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Gödel algebras with operators and their logics,
Tommaso Flaminio, Lluis Godo, and Ricardo O. Rodriguez . . . . . 44

Generalizations of MV algebras, ortholattices and Boolean algebras,
Afrodita Iorgulescu . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

An S5 Abelian Logic,
George Metcalfe and Olim Tuyt . . . . . . . . . . . . . . . . . . . . . 51

Dual Logic of Rational Agent and its Modal Extensions,
Yaroslav Petrukhin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Combining probability distribution functions and membership functions
using exponential operators,
Mircea Sularia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Tackling Spectra Problems via Duality: Two Concrete Examples,
Diego Valota . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3 Associated Event 67

Aristotle’s Sea Battle. The Common Root of Modal and Many-Valued Logic,
Mircea Dumitru . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Two New Solutions to Chisholm’s Paradox,
Graeme Forbes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Evans’ Argument and Vague Objects,
Graham Priest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



On paraconsistent extensions of
degree-preserving Gödel logics with an
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In this paper we study paraconsistent logics arising from Gödel fuzzy logic expanded
with an involutive negation G∼, introduced in [4], as well as from its finite-valued
extensions Gn∼. It is well-known [2] that Gödel logic G coincides with its degree-
preserving companion G≤ (since G has the deduction-detachment theorem), but this
is not the case for G∼. In fact, G∼ and G≤

∼ are different logics, and moreover, while
G≤

∼ is explosive w.r.t. Gödel negation ¬, it is paraconsistent w.r.t. the involutive
negation ∼.
Among the logics between G≤

∼ and classical logic (CPL) there are the ones defined by
matrices ⟨A, F ⟩ where A is a G∼-algebra and F is a lattice filter of A. In particular
we consider the logics over [0, 1]G∼ with order filters

G[a
∼ = ⟨[0, 1]G∼ , F[a⟩ and G(a

∼ = ⟨[0, 1]G∼ , F(a⟩

where F[a = {x ∈ [0, 1] : x ≥ a} for all a ∈ (0, 1], and F(a = {x ∈ [0, 1] : x > a} for
all a ∈ [0, 1). We prove that there are only three different ∼-paraconsistent logics
among them.

Proposition 1. Among the logics {G[a
∼}a∈(0,1] and {G(a

∼ }a∈[0,1), there are only three

different ∼-paraconsistent logics: G[a
∼ for any a ∈ (0, 1/2), G[1/2

∼ , and G(0
∼ .

In the second part of the paper we consider the finite-valued Gödel logics with an
involutive negation Gn∼ and their degree-preserving counterparts G≤

n∼. Actually,
it is easy to check that G3∼ and G4∼ are respectively logically equivalent to the
3-valued and 4-valued "Lukasiewicz logics. As in the [0, 1]-valued case, G≤

n∼ are ∼-
paraconsistent and thus it makes sense to study the paraconsistent logics between
G≤

n∼ and CPL. In fact, using a similar argument that in [3], it can be shown that any
logic L between G≤

n∼ and CPL is defined by a family of matrices ⟨A, F ⟩ where A is
a finite direct product of finite Gn∼-chains and F is a lattice filter of A compatible
with L.
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In particular, we study which ones are ideal and saturated paraconsistent. Roughly
speaking, we call a logic L saturated paraconsistent when it is maximally paraconsis-
tent,1 while a logic is called ideal paraconsistent in [1] when it is also maximal w.r.t.
to classical logic CPL (with the same signature).
Before introducing the main result related to this question, let us consider three
particular matrix logics:

• J3, defined by the matrix ⟨VG3∼, {1/2, 1}⟩

• J4, defined by the matrix ⟨VG4∼, {1/3, 2/3, 1}⟩

• J3 × J4, defined by the matrix ⟨VG3∼ ×VG4∼, {1/2, 1}× {1/3, 2/3, 1}⟩

where VGn∼ is the Gn∼-algebra over the universe {0, 1/(n− 1), . . . , 1}.

Theorem 1. Let n be an integer number such that n > 4 and let L be an extension
of G≤

n∼.

1. If n is an even number, then L is saturated ∼-paraconsistent iff L is ideal
∼-paraconsistent iff L = J4.

2. If n is an odd number, then L is saturated ∼-paraconsistent iff L = J3, L = J4

or L = J3 × J4.

3. If n is an odd number, then L is ideal ∼-paraconsistent iff L = J3 or L = J4.
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