. A selection function for T is conservative iff for all ε′ < ε we have

T 	ε
γ (ϕ, r) ⊆ T 	ε′

γ (ϕ, r)

T 	 ϕ =

(
T if T ∪ {¬0ϕ} is consistent, (e.g. T 0RPL ϕ)

T 	ε ϕ otherwise

We do not pursue this line here, but note it may also be applied to ω-contraction studied below.



Notice first that condition (iii) from the previous Lemma is weaker than
conservativeness: a selection function -defined for both families Con(T,¬ε(ϕ, r))
and Con(T,¬ε′(ϕ, r))- can satisfy (G3ε), hence (G3ε′), with T 	ε

γ (ϕ, r)  T 	ε′

γ

(ϕ, r). (For example, consider γ to be maxichoice in both cases but with selected
elements Xε and X ′

ε not forming a ⊆-chain.) Conservativeness can be enforced by
imposing a further condition upon selection functions, which is defined next.

Definition 3.2. For X,Y families of sets, we define:

X⊂−→Y iff for each X ∈ X there is some Y ∈ Y such that X ⊆ Y
X⊂←−Y iff for each Y ∈ Y there is some X ∈ X such that X ⊆ Y

A selection function defined on P(P(Fm))− {∅} is family-conservative iff X⊂−→Y
implies γ(X)⊂←−γ(Y).

We call such arrow-reversing selection functions γ family-conservative because
they only select sets in the greater family Y which extend some set in the lesser
family X. Observe that (1) for any X,Y, X⊂←−Y implies

⋂
X ⊆

⋂
Y; and (2)

(by Lemma 1.7) for each theory T , sentence (ϕ, r) and degrees ε > 0 we have:
Con(T, (ϕ, r+ε))⊂−→Con(T, (ϕ, r)). Facts (1) and (2) jointly imply that any family-
conservative selection function is conservative.

By fixing some ε > 0 in the definition of contraction, one enforces contraction
to satisfy (Success), at the cost of committing ourselves to possibly suboptimal
contraction operations for some problems. To overcome this problem, it would
be desirable that parameter ε in 	ε-contraction automatically adjusted itself to
find the optimal solution for the problem at hand -contracting T by (ϕ, r)-, while
granting that (Success) still holds. With this idea in mind, we define partial meet
base ω-contraction as follows, and prove its soundness after some auxiliary results,
while completeness is left as an open problem.

T 	ω
γ (ϕ, r) =

⋃
ε>0 T 	ε

γ (ϕ, r)

In comparison to ε-contraction, we have that Levi does not hold for ω-
contraction; but Harper remains valid:

Corollary 3.3. For each theory T , selection function γ and (ϕ, r) we have that

T 	ω
γ (ϕ, r) = (

⋃
ε>0 T ~γ ¬ε(ϕ, r)) ∩ T

Proof. By Proposition 2.6, for each ε > 0 we have T 	ε
γ (ϕ, r) = T ~γ ¬ε(ϕ, r)∩T .

Hence
⋃

ε>0 T 	ε
γ (ϕ, r) =

⋃
ε>0(T ~γ¬ε(ϕ, r)∩T ) = (

⋃
ε>0 T ~γ¬ε(ϕ, r))∩T .

Next we show soundness of partial meet base ω-contraction operators in some
logic S =  L(C) with respect to the following axioms, where ε ∈ [0, 1− r].



(G1ω) (ϕ, r) /∈ CnS(T 	 (ϕ, r)), if 0S (ϕ, r) (Success)
(G2ω) T 	 (ϕ, r) ⊆ T (Inclusion)
(G3ω) For all (ψ, s) ∈ Fm, if (ψ, s) ∈ T − T 	 (ϕ, r), then

for all ε > 0 there exists T ′ε with (T ~ ¬ε(ϕ, r) ∩ T ) ⊆
⊆ T ′ε ⊆ T and T ′ε ∪ {¬ε(ϕ, r)} consistent and
T ′ε ∪ {¬ε(ϕ, r), (ψ, s)} inconsistent (ω-Relevance)

(G4ω) For any (ϕ, r), (ϕ, r′), if for all T ′ ⊆ T we have that
for all ε exists ε′ (and viceversa for all ε′ exists ε) such
that T ′ ∪ {¬ε(ϕ, r)} 0S 0 iff T ′ ∪ ¬ε(ϕ′, r′) 0S 0 )
then T 	 (ϕ, r) = T 	 (ϕ′, r′) (ω-Uniformity)

Now we prove that ω-contraction is sound with respect to the axioms listed
above. Notice the difference between (G3ω) and (G3) from Hansson and Wasser-
mann: the former implies the latter only for logics with the deduction property.

Theorem 3.4. Given some  L(C) and 	 an operator for T . Then, for any conser-
vative selection function γ, T 	γ (ϕ, r) satisfies (G1ω)− (G4ω).

Proof. (G1ω) Since T 	ε
γ (ϕ, r) is consistent with ¬ε(ϕ, r) we have that (ϕ, r) /∈

CnS(T 	ε
γ (ϕ, r)). Since γ is conservative, {T 	ε

γ (ϕ, r)}ε>0 is a ⊆-chain. Since S
is finitary, these two facts imply that (ϕ, r) /∈ CnS(

⋃
ε>0 T 	ε

γ (ϕ, r)). (G2ω) By
Corollary 3.3, T	γ (ϕ, r) = (

⋃
ε>0 T~γ¬ε(ϕ, r))∩T , which is a subset of T . (G3ω)

Let (ψ, s) ∈ T −T 	γ (ϕ, r). This implies (ψ, s) /∈ T ~γ ¬ε(ϕ, r), for any ε > 0, so
that for each ε > 0 there is X ∈ γ(Con(T, (ϕ, r))) with (ψ, s) /∈ X. Let T ′ε = X.
We have that T~γ¬ε(ϕ, r) ⊆ X∪{¬ε(ϕ, r)}; since X ⊆ T , T~γ¬ε(ϕ, r)∩T ⊆ X∪
({¬ε(ϕ, r)} ∩ T ). Wether ¬ε(ϕ, r) ∈ T or not, maximality of X implies the latter
set is X. Also, it is clear that X ⊆ T , that X ∪ {¬ε(ϕ, r)} is consistent, and that
X∪{¬ε(ϕ, r), (ψ, s)} is not consistent, by definition of Con(T, ·). (G4ω) Assume for
each ε > 0 there exists δ > 0 such that for all T ′ ⊆ T , T ′∪{¬ε(ϕ, r)} is consistent
iff T ′ ∪ {¬δ(ϕ′, r′)} is consistent, and viceversa. Then, for each ε > 0 there is δ >
0 with Con(T,¬ε(ϕ, r)) = Con(T,¬δ(ϕ′, r′)), hence with γ(Con(T,¬ε(ϕ, r))) =
γ(Con(T,¬δ(ϕ′, r′))). Let (ψ, s) ∈ T 	γ (ϕ, r). Then (ψ, s) ∈

⋃
ε>0(T ~γ¬ε(ϕ, r)∩

T ), so that for some ε > 0, (ψ, s) ∈
⋂
γ(Con(T,¬ε(ϕ, r)))∩T . By the assumption,

there is δ > 0 with (ψ, s) ∈
⋂
γ(Con(T,¬δ(ϕ′, r′))). Finally, (ψ, s) ∈

⋃
δ>0 T ~γ

¬δ(ϕ′, r′) so that (ψ, s) ∈ T 	γ (ϕ′, r′). The other direction is similar.

Theorem 3.5. (In  L(C)) Let 	γ be an ω-contraction operator defined from a con-
servative selection function γ for T . If T is finite, then there is some ε > 0 with

T 	γ (ϕ, r) = T 	ε
γ (ϕ, r)

Proof. Assume γ is conservative. Since T is finite, so are T 	γ (ϕ, r) and⋃
ε>0 T~γ¬ε(ϕ, r) (otherwise, these sets could not be subsets of the former; recall

contraction is standard, not C-closed). By being
⋃

ε>0

⋂
γ(Con(T,¬ε(ϕ, r))) finite,

there must be some n ∈ ω and ε0 > · · · > εn > 0 with
⋃

ε>0(T ~γ ¬ε(ϕ, r)∩ T ) =⋃
i≤n(T ~γ ¬εi

(ϕ, r) ∩ T ). Since γ is conservative and εn ≤ εi (for i ≤ n), we
have T 	ε

γ ¬εi(ϕ, r) ⊆ T 	γ ¬εn(ϕ, r). Hence, the join of all such i’s is also a
subset of T ~γ ¬εn(ϕ, r). In consequence, T 	γ (ϕ, r) ⊆ (T ~γ ¬εn(ϕ, r) ∩ T ).



Since the other direction ⊇ is obvious from the definition of 	γ , we finally obtain
T 	γ (ϕ, r) = T 	ε

γ (ϕ, r).

This result shows that for finite bases in  Lukasiewicz logic, ω-contraction
operator 	γ , with γ conservative, will produce no new outputs which cannot also
be obtained by means of some ε-contraction. Still, this operation is interesting
since it grants optimality of solutions, so we need not choose an ε-value from
advance.

4. Conclusions and Future Work

We motivated the convenience of obtaining an alternative (consistency-based) op-
eration of base contraction in graded expansions of  Lukasiewicz logic and made
some steps towards this result for (optimal) ω-contraction, including characteri-
zation of (secure) ε-contraction, soundness of ω-contraction, and a finite-collapse
theorem between these base change operations. In the future, we hope to com-
pletely characterize the latter operation, as well as to obtain complexity results,
whenever possible, for the operations studied in the present contribution.
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