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1. INTRODUCTION

The expansion of the Internet has caused a shift from stand-alone and single user
applications to distributed and open systems composed of networked software (SW)
components. These components may collaborate to achieve common (or system) goals,
or compete to accomplish individual goals. Some components may even decide not to
behave properly to better accomplish their individual goals. In general, goal achieve-
ment requires a coordination model that should be continuously adapted to cope with
changing and unexpected conditions.

Multi-agent systems (MAS) [Wooldridge 2009] provide a powerful paradigm to en-
gineer this kind of applications, where SW components are modelled as autonomous
agents. In particular, organisation-centred MAS approaches (OCMAS) [Ferber et al.
2004] use explicit organisations to structure agents’ interactions. Nevertheless, run-
time changing situations may vary organisations’ ability to fulfil their goals unless
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they are adapted accordingly [Martin and Barber 2006]. In fact, under changing cir-
cumstances, organisational dynamic adaptation can improve system performance de-
spite the overhead and instability inherent to changes. We refer to these systems as
Adaptive OCMAS (AOCMAS). In [Campos 2011] we proposed a general distributed ar-
chitecture that allowed to endow an organisation with adaptation capabilities. As for
any other MAS, distribution among agents provides robustness, avoids both communi-
cation and computational bottle-necks and can deal with local information1.

Along this line, in this paper we focus on the design and implementation of a general-
purpose adaptation mechanism for organisation-centred MAS. More precisely, we pro-
pose an adaptation mechanism that can be embedded in the general distributed ar-
chitecture proposed in [Campos 2011] to found the development of Adaptive OCMAS.
With this aim, here we consider that the organisation model to endow with adaptation
capabilities is composed of: a social structure, some social conventions and organisa-
tional goals. In particular, social conventions include regulations2. Therefore, adding
adaptive capabilities to an organisation will amount to endowing it with an adapta-
tion mechanism that performs the autonomous adaption of its regulations to cope with
changing circumstances. To achieve this goal, we offer several contributions in this
paper:

— A formal model of regulation. Our formal model allows us to encode regulations as
norms. Moreover, we also introduce a general notion of norm pattern. Based on this
concept, adapting the norms (regulations) of an OCMAS can be regarded as learning
the values of the parameters in their norm patterns that lead to the best performance
of the OCMAS.

— An adaptation mechanism for regulations based on a variation of standard case-based
reasoning (CBR) [Riesbeck and Schank 1989]. Our mechanism extends the mecha-
nism described in [Campos et al. 2011], which performs adaptation by means of an
incomplete CBR cycle. Thus, our mechanism implements a complete CBR cycle that
introduces several improvements with respect to [Campos et al. 2011]: (i) it is more
expressive, and hence it enhances the knowledge representation in the case base; (ii)
it allows to improve the quality of the knowledge in the case base, thus leading to
more accurate reasoning; and (ii) it avoids knowledge degradation in the case base
by improving the way knowledge is refined.

— An empirical evaluation of the robustness of our adaptation mechanism. This paper
is also devoted to studying whether our proposed mechanism can deal with different
(and simultaneous) instabilities. In particular, we pay attention to those derived from
inherent system dynamics as well as those resulting from the existence of agents that
decide not to comply with established regulations (henceforth referred to as viola-
tors). Thus, we first introduce a behaviour model for violators. Thereafter, we empir-
ically evaluate our adaptation mechanism in the context of a simplified peer-to-peer
(P2P) data sharing network scenario3. Our empirical results show that we can suc-
cessfully regulate any agent population even in the presence of misbehaving agents.
In fact, our mechanism adapts general regulations for the whole agent population
without employing any norm-compliance enforcement mechanism nor direct norm-
compliance monitoring, which are both common practice in the literature. Instead,
the approach is able to establish regulations whose associated constraints are propor-
tional to the current population behaviour. This is due to non-compliant agents caus-

1Information can be considered to be local due to unavailability or privacy issues.
2We consider regulations as norms (in their broad sense) or social conventions [Conte et al. 2010] in which
the sanctions may not be specified.
3Although P2P data sharing constitutes our simulated scenario, we will also refer to a traffic example in
order to illustrate the potential applications and generality of our proposal.
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ing a deviation in the organisational goals accomplishment, which causes, in turn,
the adaption mechanism to further restrict current regulations. Thus, as a result, we
have that the more non-compliant agents in the population, the more restrictive the
regulations become.

The rest of the paper is structured in eight sections: §2 presents a formalisation of
the models in our meta-level approach; §3 illustrates it in the P2P case study; and
§4 details the learning adaptation process that is evaluated in §5. Subsequently, §6
introduces more specific background and §7 provides further insights into our work.
Finally, §8 exposes the derived conclusions and future work.

2. FORMALISATION

This section sets the foundations for the description of our adaptation mechanism.
First, in Section 2.1 we provide background on the general distributed architecture for
adaptive OCMAS described in [Campos 2011]. Our adaptation mechanism is aimed
at operating over that architecture. Next, in Section 2.2 we introduce a novel, formal
model of norms that allows us to encode regulations as norms. As part of this model,
we introduce the notion of norm pattern and discuss how norms are used by the gen-
eral adaptation mechanism introduced in [Campos 2011]. Finally, in Section 2.3 we
introduce the model for norm violation that we will employ to test our adaptation
mechanism described in Section 4.

2.1. Description of the abstract distributed architecture

The Two-Level Assisted MAS Architecture (2-LAMA [Campos et al. 2011]) is an ab-
stract distributed architecture proposed to endow an organisation with adaptation ca-
pabilities. As Figure 1 shows, 2-LAMA considers that domain-level (DL) agents (noted
as ag1, ..., agn) conduct regular/domain-specific activities. On top of them, assistant
agents (noted as as1, ... , asm) are in charge of adapting the domain-level organisa-
tion (OrgDL) while preserving the domain agents’ autonomy. Following a division of
labour paradigm, instead of increasing the complexity of DL agents, assistants are in
charge of reasoning at a higher level of abstraction than DL agents. They consider
general information —such as DL organisational goals, organisational description or
DL system behaviour— whereas DL agents reason at their local —i.e., individual—
level. Therefore, assistants are located at the meta-level (ML) and assumed to be staff
(organisational) agents4. Hence, assistants are conceptually separated from the DL.

Notice that 2-LAMA is thus based on the notion of meta-level, which was early and
successfully introduced in the AI literature as a means of introducing control in a
complex system [Corkill and Lesser 1983; Zhang et al. 2009; Martin and Barber 2006].
In particular, 2-LAMA’s encapsulation of the adaptation process in a meta-level takes
inspiration from the seminal work by Corkill et al. [Corkill and Lesser 1983], where
the meta-level was in charge of providing guidelines to guarantee acceptable global
behaviour.
Equations 1 to 8 below formally capture the components of the 2-LAMA architec-

ture. Equation 1 shows that each level has its own set of agents, organisation, and
environment: 〈AgML, OrgML, EnvML〉 in the meta-level and 〈AgDL, OrgDL, EnvDL〉 in
the domain level. Following Equations 2 and 3, there arem agents (henceforth referred
to as assistants) in the meta-level and n agents in the domain level. Each assistant in
the meta-level assists a cluster (a group) of domain-level agents. Formally, the cluster
of assistant asi is a subset of domain-level agents, namely clusteri ⊆ AgDL, which is

4Although meta-level roles are required to belong to the organisation, DL roles can be enacted by staff
agents or external participants.
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Fig. 1: 2-LAMA architecture, where meta-level (ML) adapts domain-level (DL)

defined according to domain-specific criteria. Each assistant perceives the state of its
own cluster to reason about its adaptation.

The equations in 4 define the components of the meta-level organisation OrgML

and the domain-level organisation OrgDL. Both organisations are composed of a so-
cial structure, a set of social conventions and a set of goals. First, each social structure,
as defined in Equations 5, contains the set of roles that agents in an organisation
play and the set of relationships between roles. Thus, RolML and RelML stand for roles
and relationships at the meta level, whereas RolDL and RelDL stand for their coun-
terparts at the domain level. Second, Equation 6 specifies social conventions, which
are aimed at regulating agents’ actions (though agents should conform to them, we
will analyse non-compliance effects). Specifically, the social conventions at either the
meta level or domain level are expressed as a pair: a set of norms, which are formally
defined later on in Section 2.2; and a set of protocols, specified as UML sequence di-
agrams. Therefore, StrML and StrDL stand for the social structures of the meta-level
and domain-level, whereas ConvML and ConvDL stand for their social conventions.
Finally, GoalsML and GoalsDL in Equations 7 stand for the goals of the meta-level
and domain-level respectively. In both cases, the goals express an organisation’s de-
sign purpose and are formally defined as a function over the environment and agent
observable properties EnvP and AgP . In this work we make the assumption that the
meta-level and domain level share the very same goals, namely GoalsML and GoalsDL

are equal. Finally, since assistants gather domain-level information, Equation 8 spec-
ifies that the meta-level environment (EnvML) contains its own observable properties
(EnvPML) along with the domain-level organisation (OrgDL), the observable proper-
ties of the domain-level environment (EnvDL) and the observable properties of the
domain-level agents (AgPDL). The domain-level environment, EnvDL, limits to its own
observable properties (EnvPDL).

2LAMA = 〈ML,DL〉,ML = 〈AgML, OrgML, EnvML〉, DL = 〈AgDL, OrgDL, EnvDL〉 (1)

AgML = {as1, ..., asm}, |AgML| = m assistants (2)

AgDL = {ag1, ..., agn}, |AgDL| = n agents with AgPDL observable properties (3)

OrgML = 〈StrML, ConvML, GoalsML〉, OrgDL = 〈StrDL, ConvDL, GoalsDL〉 (4)

StrML = 〈RolML, RelML〉, StrDL = 〈RolDL, RelDL〉, (5)

SocConvML = 〈NormsML, P rotocolsML〉, SocConvDL = 〈NormsDL, P rotocolsDL〉 (6)

GoalsML = 〈f(EnvP,AgP )〉, GoalsDL = 〈f ′(EnvP,AgP )〉 (7)

EnvML = 〈EnvPML, EnvPDL, AgPDL, OrgDL〉, EnvDL = 〈EnvPDL〉 (8)
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2.2. Regulations and their adaptation

Regulations are effective in constraining agents’ behaviour. Given certain contexts,
constrains can either forbid or bring about specific agent states. An agent state can
be expressed in terms of its properties. In general, we will simply consider that an
agent state is specified in terms of the values of some variables. Therefore, from a
syntactic point of view, we consider regulations as conditional norms (IF-THEN rules)
that, given some context, constrain the values that the properties of an agent can take
on. Such constraints are specified in terms of: a deontic operator (either a prohibition,
obligation, or permission), a constraint operator, and a threshold value. Expression 9
specifies the syntax of a norm. The triple (var limitOp limitV ) stands for the antecedent
of a norm, and is aimed at capturing the norm’s context of application, whereas the
triple deonticOp(var′ limitOp′ limitV ′) stands for the consequent of a norm, and is
aimed at capturing the actions that trigger if the antecedent holds. In the expression,
var and var′ stand for variable names, limitV and limitV′ stand for threshold values
for var and var′ respectively, limitOp and limitOp′ stand for operators, and deonticOp
stands for a deontic operator. The types of the variables and thresholds in a norm can
be either real, boolean, or a set of labels.
The bottom part of expression 9 illustrates two examples of norms in a traffic do-

main: the first one limits the speed on a highway to 100 and the second one describes
a stop sign obligation. The first norm considers a context described in terms of the lo-
cation of a car (through variable carLocation) and limits the car’s actions so that the
resulting speed is lower than 100. Similarly, the second norm enforces a car to stop
whenever it comes across a stop sign.

Norm_Name : IF (var limitOp limitV) THEN deonticOp(var′ limitOp′ limitV′)
where deonticOp ∈ {Prohibition,Obligation, Permission}

limitOp, limitOp′ ∈ {>,≥, <,≤,=, 6=,∈, 6∈,⊂, 6⊂,⊆, 6⊆}
type(var), type(var′), type(limitV), type(limitV′) ∈ {ℜ, B, Labels}

highwaySpeed : IF (carLocation = ′highway′) THEN Prohibition(carSpeed > 100)
stopSign : IF (carLocation = ′StopSign′) THENObligation(stoppedCar = True)

(9)

Now it is time to describe the role played by norms in 2-LAMA’s organisational adap-
tation mechanism. Notice that regulation adaptation is part of organisational adapta-
tion, since norms are in turn part of organisations (as follows from Equations 4 and 6).
Following expression 10, formally organisational adaptation is performed by function
αO, which transforms the domain-level organisation received as an input. This trans-
formation is based on domain-level observable properties (EnvPDL, AgPDL), and the
current organisation (OrgDL), which includes system goals (Goals). Analogously, from
a formal point of view, norm adaption is carried out through function αN in expres-
sion 11. This function updates the norms in NormsDL from their current values, the
domain-level environment and agent properties, and the organisational goals5.
Figure 2 outlines 2-LAMA norm adaptation mechanism. Observe that norm adap-

tation is performed through two stages. During the first stage, each assistant agent
asi computes its individual norm adaptation function αN

i (as shown in expression 12).
Each assistant can observe (and summarise) both the environment and agent prop-
erties of its cluster. Each assistant asi then shares summaries and computes its own
estimation of the overall values of these observable properties (EnvPDL,i, AgPDL,i) by
combining both local and shared information. Each assistant then computes αN

i by

5Adaptation functions can be defined for each organisational component. Nevertheless we assume that they
are independent [Campos et al. 2011] and restrict ourselves to the regulation adaptation process.
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Fig. 2: 2-LAMA norm adaptation mechanism.

using this information, together with goals and current regulations, to generate its
own regulation proposal (Norms′DL,i). Afterwards, during the second stage, assistants
agree on the actual (overall) regulations’ update through an agreement function that
implements the signature in expression 13. Notice, therefore, that the computation of
changes in the current norms held by 2-LAMA is distributed between assistants.

In Section 4 we detail a novel way of implementing the individual norm adapta-
tion function (the αN

i functions in Figure 2) that each assistant computes. More con-
cretely, we propose to implement each individual function as a variation of a standard
case-based reasoning system. Furthermore, we propose to implement the agreement
function βαN as a voting mechanism.

organisational adapt., α
O(EnvPDL, AgPDL, OrgDL) = Org

′

DL (10)

norm adaptation func., α
N (EnvPDL, AgPDL, Goals,NormsDL) = Norms

′

DL (11)

individual norm adapt., α
N
i (EnvPDL,i, AgPDL,i, Goals,NormsDL) = Norms

′

DL,i (12)

agreement function, βαN (NormsDL,1, . . . , NormsDL,m) = Norms
′

DL (13)

2.3. Modeling norm compliance and norm violation

Whether agents comply or not with regulations may affect system performance. In
order to test the robustness of the norm adaptation approach that we will introduce
in the following sections, next we introduce how we model norm compliance and norm
violation. The generation of violations occurs through two stages.

First, we choose the number of violating agents out of the population of domain-level
agents (AgDL). With this aim, we employ the global parameter pV io ∈ [0, 1] as a ratio of
violators out of domain-level agents. Then, considering that there are n domain-level
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agents, we will compute the number of agents that will violate norms, the so-called
violator agents, and the number of compliant agents following expression 14. In fact,
notice that the purpose of this first step is to partition the set of domain-level agents
into two sets: violatorAgents and violatorAgents.

|normCompliantAgents| = n · (1− pV io) , |violatorAgents| = n · pV io
AgDL = normCompliantAgents ∪ violatorAgents

(14)

Once we have assessed how many agents will violate norms, we must specify their
violating behaviour, namely the extent of their violations. We will assume that not
all violators are characterised by the same behaviour. Therefore, agents within the
violatorAgents set will violate regulations differently. Considering that regulations es-
tablish limits to specific actions, we model to what extent each agent will exceed/meet
these limits. With this aim, each violator agent agj counts of a local violation degree
parameter, dV ioj ∈ [0, 1], which sets the extent of its violations. Thus, each violator
agent agj will combine its violation degree with the limits of the norm to violate to
assess the extent of its violation. Formally, Equation 15 speficies how each violator agj
computes its violation extent for a norm η, noted as vioLimitj,η, whose consequent is
deonticOp(var′ limitOp′ limitVη). The expression includes a violation sign, vioSign, to
make the violation either exceed a maximum regulation limit value (when set to 1) or
keep it below a minimum limit value (when set to -1).

vioLimitj,η = limitVη · (1 + vioSign · dV ioj) for all j = 1..n , vioSign ∈ {1,−1} (15)

As an illustration, consider the traffic norm named highwaySpeed that limits speed
to 100 kilometres per hour in Eq. 9. In this case, the norm’s limit threshold is 100, and
hence limitVhighwaySpeed = 100. Recall that violators may exceed this limit differently.
For instance, a moderate violator agj with dV ioj = 0.2 will decide to drive at 120 km/h,
since vioLimitj,highwaySpeed = 100 ·(1+1 ·0.2) = 120 km/h. However, an extreme violator
agk with dV iok = 0.9 will decide to drive at 190 km/h. However, an actual violation
depends on other factors such as system status, agent capabilities, or environmental
characteristics. For instance, a violating car in a traffic jam or on a rainy day will not
be able to drive at its internal violation limit.

Finally, we would like to highlight that our model of norm violation is mainly in-
tended to help in the black-box testing of our norm adaptation mechanism, and hence
help validate its operation against varying non-compliant behaviours. Thus, the mod-
eling of agents that reason about how to violate norms for their own benefit is an
alternative to our approach.

3. CASE STUDY: P2P SHARING NETWORK

Our case study is a simulation of a peer-to-peer data sharing network (hereinafter re-
ferred to as P2P) in which a set of computers connected to the Internet (peers) contact
each other to share some data6. The system’s performance is evaluated in terms of the
time required to spread the datum among all peers (tspread), which may increase due to
channel saturation. Saturation occurs when a particular channel has reached its max-
imum traffic-handling capacity, so additional incoming data cannot be transmitted.

We conceptualise the physical network as the packet-switching net in the bottom
part of Figure 3. Each peer network adaptor (ni) is connected to the router (rj , wherej >
0) of its internet service provider (ISP). A cluster is defined for all peers connected to

6Please, refer to §7 for a discussion on the appropriateness of the chosen scenario.
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Fig. 3: 2-LAMA over a physical network

the same ISP, which also hosts the assistant’s network adaptor (naj)
7. The Internet

is abstracted as a set of aggregated links among ISPs, so that each one transports
all messages from/to each cluster. Thus, bandwidth (BW)8resources are shared. As a
result, message transmission time depends on the message’s length and the channels’
actual capacities. This implies that the environment should be dynamic, since peers
cannot predict message latencies.

We regard computers (peers) within the P2P system as agents within an OCMAS
and specify their model9 in Equation 16. As shown at the top of Figure 3, the meta-
level is composed of a set of assistants (see Eq. 17) and the domain-level is populated
by the agents that perform the sharing activity (Eq.18). The meta-level organisation
(orgML) defined in Eq. 19 has a single role (rolML = {assistant}) and it uses part
of a protocol derived from standard BitTorrent protocol (protML = {bitTorrent′},
see §5.1.1). Similarly, domain-level organisation (orgDL in Eq. 20) has a single role
(rolDL = {peer}) and uses the same protocol. Both levels share the same organisa-
tional goal, which consists in minimising the time required to spread the datum among
all agents: goalsML = goalsDL = minimise(tspread). Domain-level social conventions
are specified through two regulations normDL = {NormBW,NormFR} (see Eqs. 21 &
22), which limit the agents’ network usage. The first norm prevents peers from mak-
ing massive use of their bandwidth to send/receive data to/from all other peers. In
this Equation 21 peerPercBW is computed as the percentage of nominal bandwidth
(NomBW defined below) used to share data and it must be kept under a given norm
parameter value (limitVBW ). On the other hand, second norm limits the number of
peers (we refer to them as friends) to whom a peer can simultaneously send the data.
These regulations are common to DL agents and use the DL environment and agent
observable properties that appear in Eqs. 24 and 25. The former specifies environment
observable properties (envPDL), which are related to the peers’ bandwidth and are
described in terms of its nominal bandwidth (NomBW , i.e. the maximum available),
its upload effective bandwidth (EffUpBW , i.e. the actual bandwidth consumption),
and its actual download effective bandwidth (EffDnBW ). The latter defines three ob-

7Notice, though, that assistants do not represent ISPs, they are just hosted there for a better assistant-peer
communication. Instead, an assistant could be hosted by any computer in the network.
8The bandwidth is the capacity to transfer data over a network link. As a simplification, we assume that
upload and download channels have equal BW. Thus, it appears as a single numerical label (corresponding
to #data units per time unit) on each link of Fig. 3.
9We use upper case to denote the types defined in the formalisation and lower case to denote the instances.
Therefore, orgDL corresponds to the P2P instantiation of the domain-level organisation in Eq. 4.
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servable properties of an agent (agPDL): whether it has the datum (hasDatum); which
action it is performing (Act); and the number of simultaneous sendings (numSends).

2lamaP2P = (ml, dl) ∈ 2LAMA (16)

agML = {a1, ..., am} , where m = 3 , agML ∈ AgML assistants (17)

agDL = {p1 . . . pn} , where n = 12 , agDL ∈ AgDL peers (18)

orgML = 〈{assistant}
︸ ︷︷ ︸

RolML∈StrML

, {BitTorrent′}
︸ ︷︷ ︸

ProtocolsML∈SocConvML

, {min(tspread)
︸ ︷︷ ︸

Goals

}〉 (19)

orgDL = 〈 {peer}
︸ ︷︷ ︸

RolDL∈StrDL

, {BitTorrent′}
︸ ︷︷ ︸

ProtocolsDL∈SocConvDL

, {NormBW,NormFR}
︸ ︷︷ ︸

NormDL∈SocConvDL

, {min(tspread)
︸ ︷︷ ︸

Goals

}〉(20)

NormBW :
IF (peer.Act ∈ {receive, serve}) THEN Prohibition(peerPercBW > limitVBW)
where peerPercBW = max(EffUpBW

NomBW
, EffDnBW

NomBW
)

(21)

NormFR : IF (peer.Act ∈ {serve}) THEN Prohibition(numSends > limitVFR) (22)

envML = 〈envPML, envPDL, agPDL, orgDL〉 , envPML = ∅ (23)

envDL = envPDL = 〈NomBW,EffUpBW,EffDnBW, tspread〉 (24)

agPDL = 〈hasDatum,Act, numSends〉 where (25)

hasDatum = {1, 0}, Act = {no, receive, serve}, numSends = [0, ..,m− 1] (26)

4. LEARNING NORM ADAPTATION USING CASE-BASED REASONING

With the aim of achieving system goals, assistants apply their individual norm adap-
tation function αN

i (see Eq. 12) to propose new regulations. They do so at run time —at
specific time intervals (tadapt) and without bringing the system down. Nevertheless,
the computation of this function is complex. The reason is two-fold: first, the actual
optimal regulations (i.e., the solution) are unknown; second, the overall system per-
formance depends on the consecutive norm adaptations performed at run time. This
is so because dynamic systems require to set different regulations along a single ex-
ecution (i.e., different system states require different regulations). Since performance
is measured at the end of the execution (i.e., when the goal is achieved), it is difficult
to assess the actual influence of each regulatory change in the overall performance.
In the literature this is usually referred as the credit assignment problem [Jones and
Goel 2004]. Therefore, we advocate using a machine learning approach to compute αN

i .
Specifically, we propose a variation of a standard case-based reasoning (CBR) method.
CBR [Riesbeck and Schank 1989] is based on the assumption that similar problems
have similar solutions. Thus, similar system states require similar regulations (pro-
vided that the ones experienced were successful). Furthermore, it can deal with very
complex forms of knowledge and generalises fast from few (even noisy) training exam-
ples. Nevertheless, one may think of other alternatives to norm adaptation, such as,
for example, model-based heuristics. In fact, in [Campos et al. 2011] we evaluated an
uncompleted CBR with a heuristic approach. Even with the limitations of the previous
CBR proposal, it showed a significant improvement on accuracy in comparison to the
heuristic proposal.
Concretely, this paper contributes to previous work to (i) extending the previous

case representation so as to include a case quality estimation measure; (ii) considering
continuous state/action spaces; (iii) refining previous retrieval and reuse phases so as
to better exploit the new information contained in the cases; and (iv) including for
the first time the revise and retain phases in order to complete the CBR cycle. The
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revise phase evaluates the effectiveness of a case whereas the retain phase uses the
evaluation to enrich the system’s knowledge with the newly acquired experience.

Briefly, the main characteristic of a CBR is that it solves new problems (cases) by
adapting the solutions of similar past problems, which are stored in the case base.
Aamodt and Plaza [1994] described the classical CBR cycle in four different phases. As
depicted in Figure 4a, a new case (case_n) is solved by first retrieving the most similar
case from the case base, second, reusing its solution in case_n, revising this solution,
and finally, retaining the new experience (case_n) by incorporating it into the case base.
Furthermore, Richter [1995] defined the case base as a structure that incorporates
further knowledge about the domain, similarity and adaptation functions.

4.1. Tailored case-based reasoning for regulation adaptation

Each assistant computes its αN
i by applying a tailored CBR cycle. The main differences

with classical CBR are that our tailored CBR cycle starts with an empty case base and
gathers its experience on-line from the MAS scenario (i.e. the domain-level). As a con-
sequence, our CBR model incorporates heuristic knowledge10 to tackle the cold-start
problem –i.e., the lack of previous (off-line) experiences (cases)– and an estimation of
the quality of cases for the credit assignment problem.

Every time an assistant computes a regulation adaptation (i.e., αi
N in Eq. 12), it

follows our tailored CBR cycle in Figure 4b. Thus, it extracts a new problem descrip-
tion (case_n.Prob) from the scenario. With this new problem, it applies the retrieval
phase to look for a set of K most similar cases from the case base. Next, the assistant
moves to the second phase to reuse the retrieved cases to provide a solution to case_n.
This solution contains the (new) regulation values (NormsDL,i) that the assistant will
propose to the other assistants in order to establish the global regulation parameter
values NormsDL. In this manner, each assistant participates in the agreement process
(βαN , see Eq. 13), which is implemented as a voting process. More specifically, each as-
sistant sends its vote (i.e., the individually proposed regulation value) to the rest of
assistants, and the most voted values are the ones finally chosen11. As a result, the as-
sistant stores the agreed upon solution in the case (case_n.Sol) and sends the updated
regulations to its domain level agents so to be applied in the scenario. After a certain
time interval (tadapt), the assistant continues with the third CBR phase to revise the
outcome of applying the new regulations to the scenario and it introduces the corre-
sponding evaluation (case_n.Eval). Finally, the assistant applies the fourth phase to
retain case_n if it is considered representative enough. Next subsections are devoted
to provide both the details about the structure of a case in our P2P domain as well as
about the phases of our tailored CBR cycle.

4.2. Case description

As Figure 4 details, the case base contains case knowledge, which materializes as a
set of cases. A case represents an abstraction of a concrete problem situation. Cur-
rently, the proposed case description represents an abstraction of a domain-level state.
In classical CBR, a case contains two components: the problem (Prob) described as a
set of attributes (ProbAttribs = {a1, · · · , af}) and its solution (Sol) represented as a
set of attributes (SolAttribs = {s1, · · · , sz}). We propose the addition of a third compo-

10It is a coded algorithm to adapt regulations that was written by the system designer. This heuristic is fully
described in [Campos et al. 2011] and further commented in 4.3.
11Although the majority rule agreement mechanism is very simple (and other negotiation mechanisms could
be considered instead), it may be worth mentioning that some votes can be blank ballot-papers (see BLANK
in 4.2 and 4.4), which are discarded in the voting process. Assistants use a blank ballot paper to let other
assistants push for their own interests, and thus, just those assistants in need for a change are actually
considered in the decision process. Moreover, if there is a tie, norms are not updated.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: March 2012.



Robust regulation adaptation in multi-agent systems A:11

 RETRIEVE 

 REUSE 

 REVISE 

 RETAIN 

case_n 
- Prob 

-  ∅ 

case_n 
- Prob 

- Sol 

case_n 
- Prob 

-  ∅ 

new problem 

case_n 
- Prob 

- Sol’ 

Case 

-Prob 

-Sol 

Case 
- Prob 

- Sol 

Retrieved 

Case 

Suggested 

Solution 
Confirmed 

Solution 

Description 

of a new 

situation 

case_n 
- Prob 

- Sol’ 

Similarity 
Knowledge Knowledge

Adaptation 
Knowledge 
AdaptaAdaptaAdaptaAdaptaAdaptaAdaptaAdaptaAdaptaAdaptaAdaptaAdaptaAdaptaAdaptaAdaptaAdapta
KnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowle

Vocabulary 
Knowledge 

KnowleKnowleKnowledge

VocabuVocabularyVocabulary

Case 
Knowledge 

Case Base 

K 

(a) Classical CBR

 RETRIEVE 

 REUSE 

 REVISE 

 RETAIN 

case_n 

- Prob 

-  ∅ 

-  ∅ 

new problem 

K 

Case 

-Prob 

-Sol 
-Eval 

Case 

- Prob 

- Sol 

- Eval 

Retrieved 

Cases 

Suggested 

Solution 

via Voting Confirmed 

Solution 

case_n 

- Prob 

-  ∅ 

-  ∅ 

case_n 

- Prob 

- Sol 

-  ∅ 

case_n 

- Prob 

- Sol 

- Eval 

MAS domain 

MAS domain 

-Sol  Outcome 

case_n 

- Prob 

- Sol 

- Eval 

Similarity 
Knowledge Knowledge

Adaptation
and 
Heuristic 
Knowledge 

andandand
HeurHeurisHeurHeurHeurHeurHeurHeurisHeurisHeurisHeurHeurHeurHeurHeurHeurisHeurisHeurHeurHeurHeurisHeurHeurHeurisHeurisHeurisHeurisHeurisHeurisHeurisHeurisHeurisHeurisHeurisHeurisHeurisHeurisHeuris
KnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowleKnowle

Vocabulary 
Knowledge 

KnowleKnowleKnowledge

VocabuVocabularyVocabulary

Case 
Knowledge 

Case Base 
- ∅

- ∅

-Eval

-Eval

- ∅

-Eval

MAS domain 

MAS domain 

-Sol 
-Eval

Suggested 

Solution 

via Voting 

(b) Tailored CBR

Fig. 4: Case-Based Reasoning cycle

nent called Eval that represents how well the case solution has been evaluated in the
scenario. Hence, the case is defined as a tuple (ProbAttribs, SolAttribs, Eval), where
ProbAttribs, SolAttribs and Eval are sets of attributes. Figure 5 illustrates a Case in
our P2P scenario.
The first component corresponds to the description of the problem, and consists of

seven numeric attributes derived from envML information in Equation 23. Specifi-
cally, ProbAttribs = {Completeness, SeedBW, LeechBW, SrvBW, RcvBW, RcvEffBW,
Waiting}, where:

—Completeness expresses the percentage of datum possession (e.g. 100% means all
peers have the datum);

— SeedBW and LeechBW correspond to the sum of the nominal bandwidth of peers
having and lacking the datum respectively (i.e. seeds and leeches12);

— SrvBW and RcvBW define the sum of nominal bandwidths for currently serving
seeds and receiving leeches;

—RcvEffBW contains the sum of effective download bandwidths; and,finally,
—Waiting is the number of non-receiving leeches.
Formally:

Completeness =
∑

n

i=1
hasDatumi

n
, SeedBW =

∑
n

i=1
hasDatumi·NomBWi∑

n

i=1
NomBWi

,

LeechBW =
∑

n

i=1
(1−hasDatumi)·NomBWi∑

n

i=1
NomBWi

, SrvBW =
∑

n

i=1
NomBWi|Acti={serve}∑

n

i=1
NomBWi

,

RcvBW =
∑

n

i=1
NomBWi|Acti={receive}∑

n

i=1
NomBWi

, RcvEffBW =
∑

n

i=1
EffDnBWi∑

n

i=1
NomBWi

,

Waiting =
∑

n

i=1
{pi∈AgDL|Acti={no}}

n
The solution component (Sol) is described by two numeric attributes

SolAttribs ={MaxFR, MaxBW } that specify regulation adaptation parameters
in Equations 21 and 22. MaxFR = limitVFR/n, corresponds to the updated limitVFR
(i.e., limit of the number of friends to send the data simultaneously) normalised by
the number of peers. MaxBW = limitVBW /100 is the updated limitVBW (i.e., limit

12The term seed is used to refer to a peer who has 100% of the data whereas a leech refers to a peer who
lacks the data. When a leech obtains 100% of the data, that peer by definition becomes a seed.
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Fig. 5: CBR’s case description

of the bandwidth usage for sending/receiving data) expressed as a percentage. Both
attributes represent votes in the agreement process βαN and they may alternatively
contain a special value representing a blank-ballot paper (❇▲❆◆❑). Thus, an assistant
may vote ❇▲❆◆❑ when no peers in its cluster are waiting for data and other clusters still
contain waiting peers. This will allow the interests of the corresponding assistants to
prevail.

Finally, the evaluation (Eval) corresponds to a numeric Goodness attribute which
provides an estimation of how effective the corresponding solution is. Briefly, it con-
siders the increment of Completeness in order to estimate whether the pace of datum
spreading is adequate (see §4.5 for computational details).

4.3. Retrieve

The first phase of our tailored CBR cycle (see Figure 4b) is devoted to retrieving the
K most similar cases to the new problem (case). We use a K-nearest-neighbour al-
gorithm that traverses the case base computing the similarity of each stored case
with the new problem. Given problem descriptions from a new and a stored case
(case_n.Prob, ret_case.Prob ∈ Prob), the similarity function (Θ : Prob × Prob → [0..1])
in Eq. 27 computes a weighted Euclidean distance between the corresponding problem
attributes (acase_ni ,aret_casei ∈ ProbAttribs). Specifically, the distance depends on wether
the attribute is numerical or nominal (i.e. categorical), see Eq. 28. The values for the
weights (wΘ

i ) in Eq. 27 appear in Figure 5 below the case. They were computed us-
ing the Proportional Rough Sets (PRS) method [Salamó and López-Sánchez 2011b]
which estimates attribute relevance based on Rough Sets Theory13. In fact, since prox-
imity and distance are opposite concepts, we use one minus the distance14 to compute
similarity.

Θ(case_n, ret_case) = 1−

√

∑

i∈ProbAttribs

(

wΘ
i · dist(a

case_n
i , aret_casei )

)

∑

i∈ProbAttribs w
Θ
i

(27)

dist(acase_ni , aret_casei ) =







(acase_ni − aret_casei )2 if ai is numerical

1 if ai is nominal and acase_ni = aret_casei

0 if ai is nominal and acase_ni 6= aret_casei

(28)

Additionally, we apply a minimum similarity (▼■◆❴❙■▼) threshold. This, together with
the initial empty case base, may result in failed retrieval. The retrieve phase then
obtains a solution by applying heuristic knowledge [Campos et al. 2011]. Thus, when
there are no experiences to reuse, the heuristic knowledge is used to align the serving

13We compute PRS over a case base that comes from a preliminary CBR test without weights. PRS has also
been successfully applied for feature selection in classification problems.
14This is inspired by complement computation in Boolean algebra.
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and receiving capacities. However, once there exist some previous cases, the use of the
heuristic is marginal (our experiments showed that for an average number of 169.7
cases, just 1.3% came from the heuristic).

4.4. Reuse

The reuse phase in Figure 4b employs the solutions of the retrieved cases to provide
a solution to the new case (case_n). First, it filters the retrieved cases by applying a
divergence threshold (▼❆❳❴❉■❱) over the standard deviation of their MaxFR solution
attribute. Thus, the divergence of a single retrieved case is 0 and it increases propor-
tionally to the variation of the values of the different proposed solutions in the set of
retrieved cases. As a result, this process excludes solutions that are too contradictory
to provide a good solution for case_n (again, heuristic knowledge covers the lack of
solutions).

ALGORITHM 1: Adaptation in the reuse phase

1 def adaptation( retrievedCases, case_n ):
2 valuesFR=∅; valuesBW=∅; goodness=∅
3 for each case ret_case ∈ retrievedCases:
4 valuesFR = valuesFR ∪ {ret_case.Sol.MaxFR}
5 valuesBW = valuesBW ∪ {ret_case.Sol.MaxBW}
6 goodness = goodness ∪ {ret_case.Eval.Goodness}
7 case_n.Sol.MaxFR = wAverage(valuesFR, goodness)
8 case_n.Sol.MaxBW = wAverage(valuesBW, goodness)

Secondly, it adapts filtered cases by applying Algorithm 1, which averages the solu-
tions weighted by their individual evaluation. Specifically, line 2 in Algorithm 1 ini-
tialises the sets that will contain each solution’s attributes (✈❛❧✉❡,❋❘, ✈❛❧✉❡,❇❲) and its
evaluation (❣♦♦❞♥❡,,). Next, it traverses the retrieved cases (see lines 3 to 6) to fill these
sets. Finally, in lines 7 and 8, it computes each solution attribute of case_n by invoking
the wAverage function. This function computes a weighted average and is formalised
in Equation 29. It receives a set of values (V , i.e. ✈❛❧✉❡,❋❘ or ✈❛❧✉❡,❇❲) and their asso-
ciated weights determined by their goodness (G). Values can contain the blank-ballot
paper (❇▲❆◆❑ introduced in §4.2). Therefore, if the aggregated goodness of blank val-
ues is greater than the aggregated goodness of non-blank values, then the result of
wAverage is a ❇▲❆◆❑. Otherwise, the result is a weighted average of non-blank values.
Notice that all summations in this formula apply for all pairs of received values and
their associated goodness (vi, gi) ∈ (V,G).

wAverage(V,G) =

{

BLANK if (
∑

(gi|vi = BLANK) >
∑

(gi|vi 6= BLANK)
∑

(vi·gi|vi 6=BLANK)∑
(gi|vi 6=BLANK) otherwise

(29)

Following the CBR cycle depicted in Figure 4b, the reuse phase employs the so-
lutions of the K retrieved cases to provide a solution to the new case, case_n. Our
reuse phase starts by checking if the divergence of retrieved solutions is greater than
a maximum trusted divergence (▼❆❳❴❉■❱) threshold. This divergence is computed as the
standard deviation of MaxFR solution’s attribute15 of the retrieved cases. Thus, the
divergence of a single case is 0 and exceeding ▼❆❳❴❉■❱ means that the solutions of re-
trieved cases are too contradictory to provide a good solution for case_n. When ▼❆❳❴❉■❱

is exceeded, the heuristic knowledge is invoked to obtain a solution. Once there is a set
of slightly divergent retrieved cases it performs an adaptation of the solution of these

15We do not consider MaxBW because our experiments reveal that is correlated with MaxFR and in fact
changes of MaxFR are more relevant than those on MaxBW .
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cases. This adaptation can be tackled considering all retrieved solutions but also the
differences between the retrieved problems and the current one (case_n). Currently,
our adaptation function only uses the former as shown in Algorithm 1. Briefly, the
adaptation function receives a set of retrieved cases ( ❡" ✐❡✈❡❞❈❛(❡() and the current
problem (❝❛(❡❴♥) and it returns a solution to case_n that is the average of retrieved
cases’ solutions weighted by their evaluation.

4.5. Revise

The regulation adaptation starts periodically (every tadapt), when each assistant per-
forms a CBR cycle. Figure 4(b) shows that the reuse phase provides the assistant with
a suggested solution to case_n, based on past experience. Next, as previously explained
in section 4.1, each assistant participates in the agreement process (βαN , see Equa-
tion 13) by sending its vote for each regulation (NormsDL,i) to the other assistants
(see top of Figure 3). Then, each assistant receives other votes and computes the most
frequent vote for each regulation (NormsDL), discarding blank ballot-papers. Note that
if there is a tie, the regulations are not updated. Last, each assistant communicates
new regulations to its peers. As a result, new regulations are used during the next
adaptation time period (tadapt).

Once the tadapt interval has finished, the revise phase evaluates the results of the ap-
plied solution in the scenario (see Figure 4(b)). In the P2P scenario, the current Goals
definition (see Eq. 19) is related to the total spread time (tspread), which is unknown
until the end of the whole sharing process. Alternatively, we define Goodness ∈ [0..1]
as an evaluation metric that is based on datum possession (Completeness, see §4.2).
The rationale it follows is: if the increment in Completeness (cinc) along an adapta-
tion interval (tadapt) is large, then a significant number of peers have increased their
percentage of the datum, so a short tspread is expected.

Specifically, as shown in Equation 30, this Goodness metric is the Completeness
increment (cinc) normalised by the difference between the best conditions possible
(maxinc) and the worst situation (mininc) of cinc that could be obtained during the
adaptation interval. Themaxinc value refers to the maximum cinc if all seeds serve and
leeches also receive at their nominal bandwidth. The mininc value indicates the mini-
mum cinc if all data transmissions are cancelled. Overall, cases with the largest good-
ness are expected to provide better solutions. Accordingly, the revise phase adds this
evaluation to the current problem (case_n.Eval.Goodness) and it can be used later by
the reuse phase to weigh different retrieved solutions (see previous §4.4 and Fig. 4b).

case_n.Eval.Goodness = (cinc−mininc)
(maxinc−mininc)

(30)

4.6. Retain

Retention is the final phase in the CBR cycle, in which the product of the most re-
cent problem-solving episode is incorporated into the system’s (in our case, assistant’s)
knowledge. As described in [Salamó and López-Sánchez 2011a], a case-based reasoning
system can adapt its own case base during the reasoning cycle by adding and removing
cases. Different retention and forgetting strategies that use a measure of ”case good-
ness” were proposed for evolving correctly the case base of a classifier system. Here,
we follow on this vein but introducing variations for a multi-agent system. In the cur-
rent domain, apart from the inherent dynamics of a MAS, we have introduced self-
interested agents that may decide not to comply with established regulations. These
two factors lead to the case base changing over time. Moreover, as previously men-
tioned, the CBR system starts with an empty case base and gathers its experience
from the MAS scenario. As a result, the case base needs to increase in size rather than
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forget cases. Thus, in this paper, we focus on the retention and propose a strategy to
update the "goodness" of cases.
In our MAS, each assistant starts the retention strategy once a solution has been

evaluated (see the last phase in Figure 4b). In particular, case_n is stored as a new
case when its solution was created using heuristic knowledge or using more than one
retrieved case. Notice that these two situations depict that the case base lacks some
knowledge. In contrast, when a solution comes from a single similar case, case_n is
not stored and the evaluation of this retrieved case (ret_case) is updated by follow-
ing an approximation of a Monte Carlo strategy [Sutton and Barto 1998] described
in Equation 31. We have defined the goodness as a Markov Decision Process and,
in this case, we have approximately solved it by replacing the sum over all states
(i.e., each CBR cycle generates a new state) with a Monte Carlo approximation. This
way, the new goodness stored in the case base (ret_case.Goodness′) is the previous one
(ret_case.Goodness) updated according to current experience (case_n.Goodness) and the
given learning rate constant (αg).

ret_case.Goodness′ = αg · case_n.Goodness+ (1− αg) · ret_case.Goodness (31)

Notice that the goodness of a case will be used later for the reuse phase (see Sec-
tion 4.4). Instead of forgetting cases based on a goodness measure, since the MAS
lacks experience, we use it for promoting cases when solving a problem. The higher
the goodness of a case, the higher its relevance to choose the solution to the current
new problem.

5. EMPIRICAL EVALUATION

To demonstrate that regulation adaptation helps OCMAS, this section evaluates the
performance of our CBR proposal in a series of experiments with different coordination
models and with the presence of non-compliant agents. Experiments are conducted
with our P2P-adaptive OCMAS simulator [Campos et al. 2009a].

5.1. Coordination models and setup

Our simulator considers both agents and network components and allows us to exe-
cute different sharing methods with identical initial conditions. Specifically, we eval-
uate the three coordination models in Table I. Firstly, as the baseline, we take a
non-adaptive approach that uses a simplified version of the BitTorrent protocol (see
below). This has a flat social structure in which all peers contact each other with
unlimited bandwidth usage. The coordination mechanism is fixed and restricts the
number of leeches to three that a seed can start serving simultaneously. Secondly,
we test a 2-LAMA-RAW model of our suggested architecture, with the configuration16

shown in Fig. 3. This is non-adaptive and takes fixed regulations that are equiva-
lent to BT (limitVBW = 100% and limitVFR = 3), so that the comparison is fair. Thirdly,
2-LAMA-CBR starts with the same conditions, but assistants use CBR to adapt reg-
ulations at run-time. This requires some additional parameters: minimum similarity
threshold ▼■◆❴❙■▼=0.65; learning rate αg = 0.1; and adaptation interval tadapt = 50 time
steps, which is large enough to let new regulations influence agents’ behaviour before
evaluating their effects. Finally, all messages in all coordination models are of size 1,
except for data messages, whose size is always 5000 data units.

5.1.1. Protocols. Nowadays BitTorrent (BT, [BitTorrentInc. 2001]) is one of the most
widely used protocols in P2P sharing network scenarios. We have implemented a BT

16The overlay network in Fig. 3 has three clusters –each having an assistant–, and numerical labels in the
physical network indicate upload and download bandwidths. Different network topologies have been studied
in [Campos et al. 2010].
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Regulation
Coordination parameters
models

limitVBW limitVFR

BT ∼=100 3 No
2-LAMA-RAW 100 3 No
2-LAMA-CBR (0..100] [1..11] Yes

Table I: Coordination models and their reg-
ulation parameters.

���������������

�������� ���	

�������������������	�


��






��

�� ��

�

��������������� ���

��

�
���	

��������������� ��

�
�

��

���

��

���	

���������������

��������������

��
��

���

��

� �

�
	


�

� � �

����� ���

��
��

��
��
�	

�

�
�

���
��
�
��
�
�	

��
�� 	




��
��

���
�	

�

�
�

Fig. 6: Performance tests.

simplification [Campos et al. 2009b] where peers share a single-piece datum, the rest
is equivalent. Thus, there is a single agent (tracker), which informs peers about other
connected peers. Peers without data (leeches) request the data to peers having the
datum (seeds), which in response, send a ❝❤♦❦❡ message. Then, at specific unchoke
intervals, seeds choose chocked leeches to send the data (✉♥❝❤♦❦❡, '❡(✉❡)*, ❞❛*❛ mes-
sages are then interchanged). Leeches are chosen considering time of request and up-
load bandwidth (more recent and more bandwidth preferred). On the other hand, our
2-LAMA (both RAW and CBR) protocol varies BT to include our distributed assistance
meta-level. Specifically, in 2-LAMA there is no tracker and peers just follow a hand-
shake phase (with ❜✐*❢✐❡❧❞ messages involved) with a subset of seeds suggested by
their assistants. Assistants compute this social structure (SocStrDL)

17 based on da-
tum possession and communication latencies that are measured (estimated) by peers
at an initial phase (see [Campos et al. 2011] for further details). Afterwards, during
the data sharing, seeds inform their assistants when they are completed, which in
turn spread this information both at the meta and domain levels. Finally, assistants
in 2-LAMA-CBR share messages regarding norms.

5.2. Design of experiments

We test all coordination models by varying the peer that initially has the datum. As
Figure 6 shows18, the number of performed executions depends on the model prop-
erties. Thus, BT selects some served peers randomly. Therefore, the results show the
average of repeating 50 times the execution with the data in each (of 12) possible ini-
tial position (i.e. 12 × 50 = 600). In contrast, 2-LAMA-RAW only needs to be executed
once in each initial position, since it lacks randomness. However, the CBR approach
requires training. Hence, it is trained with executions in which the data is initially
located at 11 different positions and tested against the remaining position. Neverthe-
less, the order in the initial serving peers during training affects learning. Therefore,
we tested 50 random permutations out of all possible permutations of the 11 positions
(i.e. 11!). Consequently, the results of 2-LAMA-CBR show the average of executing 50
times each test of initial position (i.e. 12× 50 = 600 executions).

A second set of experiments was used to check the robustness of our 2-LAMA coordi-
nation model against non-compliant agents. In these experiments, some DL agents do
not fulfil the regulations proposed by the assistant agents —e.g. they simultaneously
serve more peers than allowed by the limitVFR limit. As described in §2.3, we model
non-compliant agents by introducing pV io and dV io parameters (see eq. 14 for percent-

17Recall that that BT has a flat social structure in which all peers contact among them.
18In this figure, each Px, x∈[1,12] stands for an execution where peer px initially has the datum. Moreover,
numbers below indicate the number of experiments (#ex).
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p
V
io dVio

0.3 0.7 1.0
0.3 ex·vSets ex·vSets ex·vSets
0.7 ex·vSets ex·vSets ex·vSets
1.0 ex·1 ex·1 ex·1

Table II: Robustness tests

p
V
io dVio

0.3 0.7 1.0
0.3 120 120 120
0.7 120 120 120
1.0 12 12 12

Table III: 2-LAMA-RAW

p
V
io dVio

0.3 0.7 1.0
0.3 6000 6000 6000
0.7 6000 6000 6000
1.0 600 600 600

Table IV: 2-LAMA-CBR

age of violators and eq. 15 for the degree of violation). In order to keep an affordable
number of simulations, we consider just four possible situations: norm compliant, me-
dian violation, high violation, and full violation agents. These situations have been
named specifically in the degree of violation as none, median, high, and full. Con-
cretely, the set up of these values in our experiments corresponds to 0, 0.3, 0.7, and 1,
respectively. When pV io = 0 or dV io = 0 (i.e., agents are norm compliant), the total
number of executions corresponds to the #ex in Fig. 6. Table II shows the number of
experiments for non-zero values. When not all 12 peers violate (medium and high vio-
lation degrees defined as 0 < pV io < 1), different sets of violators (vSets) can appear.

For instance, for pV io = 0.3, there are
(

12
4

)

different sets of 4 (12 · 0.3 ≈ 4) violator
peers. Accordingly, the resulting number of experiments is #ex · vSets. We restrict our
experiments to vSets = 10. Notice that when all peers violate (full violation with a
pV io = 1 value) permutations do not apply. Tables III and IV show the total number of
robustness experiments for our 2-LAMA-RAW and 2-LAMA-CBR coordination models.
In particular, 2-LAMA-CBR involves 38,400 test executions (38400 = 600 · 4 + 6000 · 6)
and their corresponding 422,400 training executions (422400 = 38400 ·11, see Figure 6).

5.3. Performance evaluation

This section is on analysing whether the adaptation of regulations over time can im-
prove the performance of non-adaptive coordination models. Performance in our ex-
periments is measured in terms of the total Time required to spread the datum among
all peers. Furthermore, we measure two additional execution characteristics of the
network usage: the network cost consumed by all messages (each message cost is com-
puted as its length times the number of links it traverses), and the average number of
links traversed by each message (Hops). Table V shows the results averaged over the
number of executions detailed in §5.2.

If we compare the performance of BT and 2-LAMA coordination models, we see
that both 2-LAMA approaches require less Time to share the datum. This means that
the time invested in communicating with our suggested meta-level is less than the
time benefit of having this additional level. In contrast, the network cost is higher in
2-LAMA. This shows that, in our approaches, the network is intensively used through-
out the execution without achieving saturation, otherwise the time would increase.
Having a meta-level means that coordination messages are exchanged among peers
and assistants and between assistants. However, the network usage increment is
mainly caused by transmitting more data messages (recall they are 5000 data units
long whereas the size of any other message is 1). These extra data messages are cre-
ated because 2-LAMA peers compare data sources by retrieving some data from them:
they replace their current data source whenever they find a faster one. Thus, we expect
to minimise the network consumption when dealing with more than one piece of data,
since peers could compare sources depending on the pieces previously retrieved. Re-
garding the number of links traversed by messages (Hops), our 2-LAMA approaches
have more local communications (i.e. intra-clusters) than BT. This is convenient be-
cause local messages have lower latencies and costs, since they are usually performed
within the same cluster.
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Time Network cost Hops
BT 986.2 206,592.0 3.42
2-LAMA-RAW 793.1 338,448.3 3.22
2-LAMA-CBR 732.6 348,399.6 3.25

Table V: Averaged performance results. !"
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Fig. 7: Performance Nemenyi test.

The comparison of 2-LAMA-RAW and 2-LAMA-CBR that is shown in Table V de-
notes that 2-LAMA-CBR is more accurate in terms of time and uses the network more
intensively than 2-LAMA-RAW. However, 2-LAMA-CBR slightly augments the num-
ber of links traversed by the messages. This result was expected since the assistants
in different clusters exchange more messages, for example, to send their votes for ar-
riving to a consensus solution.

We also analyse whether there are significant differences between ap-
proaches [Demšar 2006]. First, we rank alternative algorithms considering all the
experiments (k = 3 algorithms and N = 600 different experiments19 for each test).
The best algorithm’s performance is ranked 1, the second best ranked 2, and so on.
Then, a method’s mean rank is obtained by averaging its ranks across all experiments.
Second, we apply the Friedman and Nemenyi tests to analyse statistically significant
differences between approaches. The Friedman [1937] test (FF ) is distributed accord-
ing to the F distribution with (3 − 1) = 2 and (3 − 1) · (600 − 1) = 1198 degrees of
freedom. The critical value of F (2, 1198) = 4.63 is computed at the 0.01 critical level.
Our experiments obtained the value of FF = 363.6. As this value is higher than 4.63
we can reject the null hypothesis. Once the non-randomness of the results has been
checked, we compute the Nemenyi test to find out which approaches are significantly
different. We compare k algorithms with a critical value α = 0.01, q0.01 = 2.913 for a
two-tailed Nemenyi test and we obtain a critical difference value of CD = 0.1682. The
Nemenyi results are illustrated in Figure 7, where diamonds represent the mean ranks
of each coordination model. Vertical lines across diamonds indicate the ’critical differ-
ence’. The performance of two approaches is significantly different with a confidence
of 99%, if their corresponding mean ranks differ by at least the critical difference (i.e.
vertical lines are not overlapping). Accordingly, Figure 7 reveals that the best mean
rank corresponds to 2-LAMA-CBR which is significantly better than 2-LAMA-RAW
and BT.

5.4. Robustness when agents violate organisational regulations

Once shown that our adaptive coordination model improves system performance,
we analyse its robustness against non-compliant agents. Figure 8a depicts the re-
sults of the experiments described in §5.2. The results of the non-adaptive ap-
proach (2-LAMA-RAW) are on the left and the results for the adaptive approach
(2-LAMA-CBR) appear on the right. Each part has a set of bars for each percent-
age of violators (pV io), which contains a bar for each degree of violation (dV io). BT
is depicted as a constant line at 968.2 ticks (see Table V). We can observe that both

19In 2-LAMA-RAW there are 12 experiments and their results have been repeated 50 times to be able to
compare them with the rest of the approaches.
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(b) Nemenyi Test

Fig. 8: Robustness results

2-LAMA approaches clearly outperform BT and that, in general, the adaptive ap-
proach (2-LAMA-CBR) performs better (i.e. has a lower Time) than the non-adaptive
one (2-LAMA-RAW). As expected, it is generally the case that the sharing time in-
creases when the violation rate (a combination of pV io and dV io) grows, e.g. see how
2-LAMA-CBR bars clearly increase from pV io =medium violation to pV io = high
violation. Nevertheless, as the alert reader will have noticed, in the extreme situation
where the whole agent population deviates completely from the norms, performance
improves. The reason is two-fold: firstly, assistants perform norm adaptation based
on how the system is performing given current system dynamics rather than based
on the actual norm violations; and secondly, we are dealing with a complex dynamic
environment where an extensive norm deviation (i.e., when pV io =full violation) has
ceiling effects in the network saturation. Thus, it just happens to be the case that assis-
tants better regulate some system situations than others. Furthermore, 2-LAMA-CBR
presents a steadier time variation than 2-LAMA-RAW. For example in the worst sit-
uation (i.e., when there is a full violation degree), 2-LAMA-CBR enlarges the time
required to spread the datum a maximum of 16% whereas 2-LAMA-RAW increases
facing that situation a 24%. Our results denote that 2-LAMA-CBR is robust as it is
able to better cope with violation agents.
Finally, we analyse the significance of the differences between these approaches.

Again, we apply the Friedman and Nemenyi tests with k=3 algorithms and N=64 dif-
ferent experiments20. We compute the mean rank of each algorithm. In the Friedman
tests, the critical value is F (2, 126) = 4.77 at the 0.01 critical level. We obtained the
value of FF = 330.8 so that we could reject the null hypothesis. In the Nemenyi test,
with a confidence of 99%, we obtain a critical difference value of CD = 0.52. Figure 8b
illustrates the results of the Nemenyi tests, where, the best performance again corre-
sponds to the 2-LAMA-CBR. In summary, the results show that the adaptive coordina-
tion model outperforms the non-adaptive ones, even when agents violate regulations.
In other words, we have empirically proven that our 2-LAMA-CBR is robust enough to
changes in agent population behaviour.

6. RELATED WORK

Multi-agent systems (MAS) can be either implicitly or explicitly organised. Agents
within Agent Centred MAS (ACMAS) [Serugendo et al. 2006] coordinate by means of

20We consider 1 experiment when there are no violators (pV io = 0 or dV io = 0), 3 experiments when
all peers are violators (pV io = 1 and dV io ≥ 0.3) and 60 experiments when there are some violators
(0 < pV io < 1 and dV io > 0 for the vSets = 10 violator sets).
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Approach

Problems

Goal-oriented

Task-oriented

Task -

assignment

Regulation-oriented

Regulation

definition

Fig. 9: OCMAS taxonomy of problems and associated solution approaches.

an implicit (i.e., non specified) organisation, whereas Organisation Centred MAS (OC-
MAS, as described by [Ferber et al. 2004]) use an explicit one, so that the organisation
is a first-class entity in the system.

On the one hand, as stated by [Sen and Sen 2010], implicit organisations in ACMAS
may change as a consequence of different agent interactions or based on agent obser-
vation. Thus, for example, [Mukherjee et al. 2008] show how agents converge to new
behaviours by just considering individual utilities. In contrast, [Sen and Airiau 2007]
propose organisational changes that may emerge when agents observe other agents’
behaviours. On the other hand, in OCMAS, the explicit specification of an organisation
-and its regulative structures- favours the reasoning required to guide the adaptation
process. Thus, as [Martin and Barber 2006] maintain, "Implementing organizational
restructuring at a high level of abstraction first requires developing high-level compu-
tational descriptions of the organizational structure. [...] [These] descriptions can be
manipulated dynamically to implement organizational restructuring."

Generally, we can regard OCMAS as goal-oriented systems (see Figure 9). We dis-
tinguish between task-oriented and regulation-oriented approaches depending on how
system goals are achieved. The former identifies tasks that accomplish system goals
and decomposes them into subtasks that are subsequently assigned to agents [Dignum
2004; Gomez-Sanz and Pavon 2005; Hübner et al. 2005]. As a consequence, agents re-
ceiving task assignments need to somehow assimilate task executions into their indi-
vidual goals. Alternatively, regulation-oriented approaches use regulations to establish
limits on agents valid actions with the aim of accomplishing system goals. We take the
latter approach, since it assumes individual and system goals to be loosely coupled (or
even independent) and preserve agents’ autonomy. Consider, for instance, a traffic sce-
nario, where individual goals may be to minimise driving times whereas the system
dictates speed limits in order to avoid car accidents.
In general, any fixed organisation may not perform equally well for different run-

time situations21. Thus, organisational adaptation in OCMAS is a relevant research
topic in the OCMAS community. Indeed, it has generated a significant amount of re-
search [Boissier and Gâteau 2007; Sims et al. 2008; Costa and Demazeau 1996; Hüb-
ner et al. 2004; Guessoum et al. 2004; Kota et al. 2008]. Just to mention a few, [Car-
ley et al. 2002] explore the resiliency of organisations by studying their performance
when key leaders are removed. Similarly, [Dignum et al. 2005] evaluate the VILLA
environment by defining a hunter-gatherer community. There, behavioural reorgani-
sation can be modelled by changing agent attributes —e.g., gather power of gatherers.
VILLA also considers structural reorganisation strategies through the variation of the
number of agents playing a giving role —so for example, hunters and/or gatherers are

21This claim is in line with the computational organisational theory, which demonstrates that the best
organisation designs are domain and context dependent [Carley 1995].
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added/removed by changing the capabilities of other creatures. These research studies
have in common that they follow a task-decomposition approach and that they perform
organisational reconfiguration [Martin and Barber 2006], in which the structure of the
organisation remains the same but the identity of the participants may vary over time.
On the contrary, our approach performs organisational restructuring [Martin and Bar-
ber 2006], in which the structure of the organisation itself –i.e., key elements within it
such as roles or norms– changes over time.
Additionally, [Horling et al. 2001] use self-diagnosing to update their organisational

representation by removing methods and interrelationships from agents’ conditioned
views. Self-diagnosis is based on a causal model of action and coordination faults. In
our case, assistants adapt the social structure –i.e., the actual net of relationships– by
considering communication latencies and peers that become completed [Campos 2011].
Finally, agents in the system by [Martin and Barber 2006] switch from an existing co-
ordination strategy for decision-making –such as suggest-and-vote or negotiation– to
another one that performs better in the current situation. They perform their organisa-
tional restructuring by means of "Decision-Making Frameworks (DMF) [that become]
a controlling variable in the performance of [their] multi-agent system". Similarly, our
norm parametrisation method restructures organisational elements autonomously.
Furthermore, as our norms restrict agent interactions, assigning extreme values to
norm parameters counts for no-restriction, and thus, addition and deletion of norms
are implicitly modelled.

However, fewer OCMAS approaches follow a regulation-oriented perspective in
which adaptation is no longer related to tasks. Since the seminal work by [Axelrod
1986], some normative systems have included specific norm-compliance enforcement
mechanisms that are articulated through direct sanctions –such as in the work in
[Pasquier et al. 2005]–, or by means of social exclusion [Glaser and Morignot 1997;
de Pinninck et al. 2008]. Nevertheless, they bring in additional enforcement costs that
should be carefully considered. We follow the adaptation approach in autonomic elec-
tronic institutions [Bou et al. 2009], which modifies norm penalties according to agents’
behavioural changes. As previously mentioned, we claim that regulation adaptation
should be robust to different instabilities including non-compliant agents. Therefore,
we abstract ourselves from considering specific norm enforcement policies. Instead,
our adaptation mechanism learns the best regulation values for the current execu-
tion situation. Moreover, our current research focuses on distributing the adaptation
responsibility among assistant agents —or, in other words, decentralizing the adapta-
tion process.

If we consider the norm taxonomy in [Savarimuthu and Cranefield 2009], our ap-
proach uses a norm adaptation mechanism based on social power, since our assistants
are empowered to change regulations. Empowerment is a key concept in the paper by
[Artikis et al. 2009], in which agents use an argumentation protocol to decide upon log-
ically grounded norm changes. Their work follows ACMAS approaches, in which norm
emergence [Shoham and Tennenholtz 1997; Brooks et al. 2011] and norm adoption
[Conte et al. 2010] are attracting most research efforts. In general, robustness in AC-
MAS approaches is mostly studied in terms of societal topology [Villatoro et al. 2011b]
rather than on norm-compliance. Among ACMAS approaches, we should highlight the
work by [Grizard et al. 2007], since it focuses on the same peer-to-peer (P2P) sharing
network scenario. In their paper, agents adapt local norms by using local information.
In fact, locality and other important aspects such as component-based architectures or
incentives have been extensively studied in P2P systems [Garlan et al. 1994; Alda and
Cremers 2005], and particularly, applied to BitTorrent protocol [Cuevas et al. 2009;
Piatek et al. 2007]. Nevertheless, their approach differs from ours in that they follow
an agent centered approach, and thus, they cannot reason nor act at an organisational
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level. This is key if we have in mind that our simplified P2P case-study is not meant
to be realistic, but a means to illustrate our normative (organisational) adaptation ap-
proach in highly dynamic systems. P2P sharing networks have also been commercially
explored. Thus, for example, we have identified P4P [Xie et al. 2008], which also pro-
motes local communications. Nevertheless, it does not rule on network consumption in
order to balance net capacity and traffic, which reduces its flexibility.

Norm adapatation has been also tackled formally. [Dastani et al. 2012] present the
syntax and operational semantics of a programming mechanism that facilitates the
runtime modification of norms. Operational semantics describe the behaviour of a pro-
gramming language in terms of transitions between program configurations. Thus, it
is used to specify when and how the norms may be changed both by external agents
or by a normative mechanism. Regarding Machine Learning techniques, they can be
used through a number of techniques. Thus, for example, [Savarimuthu et al. ] identify
prohibition norms in an agent society. They assume norms are already established in
an agent society and they provide a method for newcomer agents to learn them. They
do so by means of a data mining approach that extracts specific sequences of events.
This approach differs from ours in that we learn how the global norms should be in
order to improve performance, whilst they discover previously established norms, and
therefore, they do not consider any performance criteria. Finally, MASPA, by [Zhang
et al. 2009], provides a reference example that presents many commonalities with our
approach. There, higher-level agents provide supervisory information to lower-level
agents. Agents apply Multi-Agent Reinforcement Learning algorithms, and thus, this
provided information is used to guide the exploration of their state-action space. The
main difference lies in that their reasoning is task-driven, whereas our meta-level is
regulation-oriented and takes its adaptation decisions purely based on goals —which,
depending on the problem, may not be directly related to tasks. Additionally, they as-
sume they have control over the development of participant agents and, in particular,
that agents will commit to assigned tasks. We plan to deal with open MAS –where
agents are developed by third parties–, and therefore, we avoid making such an as-
sumption.

Within 2-LAMA, assistants apply their individual norm adaptation function to
propose new regulations. Specifically, they apply a tailored case-based reasoning
(CBR) [Riesbeck and Schank 1989]. CBR is a machine learning technique broadly used
in many fields. Some examples of its applicability [Watson 1997] are: computer aided
diagnosis systems for cancer detection [Golobardes et al. 2002]; knowledge discovery
frameworks for textual case-based reasoning [Patterson et al. 2008]; web-based ap-
plications [Bittencourt et al. 2009; Gasparetti et al. 2009]; or visual spacial problem
solvers [Jim Davies et al. 2008]. CBR has been successful in so many fields due to
its simple principle To solve a new problem based on the previously solved problems.
When using CBR, the need for knowledge acquisition can be limited to establishing
how to characterize the cases. CBR provides many advantages, the most important
in a MAS is that it is able to deal with multidimensional continuous spaces taking
profit of the similarity assumption –i.e., similar problems have similar solutions. The
proposal of this paper extends CBR by making it unsupervised: initially, it takes into
account heuristic knowledge and, as soon as it starts gaining its own experience, it
continuously revises it to refine its acquired knowledge. [Powell et al. 2005] have a
similar approach to tackle the lack of supervision in CBR. The main difference is that
they apply reinforcement learning to case elicitation.

7. DISCUSSION

So far we have provided positive results about the adaptation of regulations for a sim-
plified P2P data sharing scenario. In fact, as Section § 6 mentions, we focus on sce-
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narios where individual agent goals are loosely aligned with system goals. In our case,
individual peers aim at having the data and the system pursues to spread the da-
tum among all peers in the shortest time possible. We argue this ”goal-decoupling” is
general enough to include a wide range of complex and dynamic scenarios. We have
already provided the traffic scenario example, where car agents pursuit reaching its
destination as fast as possible whilst the traffic authority includes traffic rules for
avoiding car-accidents or traffic jams. Nevertheless, we can also think of other scenar-
ios such as: markets, where the rules of the market may require to be dynamically
adjusted to guarantee some global properties (e.g. avoid electricity shortage or price
peaks in an electricity market); robot-soccer competitions, where robot players focus
on scoring as much as possible and the referees include soccer rules to guarantee fair
play; or resource sharing scenarios, where agents try to maximize their resource usage
whereas the system tries to avoid resource extinction.
Regarding the P2P data sharing scenario, we are aware that we are taking an alter-

native approach to the state of the art in this domain (see §6). As previously stated,
we have chosen this case study to illustrate organisational adaptation in highly dy-
namic domains where system goals cannot be directly associated to individual tasks
and subtasks. Our proposed learning solution (and its two-level assisted architecture)
may seem too complex to deal with a problem that is usually handled locally. Neverthe-
less, it allows, by following a division of labour paradigm, to keep domain-level agents
focused on their local (i.e., individual) activities, whereas assistants at our meta-level
reason at a higher level of abstraction and are in charge of changing global regulations
at run-time. This abstraction and global regulation can be seen as a coarse-grained
adaptation as opposed to current P2P state of the art, which takes a more fine-grained
local approach. However, from an organisational point of view, it is much convenient
to have a few general norms that apply to all domain agents in the society rather than
having a large number of local regulations. Locality though is a desirable property that
is mostly accomplished in our organisational approach by means of a social structure.
Assistants in our distributed architecture establish that social structure based on da-
tum possession and communication latencies instead of by means of regulations (see
[Campos et al. 2011] for further details).
In our specific case study, coarseness is also induced by the parameter values that

the adapted regulations can possibly take. That is, NormFR has a ❧✐♠✐#❱FR parameter
defined as a natural number and, thus, ±1 is the smallest change that can be made
in the number of communications. Interestingly enough, this is somehow tuned when
some of the agents do not comply with the norm (i.e., agents in the population use
different values of ❧✐♠✐#❱FR ). Therefore, deviation in norm compliance has an effect
that amounts to having intermediate values in the norm. In fact, norm violation is
not the only source of instabilities in our scenario: network saturation is an agent
coordination problem that arises during the different phases of the sharing process
(in which the proportion of seeds and leeches in the system changes significantly).
Our CBR method manages to characterise in its case description these phases and
provides different regulations along the sharing process. It is able to do it so even in
situations where lowering ❧✐♠✐#❱FR does not imply saturation reduction. For instance,
if a peer with a large bandwidth serves data to peers with smaller bandwidths, it may
be worse to serve just a few peers, since there may be more probability to saturate
their individual links. Overall, despite the specific aspects of the P2P case study, this
work proposes an automatic mechanism that can successfully adapt organisational
regulations at run-time and that handles instabilities coming from a population of non-
compliant agents as well as from a dynamic environment where coordination problems
arise.
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Another issue that deserves some discussion is our lack of explicit consideration
of norm violations when proposing the adaptation of regulations. Punishment –and in
general, sanctions– have proven to be effective norm enforcement mechanisms [Becker
1968; Villatoro et al. 2011a]. Nevertheless, imposing sanctions has associated costs
that are often obviated but, in fact, they need to be taken into account. Therefore, we
claim it is possible not to incur in monitoring costs further than strictly necessary:
it is enough to measure system performance (i.e. in terms of peer completion) rather
than monitoring the norm compliance of every single action performed by each and
all peers in the sharing network. Thus, assistants perform norm adaptation based on
how the system is performing given current system dynamics. Obviously, these dy-
namics implicitly contain the effect of having a specific population of non-compliant
agents, but the adaptation decision process does not explicitly consider information
about norm-violations nor agent populations. Conversely, our assistants adapt regula-
tions so that they get parameter values that prove to work at specific situations (i.e.,
cases). Our experiments showed that for highly norm-deviant populations, assistants
adapted regulations so that they constrained peer behaviours in a more restrictive
manner. Nevertheless, this result may be dependant of the violation model that peers
adopt homogeneously, an thus, we leave as future work the study of heterogeneous
agent populations. Notice, though that, as in some social conventions, we consider
norms as coordination mechanisms and agents may decide to comply with them even in
the absence of norm enforcement mechanisms (penalties). In our P2P example, norms
help to avoid network saturation, and this benefits agent coordination.

Finally, since our work is based on the architecture introduced in [Campos et al.
2011], this paper has considered a single meta-level. Exploring whether further meta-
levels deliver benefits remains an issue for future research.

8. CONCLUSIONS

One of the main challenges in software engineering is to design and to develop mech-
anisms to endow software systems with self-adaptation capabilities, so that they con-
tinue to be effective under changing situations. Our research addresses this issue in
the context of organisation-centred multi-agent systems (OCMAS).

In this paper we have focused on endowing the organisation with an adaptation
mechanism that performs autonomous adaptation of its regulations to cope with
changing circumstances. To this end, we first have defined a formal model that allows
to encode regulations as norms. Next, we have proposed an adaptation mechanism for
regulations based on a variation of standard case-based reasoning. Specifically, this
variation proposes a complete CBR cycle with a novel knowledge representation in
the case base that includes a new evaluation component. In the literature, CBR has
been widely used in many application domains as it can deal with complex forms of
knowledge and generalises fast from few (even noisy) examples. With this approach,
OCMAS learns its adaptation policy at run-time, instead of being fixed at design-time.
Moreover, it is easily applicable to new OCMAS scenarios.

We test empirically the proposed adaptation mechanism, and the corresponding re-
sults show that the proposed CBR version is significantly better than non-adaptive ap-
proaches. As we want to apply our approach in open systems, we have also evaluated
the robustness of our proposal when some agents do not comply with organisational
regulations. Specifically, we have evaluated our approach with different percentages
of misbehaving agents that show different norm-deviant behaviors. Results show that
our adaptive approach is robust and it significantly outperforms non-adaptive ones. In
future studies, we plan to address other structural MAS issues, such as agents join-
ing and leaving the open MAS at any point or considering MAS architectures with
subsequent meta-level organisational layers.
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