ManyVal 2019

Book of Abstracts

Bucharest, Romania November 1-3, 2019

Table of Contents

1	Invited speakers	1
	The spectrum problem for Abelian l-groups and MV-algebras, A. Di Nola, G. Lenzi	3
	There Are Many Strict/Tolerant Logics, Melvin Fitting	4
	Stone Duality of Relations, Alexander Kurz, M. Andrew Moshier, and Achim Jung	8
	One-Variable Fragments of First-Order Many-Valued Logics, George Metcalfe	11
	Computing on AF C*-algebras, Daniele Mundici	12
	On Automated Reasoning in Classes of Algebras Related to Non-Classical Logics, Viorica Sofranie-Stokkermans	13
2	Contributed Talks	17
	Strictly join irreducible varieties of BL-algebras, Stefano Aguzzoli and Matteo Bianchi	19
	Gödel-Dummett logic, the category of forests, and topoi, Stefano Aguzzoli, Pietro Codara, and Vincenzo Marra	21
	A categorical duality for finite semilinear Hilbert algebras, Stefano Aguzzoli and Brunella Gerla	23
	Rosser's undecidability theorem for very weak (fuzzy) arithmetics, Guillermo Badia, Petr Cintula, and Andrew Tedder	25
	Type omission and saturation in models of fuzzy logics, Guillermo Badia and Carles Noguera	28
	A many-valued semantics for feasible knowledge, Libor Běhounek	31
	Sure-wins under coherence: geometry, MV-algebras and state theory, Stefano Bonzio, Tommaso Flaminio, and Paolo Galeazzi	34
	On paraconsistent extensions of degree-preserving Gödel logics with an involution,	
	Marcelo E. Coniglio, Francesc Esteva, Joan Gispert and Lluis Godo	37

A fuzzy semantic model for multi-agent probabilistic reasoning, Martina Daňková and Libor Běhounek	39
Stochastic processes in Riesz MV-algebras, Antonio Di Nola, Anatolij Dvurečenskij, Serafina Lapenta	42
Gödel algebras with operators and their logics, Tommaso Flaminio, Lluis Godo, and Ricardo O. Rodriguez	44
Generalizations of MV algebras, ortholattices and Boolean algebras, Afrodita Iorgulescu	46
An S5 Abelian Logic, George Metcalfe and Olim Tuyt	51
Dual Logic of Rational Agent and its Modal Extensions, Yaroslav Petrukhin	53
Combining probability distribution functions and membership functions using exponential operators, Mincoo Sularia	57
Tackling Spectra Problems via Duality: Two Concrete Examples,	97
Diego Valota	64

3 Associated Event

Aristotle's Sea Battle. The Common Root of Modal and Many-Valued Logic, Mircea Dumitru	69
Two New Solutions to Chisholm's Paradox, Graeme Forbes	71
Evans' Argument and Vague Objects, Graham Priest	73

67

On paraconsistent extensions of degree-preserving Gödel logics with an involution

Marcelo E. Coniglio¹, Francesc Esteva², Joan Gispert³ and Lluis Godo²

 ¹ Dept. of Philosophy - IFCH and Centre for Logic, Epistemology and the History of Science, University of Campinas, Brazil coniglio@cle.unicamp.br
² Artificial Intelligence Research Institute (IIIA) - CSIC, Barcelona, Spain {esteva,godo}@iiia.csic.es
³ Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Spain jgispertb@ub.edu

In this paper we study paraconsistent logics arising from Gödel fuzzy logic expanded with an involutive negation G_{\sim} , introduced in [4], as well as from its finite-valued extensions $G_{n\sim}$. It is well-known [2] that Gödel logic G coincides with its degreepreserving companion G^{\leq} (since G has the deduction-detachment theorem), but this is not the case for G_{\sim} . In fact, G_{\sim} and G_{\sim}^{\leq} are different logics, and moreover, while G_{\sim}^{\leq} is explosive w.r.t. Gödel negation \neg , it is paraconsistent w.r.t. the involutive negation \sim .

Among the logics between G_{\sim}^{\leq} and classical logic (CPL) there are the ones defined by matrices $\langle \mathbf{A}, F \rangle$ where \mathbf{A} is a G_{\sim} -algebra and F is a lattice filter of \mathbf{A} . In particular we consider the logics over $[0, 1]_{G_{\sim}}$ with order filters

 $\mathbf{G}^{[a}_{\sim}=\langle [0,1]_{G_{\sim}},F_{[a}\rangle \text{ and } \mathbf{G}^{(a}_{\sim}=\langle [0,1]_{G_{\sim}},F_{(a}\rangle$

where $F_{[a]} = \{x \in [0,1] : x \ge a\}$ for all $a \in (0,1]$, and $F_{(a]} = \{x \in [0,1] : x > a\}$ for all $a \in [0,1]$. We prove that there are only three different ~-paraconsistent logics among them.

Proposition 1. Among the logics $\{G^{[a]}_{\sim}\}_{a \in \{0,1\}}$ and $\{G^{(a)}_{\sim}\}_{a \in [0,1)}$, there are only three different ~-paraconsistent logics: $G^{[a]}_{\sim}$ for any $a \in (0, 1/2)$, $G^{[1/2]}_{\sim}$, and $G^{(0)}_{\sim}$.

In the second part of the paper we consider the finite-valued Gödel logics with an involutive negation $G_{n\sim}$ and their degree-preserving counterparts $G_{n\sim}^{\leq}$. Actually, it is easy to check that $G_{3\sim}$ and $G_{4\sim}$ are respectively logically equivalent to the 3-valued and 4-valued Lukasiewicz logics. As in the [0, 1]-valued case, $G_{n\sim}^{\leq}$ are \sim -paraconsistent and thus it makes sense to study the paraconsistent logics between $G_{n\sim}^{\leq}$ and CPL. In fact, using a similar argument that in [3], it can be shown that any logic L between $G_{n\sim}^{\leq}$ and CPL is defined by a family of matrices $\langle \mathbf{A}, F \rangle$ where \mathbf{A} is a finite direct product of finite $G_{n\sim}$ -chains and F is a lattice filter of \mathbf{A} compatible with L.

In particular, we study which ones are ideal and saturated paraconsistent. Roughly speaking, we call a logic L saturated paraconsistent when it is maximally paraconsistent,¹ while a logic is called *ideal paraconsistent* in [1] when it is also maximal w.r.t. to classical logic CPL (with the same signature).

Before introducing the main result related to this question, let us consider three particular matrix logics:

- J_3 , defined by the matrix $\langle VG_{3\sim}, \{1/2, 1\} \rangle$
- J_4 , defined by the matrix $\langle \mathbf{VG}_{4\sim}, \{1/3, 2/3, 1\} \rangle$
- $J_3 \times J_4$, defined by the matrix $\langle \mathbf{VG}_{3\sim} \times \mathbf{VG}_{4\sim}, \{1/2, 1\} \times \{1/3, 2/3, 1\} \rangle$

where $\mathbf{VG}_{n\sim}$ is the $\mathbf{G}_{n\sim}$ -algebra over the universe $\{0, 1/(n-1), \ldots, 1\}$.

Theorem 1. Let n be an integer number such that n > 4 and let L be an extension of $G_{n\sim}^{\leq}$.

- 1. If n is an even number, then L is saturated \sim -paraconsistent iff L is ideal \sim -paraconsistent iff $L = J_4$.
- 2. If n is an odd number, then L is saturated \sim -paraconsistent iff $L = J_3$, $L = J_4$ or $L = J_3 \times J_4$.
- 3. If n is an odd number, then L is ideal ~-paraconsistent iff $L = J_3$ or $L = J_4$.

Acknowledgments Esteva and Godo acknowledge partial support by the Spanish FEDER/MINECO project TIN2015- 71799-C2-1-P (RASO). J. Gispert acknowledges partial support by the Spanish MINECO/FEDER projects MTM2016-74892 and MDM-2014-044, and grant 2017-SGR-95 of Generalitat de Catalunya.

References

- O. Arieli, A. Avron, and A. Zamansky. Ideal paraconsistent logics. *Studia Logica*, 99(1-3):31–60, 2011.
- [2] F. Bou, F. Esteva, J. M. Font, A. Gil, L. Godo, A. Torrens and V. Verdú. Logics preserving degrees of truth from varieties of residuated lattices. *Journal of Logic* and Computation, 19(6):1031–1069, 2009.
- [3] M. E. Coniglio, F. Esteva, J. Gispert, L. Godo. Maximality in finite-valued Lukasiewicz Logics defined by order filters *Journal of Logic and Computation* 29(1):125–156, 2019.
- [4] F. Esteva, L. Godo, P. Hájek, M.Navara. Residuated fuzzy logics with an involutive negation. Archive for Mathematical Logic, 39:103–124, 2000.

¹That is, when any proper extension is no longer paraconsistent.