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Abstract. In the early stages of an emergency, information extracted
from social media can support crisis response with evidence-based con-
tent. In order to capture this evidence, the events of interest must be first
promptly detected. An automated detection system is able to activate
other tasks, such as preemptive data processing for extracting event-
related information. In this paper, we extend the human-in-the-loop ap-
proach in our previous work, TriggerCit, with a machine-learning-based
event detection system trained on word count time series and coupled
with an automated lexicon building algorithm. We design this framework
in a language-agnostic fashion. In this way, the system can be deployed
to any language without substantial effort. We evaluate the capacity of
the proposed work against authoritative flood data for Nepal recorded
over two years.

Keywords: Social Media · Disaster Management · Early Alerting.

1 Introduction

The use of social media as a data source during emergencies has been largely
investigated in the last decade [6]. Social media are often used to document
ongoing events, and can provide real-time information in the form of text and
media. As a consequence, social media platforms can deliver situational aware-
ness and support an effective response to large-scale disaster events, helping to
mitigate losses. In order to be valuable, data extracted from social media must
be as timely and accurate as possible [20]. In our previous work [3], we focused
on the automatic derivation of qualified and geolocated evidence to be delivered
to responding organizations. In this work, to complement and expand previous
results, we specifically focus on the automatic detection of events. A prompt
event detection mechanism can be used to trigger or preempt tasks related to
emergencies.
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The guiding idea of the present work is to build a tool that, with minimal su-
pervision, can detect the onset of emergency events in near-real-time. The input
data for such tool are word mentions on social media. This objective is achieved
through a data-centered approach, aimed at predicting if an emergency event is
ongoing or imminent. A set of keywords linked to the onsets of a certain class
of events is retrieved. Then, a predictor making use of the mentions of these
keywords over time is built. Both steps are performed automatically and offline,
prior to the events. Together with event identification, we also evaluate how to
derive an indication of its magnitude, by estimating the number of recent in-
cidents. This approach is meant to be timely, lightweight and general purpose.
Multilingual support is achieved by designing a language-based approach, whose
construction is both automated and language-independent, so that it can repli-
cated with ease on any language. This approach, as a byproduct, also enhances
the recall of the system, since it produces a language-specific lexicon tailored to
a class of events. This characteristic is also critical for obtaining representative
results in subsequently activated stages, when social media posts are crawled
and inspected searching for informative evidence.

The paper is structured as follows. Related work is framed in Section 2. The
data and methods utilized are documented in Section 3, while Section 4 presents
the experimental results. Discussion is proposed in Section 5, and future work is
outlined in Section 6.

2 Related work

Emergency event detection can be performed using direct sensor data, remote
sensor data or indirect data. Sensor-based approaches are possible for a number
of emergency events. In the case of floods, water level data and rainfall intensity
are usually measured. While direct-measure approaches can be accurate, their
deployment is rather costly, and poses geographical coverage issues. For exam-
ple, survey data suggests that the majority of river basins are equipped with
insufficient gauging stations for observing water level, streamflow and rainfall
[16].

Remote observation conducted through satellite imaging and active/passive
sensing has been widely adopted for flood monitoring and tracking. Approaches
based on remote sensing often exploit machine learning capabilities for task au-
tomation [12]. For example, systems like FloodAI [13] utilize Synthetic Aperture
Radar (SAR) imagery and machine learning to perform remote flood analysis.
Among the main limitations of this type of approaches there is their computa-
tional complexity, which therefore requires delimiting the area of interest before
their application, and therefore require some other early detection mechanism
in order to be activated.

The use of lexicons in social media emergency management has been investi-
gated in [15]. Multilingual lexicons usually aggregate keywords of interest from
a number of supported languages, for example 60 in [5] and 32 in [14].
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The use of indirect signals extracted from social media, in particular Twitter,
for event detection have been discussed in many scenarios. For example, early
warning systems for earthquake events have been extensively studied [17, 2]. An
interesting solution for flood event detection using exclusively social media data
is provided in [4]. The authors leverage the arrival time of flood-related tweets
using a fixed dictionary of terms for social media crawling. The viability of a
global flood monitoring system with self-activation capabilities has been explored
in [11], suggesting recall issues when the approach is purely based on social media
data. Additionally, the advantages of combining sensor and social media data for
early warning purposes are analyzed in [18], while the potential of integrating
remote sensing and social media specifically for early flood detection is explored
in [8].

In the present work, we combine a self-building, dictionary-based approach
with a machine learning setup, and apply it to flood event detection. Our
methodology is agnostic to both the specific kind of event and the language of
choice, making it suitable for a multi-language approach and adaptable to other
emergency events. To the best of our knowledge, such end-to-end approach to
event detection is novel. This study complements previous work described in [3],
implementing part of the future work envisioned therein towards learning search
keywords dictionaries and leveraging machine learning for event detection. Neu-
ral network approaches for the supervised learning setups proposed in this paper
draw inspiration from the review work in [7] and in particular the fully convo-
lutional network proposed in [21].

3 Data and methodology

The driving goal for the current work is building a language-centered system
that can detect events using social media data for early alerting purposes. From
a broad perspective, two main ingredients are needed to build such a system with
a data-driven approach: signal data and a ground truth, which together consti-
tute the training data for our system. Signal data is, in this case, a representation
of reality coming from social media. To this extent, we use a minimal represen-
tation: the count of the usage of selected words over time. As ground truth, we
can use historical validation data on past events, as described in Section 3.1.
Once a proper training set is assembled, supervised learning approaches for the
automated detection of event onsets can be assessed. We give a description of
the approaches we have evaluated in Section 3.3.

Regarding the signal data, consisting of word counts, the main focus is to
derive automatically a dictionary of words that are significant to events of in-
terest. If the system has to support multiple languages, and the queries to social
media are to be posed as textual queries3, a sensible solution is to use language-
centered word dictionaries. For the sake of automation, the burden of building
these dictionaries should also be delegated to machines as much as possible. The
3 Searching on social media is usually done with keywords, in combination with logical

and advanced operators.
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automatic construction of event-specific queries counterbalances the combined
lack of language and domain-specific knowledge, which is almost inevitable in a
general purpose system. We describe our approach for dictionary derivation in
Section 3.2.

The overall approach is illustrated in Fig. 1. Starting from a small set of
terms, the initial dictionary is expanded using both offline and online methods
informed by the ground truth. Once the dictionary is set, the time series cor-
responding to each keyword count are fed to a supervised learning algorithm,
together with the ground truth. The resulting model is able to perform predic-
tions on unseen data and detect an ongoing event.

Fig. 1: Overall schematic of our approach to dictionary construction and model
fitting.

3.1 Data and ground truth

We use the counts of keywords over time, extracted from a social media plat-
form, as a signal describing the reality. The experiments performed are based
on Twitter data. This approach is grounded on the assumption that some words
are remarkably used when a particular event happens. Words that show this
behaviour are said to be “correlated”, according to some quantitative measure,
with the event type of interest. Single keywords are a simple feature compared to
the complexity of natural languages, yet they are at the core of the queries that
can be posed to social media and, for practical purposes, keyword dictionaries
are frequently exploited in emergency management applications on social media.

Utilizing the word count brings about some advantages. First of all, it is a
conveniently compact feature consisting in a list of integers. This feature can be
easily computed. Twitter API also exposes a v2 Tweet counts endpoint, which



Learning early detection of emergencies from social media 5

returns the requested counts with configurable granularity, without returning
actual posts. This option makes data interchange and processing negligible. Full
archive search required for training is available with the Academic Research ac-
cess; on the other hand, access to recent data –which is suitable for real-time
operation– is generally available. Data can be returned at different time gran-
ularities depending on application needs. We mainly experimented with counts
aggregated at hourly level and windows of 7 days, which coincide with Twitter’s
“recent search” visibility. An example depiction of the resulting word counts is
shown in Fig. 2.
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आँधी (Storm)

Fig. 2: Example of word count time series from Twitter.

When some event occurs, keywords related to the ongoing event are not al-
ways related with other events of the same kind. An obvious example is mentions
of locations. In this work, we focus on the derivation of general purpose dictio-
naries, without investigating approaches aimed at dictionary adaptation to a
single, currently ongoing event, such as the one proposed in [1].

Regarding ground truth data, we mainly experimented with data extracted
from the Global Disaster Alert and Coordination System4 (GDACS) [19], which
is designed to alert the international community during sudden-onset disasters.
Since our case study is based on Nepal, we focused on the 12 events reported
over the last two years in the country.5 As the investigation developed, we also
considered the data sources reported in [10]. Some of the listed datasets were
not applicable to this study. The comparison with available sources highlighted
a data quality and definition issue that is discussed in Section 4 and can be
observed in Fig. 10. Moreover, we also used incident reports from the Nepal
Disaster Risk Reduction Portal6, both for comparison and training purposes.

4 https://www.gdacs.org
5 We did not use previous reports since, ostensibly, the data collection process changed

at some point.
6 http://drrportal.gov.np/
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Fig. 3: GDACS time ranges for flood events in Nepal.

3.2 Automatic dictionary building

In the given context, a dictionary building method should have some desirable
characteristics. It should be as automatic as possible, in order to be replicable on
different languages. It should also rely on widely available resources. Finally, it
should leverage accessible ground truth to assess the usefulness of the candidate
keywords. In this section we detail how to achieve such characteristics. The final
goal is to obtain a representative set of keywords that can guarantee a high
recall, with reasonable specificity, when used to query a social media platform.

Dictionary expansion An initial dictionary is created with a small number of
“seed” keywords. These keywords are generically related to the event of interest
(e.g., “flood” in the desired language). Starting from these few keywords, the
first step is to expand the dictionary with candidate keywords that are related
to the initial ones. Such relatedness can originate from different sources, such
as language models (e.g., bigram models) that are usually available for most
languages, or even search engine data such as Google Trends data7. We choose
to use non-contextual, language-specific word embeddings for the expansion,
since they roughly capture semantic proximity and they are generally available
for most languages. For each seed keyword in the initial set, we add the top N
most similar words to the set, and then perform the same expansion a second
time. A visual representation of the expansion process is given in Fig. 4.

We also want to filter out obvious outliers. To this end, a light manual filtering
is performed on the candidate keywords, using automatic translation and an
interactive dashboard.

Correlation with event onsets Given a set of keywords, we want to retain the
most significant candidates. To compute a measure of significance, we use Pear-
son and Kendall coefficients. We compute these coefficients between time-lagged
shifts of each word count vector and the time series of the event onsets. We take
care of shifting the time series in one direction only, in order to avoid measuring

7 https://trends.google.com/
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Fig. 4: Offline expansion of the seed dictionary using Nepali word embeddings.

inverse causality between events and words. For each word, we average the maxi-
mum coefficients. We then retain only positively correlated candidates. Measures
of correlation calculated in this way are usually low. There are a number of rea-
sons for this. Some are structural, in the sense that we are looking for keywords
correlated with the events onset, while they could instead be correlated with the
overall unfolding of the events. Some others are due to the nature of the events,
which is variable and unpredictable. An emblematic example is provided in Fig.
5. The keyword “landslide” shows distinctive spikes in correspondence with some
of the onsets, while in some others the spike is delayed or missing altogether.
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Fig. 5: Normalized hourly count for “landslide” and GDACS flood events.

Data sampling Selected keywords, seemingly correlated with the events onsets,
are then used to build a query consisting in the logical OR (∨) of all the keywords.
We use this query to download matching posts in correspondence with the onset
days, namely positive days. In this way, unseen keywords originating from online
data now become accessible. However, it would be impractical to get all the
historical counts for all the words to compute the correlation as described. A
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different strategy is then used. We also sample tweets from days that are far
from the events by a given interval before and after. We call these days negative
days. This second query is composed by the OR of keywords randomly sampled
from common terms in the language of interest.8 The time masking used for
positive and negative sampling is illustrated in Fig. 6. All downloaded tweets
are then projected to a vector space defined by the keywords witnessed at least
K times in the samples coming from the positive days. Then, the χ2 statistic is
used to rank the most significant terms. The top ones are added to the dictionary
if they also achieve a significant correlation with the event onsets.

Jul 2020 Oct 2020 Jan 2021 Apr 2021 Jul 2021 Oct 2021

negative

onset

Fig. 6: Event onsets from GDACS, and time windows far from the events.

A validation dashboard, visible in Fig. 7, is finally used to filter out spurious
candidates, such as location names, which are event-dependent.

Fig. 7: Manual dashboard for keyword filtering.

The whole procedure can be optionally reiterated, since the OR query changes
when the dictionary contents change, refining the retrieved terms up to conver-
gence.

3.3 Supervised learning
Once the dictionary is set, the time series for the selected keywords are used as
input data for a supervised classification problem. We first evaluated a classifica-
tion setup, using GDACS data as a ground truth. We then studied a regression
setup using incident data related to our case study.

Features and preprocessing For each keyword in the dictionary, we obtained
a dense vector of counts at a requested time granularity. We mostly experi-
mented with hourly data. Some machine learning algorithms work better with
8 This is mandatory on Twitter since a query consisting of only stopwords is rejected.
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a proper scaling of the input features. Also, different data preprocessing choices
could influence the final performance. Different classical feature preprocessing
are evaluated, such as min-max scaling, Z-score normalization and median-IQR
scaling. For each experiment, the selected scaling is applied individually to each
word’s time series. Additionally, quantile-based signal quantization is applied to
the scaled time series. The choice of the preprocessing is deferred to the experi-
mental stage.

Classification setup The first investigated setup is a classification task. In this
setup, each vector is related to a specific time index (e.g., an hour of a specific
day) and contains normalized and quantized word count data over the past week.
First, we create a vector for each index within the time window of three days
before and two days after an onset (both dates inclusive). These vectors form
the positive cases. We expect positive cases to encompass the data of anticipated
events (e.g., rains) and early reactions. We do not take into account the remaining
dates during the events (i.e., third day after the onset and onwards) since we are
interested in alerting. Then, we create vectors belonging to time windows that
are “far from the events”, as seen in Fig. 6, and these vectors form the negative
cases.

Vectors indexed by the same time are grouped, so that the resulting input
data is a matrix obtained concatenating count vectors of equal length, corre-
sponding to a multivariate time series. Since the relations between the magni-
tudes of the time series are lost during preprocessing, a vector containing mean,
standard deviation, maximum and minimum is computed over the same time
range on the raw counts. For each time index, the inputs for the classifier are
a n × t matrix plus a supplementary n × 4 vector, where n is the dictionary
cardinality and t is the size of the time window.

We assign class weights inversely proportional to the number of negative and
positive instances. Evaluation of the models is based on standard classification
metrics, namely, precision, recall, F1 score and AUC.

The base model for the experiments was the Fully Convolutional Network
(FCN) approach proposed by [21]. An exploration of the effect of varying the
number of layers, units, kernel size was conducted.9 Values for learning rate
(LR), LR reduction, batch size and early stopping were calibrated during the
experiments. Dropout layers were added at the first layer and after the global av-
erage pooling layer. Also, the ResNet architecture proposed by the same authors
has been tested. Experiments are performed in a leave-one-event out fashion, re-
peating each experiment 10 times in order to average stochastic effects. Adam [9]
is used for gradient descent optimization, and categorical cross-entropy as a loss
function. Validation accuracy is used as a metric for early stopping. The valida-
tion loss was computed on a random 33% of the training cases, for each fold.

Regression setup Following experimental observations on the classification
results, we applied an analogous deep neural network setup to a regression task to
9 By mixing manual exploration and automatic exploration using KerasTuner.



10 C. Bono et al.

estimate the occurrence and impact of flood incidents. Incident count data for the
region of interest are aggregated by day, regardless of the specific location within
that region. A multi-headed network setup for predicting life and monetary losses
has also been evaluated. In the regression setup, the full data is fed to the
network, without masking days. This is motivated by the nature of the ground
truth data. As for the classification case, possible anticipation and delay effects
between word use and actual events have to be accounted for. Therefore, we
chose to replace each data label by a 72-hour arithmetic average, centered in
each point, similarly to the classification setup. Mean squared error (MSE) is
used as evaluation metric.

Experiments are performed in a 5-fold cross validation fashion, where each
fold contains data points that are contiguous in time. Again, each experiment
is performed 10 times and the results are averaged. Hyperparameter choices are
deferred to experimentation. MSE is used as loss function and evaluation metric.
The validation loss is computed on the last 50% of the training cases, for each
fold.

4 Experimental results

We first analyzed the classification setup choosing flood events in Nepal as a case
study. This is done in continuity with our previous work, in which a flood event
in Nepal was analyzed [3]. We had selected this event since the United Nations
Satellite Centre (UNOSAT)10 was activated to support it. We generalized the
validation of our models to all recent flood events in Nepal. Moreover, since
Twitter penetration rate is low in Nepal, it also poses a challenging test. Based
on the results, we then analyzed the regression setup using the same input data
and flood-related incident data reported by the Government of Nepal as ground
truth. In both cases, roughly the last two years of data were analyzed.

4.1 Data gathering

We applied the procedure described in Section 3, starting from two flood-related
Nepali words (बाढʍ and बाɞढ). Publicly available word embeddings for Nepali11

were used, adding N = 10 similar terms per word and performing the expansion
two times. After term expansion, manual filtering, and tweet data download-
ing12 in order to get real-world keywords, we conducted the correlation analysis
described in Subection 3.2 which led to 41 Nepali words that where related to
the flood event onsets extracted from GDACS. For each data point, indexed by
each round hour in the time series, a one-week count time series was extracted
for each word, leading to a 16632× 41× 168 input matrix, with each data point
consisting in a multivariate time series represented by a 41 × 168 matrix. The
10 https://unitar.org/sustainable-development-goals/united-nations-satellite-centre-

UNOSAT
11 https://github.com/rabindralamsal/Word2Vec-Embeddings-for-Nepali-Language
12 Approximately 5 million tweets sampled from positive and negative days.
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supplementary 41× 4 vector containing descriptive statistics was computed for
each time window and added to the corresponding multivariate time series.

4.2 Preprocessing and hyperparameter selection
To select the most suitable configuration for feature preprocessing, we repeated
the classification experiments averaging the output probabilities over 10 runs for
each configuration. Output probabilities correspond to the softmax probabilities
of being a positive case. In Tab. 1 the Brier score for the average outputs is
reported. Based on this analysis, we chose to use MinMax preprocessing and 200
quantization levels.

Normalisation type Brier avg Brier stdev
None 0.114 0.003
MinMax 0.069 0.003
MinMax (qcut 100) 0.087 0.002
MinMax (qcut 200) 0.068 0.003
MinMax (qcut 300) 0.070 0.003
Standard 0.083 0.002
Standard (qcut 100) 0.098 0.006
Standard (qcut 200) 0.100 0.005
Standard (qcut 300) 0.083 0.003

Table 1: Preprocessing selection with Brier score, average scores over 10 runs.

Hyperparameter tuning for the classification setup was done through Keras-
Tuner and manual testing, focusing on networks with few layers and units since
bigger network configurations showed overfitting behaviour. In Fig. 8, an explo-
ration of the number of units per layer and kernel size is reported, focusing on
the regression setup. While such exploration is limited by the fact that only a
parameter at a time is studied, the analysis shows that the loss is not strongly
influenced by the parameter itself, up to some range. This is confirmed by the
fact that further random KerasTuner exploration did not lead to models that
achieve better performances.

4.3 Results with classification
Relatively small networks show a reasonable performance in the classification
task. For reference, the output probabilities for a 2-layer, 32 units network are
reported in Fig. 9. Using 0.2 as a probability threshold for the output layer, this
network achieves a 94% precision and a 74% recall. Magnitude-related statistics
did not prove to be useful and were discarded from input.

Recall is computed over 1,728 positive cases, evenly distributed over 12
events. Focusing on the ability to intercept the events, such model looks to
be able to get all the available event onsets, at the cost of some false positives.
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Fig. 8: Response to number of units (u) per layer and kernel size (k) for 1D
convolution.
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Fig. 9: Probability outputs (red) for event onsets of a 2-layer, 32 units CNN. Blue
lines show event days. Dashed line marks the threshold for positive prediction.

4.4 Reference issue

However, the output probability is not evenly distributed over the output events.
Fig. 9 highlights a different prediction behaviour between older and newer events.
After evaluating an extensive number of network configurations with no signif-
icant enhancement, we conducted a comparative analysis of available ground
truths for flood events in Nepal, using accessible datasets listed in [10].13 In
particular, we compared GDACS data with EM-DAT14 and the Global Active
Archive of Large Flood Events15. As shown in Fig. 10, the event onsets reported
by different data sources are inconsistent.

In an effort to understand the relation between these ground truths, we also
compared event data with incident data coming from the Nepal Disaster Risk
Reduction Portal (NDRRP). As it can be appreciated in Fig. 11, when the
classifier is properly fitting the data it is able to predict days with actual incidents
as positive cases, as opposed to days marked as onsets.

13 We did not use Global Flood Monitor data described in [4] since it does not contain
certified data, and we were not able to obtain NatCatSERVICE data from Munich
Re.

14 The International Disaster database, https://www.emdat.be/
15 https://floodobservatory.colorado.edu/Archives/index.html
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Fig. 10: Comparison between GDACS, EM-DAT, Floodarchive and NDRRP
event data.

4.5 Results with regression

The previous observations on classification results suggested that incident data
could be a reliable target variable. Since incident data is not a binary value,
the learning setup was changed to a regression. In Fig. 12 the prediction of the
normalized number of events is reported. The predictions are aggregated from a
5-fold cross-validation setup and are made on unseen data. The corresponding
MSE is 0.141.

The experiments with the ResNet network, configured with a comparable
number of units and kernel size, did not enhance the results. Moreover, the
ResNet approach was about 20 times slower to train in our experiments. Exper-
iments with supplementary network heads for learning life and monetary losses
as additional dependent variables –together with the incident count– did not
lead to better performances with respect to the one-headed network.

5 Discussion and limitations

Both the classification and regression setup showed usable results in terms of
generalization capabilities and overall performance metrics. Since the approach
is very compact and the computation negligible, the system can be consid-
ered ready for an experimental deployment. No particular functional or non-
functional constraints are given, apart from the input vectors being related to
the last week of data.
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Fig. 11: Classifier generalization on the last flood event reported by GDACS.
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Fig. 12: 5-fold cross-validation results for incident count regression.

While the performances of the classifier setup are fit for event detection,
the observations presented about the ground truth make the use of the result-
ing model less promising. Specifically, even if the events themselves are correctly
identified, we observe variation in the probability output of the network depend-
ing on the event, partly due to the nature of the ground truth itself. Notwith-
standing this limitation, the generalization capability of the model appear to be
good.

In the regression setup, under certain circumstances the peaks of the pre-
dicted values show a time lag with respect to the reference values. Since the
effect only happens for some events, it is more likely to be a real-world tail-
ing effect rather than a byproduct of the chosen preprocessing. This does not
invalidate the functionality of the approach since, even if the predicted peaks
are possibly shifted, the slope and the absolute value of the prediction are still
satisfactory as a trigger. Given the nature of the results on the negative regions
(Fig. 9 and 12), a postprocessing technique to mitigate false positives could be
necessary, especially in highly time-sensitive applications. It is also worth notic-
ing that, in the context of emergency alerting, the cost of false positives is usually
negligible compared to false negatives.

Moreover, since the dictionary-building phase has been consistently tested,
we believe that applying this approach to other languages is practicable with
no particular effort. However, regarding the regression setup, a suitable ground
truth should be obtained for the regions of interest. While the proposed models
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appear to be able to generalize well, the availability of a comprehensive ground
truth, applicable to different regions of the world, has been the major hindrance
to the current study.

6 Future work

We plan to extensively validate our approach on more languages and countries
with different characteristics. We also plan to extend the number and the na-
ture of the considered ground truths. Since the ground truth data we used did
not show adequate coherence nor completeness, further consideration on how to
merge signals –also possibly coming from different domains– has to be put in
place. An additional interest is to take into account signals extracted from social
media by other automated tools, such as emergency-related classifiers, in order
to introduce additional evidence. Also, data fusion techniques could be utilized
to evaluate the effect of adding social media data to sensor or forecast data. A
natural extension to the proposed network architecture could be to work with
separate data sources and concatenate the results before the final dense layer.

Finally, an adaptive extension of the approach to dictionary building de-
scribed in Section 3.2 is foreseen. This approach would be aimed at adaptively
updating the dictionary while a newly detected event unfolds, thus enhancing
both precision and recall of the subsequent data processing pipeline.
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