
Efficient Object Pixel-Level Categorization using
Bag of Features

David Aldavert1, Arnau Ramisa2, Ricardo Toledo1, and Ramon Lopez de
Mantaras2

1 Computer Vision Center (CVC)
Dept. Ciències de la Computació

Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
{aldavert,ricard}@cvc.uab.cat,

2 Artificial Intelligence Research Institute (IIIA-CSIC)
Campus de la UAB, 08193, Bellaterra, Spain

{aramisa,mantaras}@iiia.csic.es

Abstract. In this paper we present a pixel-level object categorization
method suitable to be applied under real-time constraints. Since pixels
are categorized using a bag of features scheme, the major bottleneck of
such an approach would be the feature pooling in local histograms of
visual words. Therefore, we propose to bypass this time-consuming step
and directly obtain the score of a linear Support Vector Machine classi-
fier. This is achieved by creating an integral image of the components of
the SVM which can readily obtain the classification score for any image
sub-window with only 10 additions and 2 products, regardless of its size.
Besides, we evaluated the performance of two efficient feature quantiza-
tion methods: the Hierarchical K-Means and the Extremely Randomized
Forest. All experiments have been done in the Graz02 database, showing
comparable, or even better results to related work with a lower compu-
tational cost.

1 Introduction

A method for robustly localizing objects is of major importance towards creating
smart image retrieval tools able to search in digital image collections. In the last
years, object recognition in images has seen impressive advances thanks to the
development of robust image descriptors [1] and simple yet powerful represen-
tation method such as the bag of features [2–5]. Furthermore, the ever-growing
collections of images available on the Internet make computational efficiency an
imperative for methods that aim to be used in such a scenario.

In this work we propose a new method for fast pixel-wise categorization based
on the bag of features object representation. Given that the method will have to
be applied at every pixel of the image, it is essential to optimize it to perform in
the least possible time. Although different bag of features approaches have been
proposed, all of them consist on four basic steps. Namely, feature extraction from
the image, feature quantization into visual words, accumulation of visual word
into histograms and classification of the resulting histogram.



2 D. Aldavert, A. Ramisa, R. Toledo and R. Lopez de Mantaras

In order to accelerate the quantization step, Nister and Stewenius [3] pro-
posed to use a Hierarchical K-Means vocabulary tree (HKM) created by re-
cursively applying k-means to the clusters from the previous level. With this
technique they were able to improve the recognition results by using larger dic-
tionaries in a reasonable time. As an alternative to the HKM, Moosmann et al.
[6] and Shotton et al. [7] proposed to use Extremely Randomized Forests (ERF)
of K-D trees to improve the classification accuracy. In the approach proposed by
Moosemann et al. random features are selected at high saliency areas and used
in a bag of features scheme to classify the whole image. Besides, the probability
of each object class for each individual feature is determined and used in an
object probability map that iteratively decides the geometric parameters of new
random features.

The accumulation step is an even more critical bottleneck for an object local-
ization using bag of features since, as no geometrical information is used, many
sub-windows of the image have to be evaluated. Some authors addressed this
problem by reducing the number of evaluated windows, either by using a pre-
processing step [8] or by searching the best sub-window as in an optimization
problem [9]. This is done by defining an upper bound on the SVM classification,
and using branch and bound to discard uninteresting areas. Although not used
here, the strategy proposed by Lampert et al. is also applicable in our method.

Other authors have focused on accelerating the accumulation step. In the
approach by Fulkerson et al. [4], the authors speed up, by means of integral im-
ages, the accumulation step in a sliding windows based analysis of the image. For
this speed-up measure to be effective, it is important to use small dictionaries.
However, various works [10, 3] show that large dictionaries typically obtain bet-
ter classification results. Therefore, in order to compress the dictionary without
losing classification accuracy, they propose to use Agglomerative Information
Bottleneck (AIB) to create a coarse-to-fine-to-coarse architecture that is opti-
mized for discrimination of object versus non-object. This approach shares some
similitudes with the one presented here. However, In contrast to Fulkerson et
al. , we propose to bypass the descriptor accumulation step, and make every
computed feature vote directly with its classifier score in an integral image to
reduce the computational cost of classifying an image sub-window to only 10
additions and 2 multiplications, regardless of its size.

The rest of the paper is organized as follows: In Section 2 the proposed
methodology for object classification and localization in images is described.
Then, in Section 3, our proposed method is evaluated with the Graz02 dataset
and results are presented and discussed. Finally, in Section 4 the contributions
and conclusions of this work, as well as future research directions, are summa-
rized.



Efficient Object Pixel-Level Categorization using Bag of Features 3

2 Efficient pixel-level categorization

Our method1 uses an efficient categorization algorithm to assign a category label
to each pixel of an image: First, region descriptors are densely sampled from the
image and quantized into visual words using a codebook. Then, a sliding window
scheme is used to assign a category label to each pixel of the image. Visual words
within a window are accumulated in a histogram, which is later classified using
a linear support vector machine. In Fig. 1 some pixel-level categorization results
obtained using the proposed method are shown. Categorizing all the pixels from
an image with this brute-force approach in a reasonable time requires each of
the previous steps to be executed in a very efficient way.

a) b) c)

Fig. 1. Examples of pixel-level categorization results obtained with our method for a)
bikes, b) cars and c) person in the Graz02 database.

2.1 Dense features

As previously mentioned, we use densely sampled image descriptors as input
data. Dense sampling has several advantages when compared to keypoint-based
approaches, such as extracting more information from the underlying image,
and avoiding the time-consuming keypoint detection step [10]. Furthermore, if
robust descriptors can be computed in an efficient way, it can even become faster
than the keypoint-based alternative despite the larger number of descriptors
computed.
1 Source code and additional information available at http://www.cvc.uab.cat/

~aldavert/plor/



4 D. Aldavert, A. Ramisa, R. Toledo and R. Lopez de Mantaras

With this in mind, we have decided to use the Integral Histograms of Ori-
ented Gradients (IHOG) descriptor [11]. The IHOG is an approximation to the
Histograms of Oriented Gradients (HOG) descriptor [12], which speeds up the
descriptor extraction using integral images. First, each pixel votes according to
its gradient orientation, weighted by its gradient magnitude, in a histogram of
N orientation bins. Then, an integral image is generated for each one of the N
orientation bins. Using these integral images, to compute an IHOG descriptor
with N orientation bins and P × P position bins (i.e. a N × P × P dimensions
descriptor) we need just N × (P − 1)2 memory accesses and N × P 2 additions,
regardless of the feature region size in pixels.

Unlike the HOG descriptor, the IHOG descriptor is incompatible with the
Gaussian mask and the tri-linear interpolation to weight the contribution of the
gradient module in the spatial bins of the descriptor used in the HOG. Another
difference is that the IHOG descriptor uses L1 normalization instead the L2
normalization. Nevertheless, despite all these simplifications, the performance of
the IHOG descriptor is only slightly worse than that of the HOG descriptor [11].
Moreover, neither HOG nor IHOG descriptors are rotation invariant. However,
according to Zhang et. al. [13], the use of rotation invariant descriptors has a
negative effect in the performance of bag of features approaches.

2.2 Codebook Generation

Once all descriptors have been computed from the image, it is necessary to
quantize them into visual words using a codebook. The computational cost of
quantizing a D-dimensional descriptor using linear codebook of V visual words
is O(DV ). From the various alternatives that have been proposed to reduce
this computational cost, in this work we have evaluated two: the Hierarchical
K-Means (HKM) and the Extremely Randomized Forest (ERF).

The HKM defines a hierarchical quantization of the feature space. Instead
of k being the final number of visual words of the codebook, it determines the
branch factor (number of children of each node) of a tree. Given a set of training
descriptors, an HKM is generated as follows: First, the k-means algorithm is
used to split the training data into k groups. Then, this clustering process is
recursively applied to the groups from the previous level until a maximum depth
is reached. This recursive method creates a vocabulary tree (i.e. codebook) with
a reduced computational cost both in the training and descriptor quantization
phases. The computational complexity of quantizing a D-dimensional descriptor
using a HKM with V visual words is O(Dk logk V ). In the original implemen-
tation of the HKM, all nodes of the tree are used as visual words to alleviate
misclassification problems in the superior levels of the tree and the contribution
of each node of the histogram is weighted using a TF-IDF scheme. However, the
use of these two refinements have a modest impact in the performance of the
HKM. Therefore, we have removed them from our implementation.

The ERF [6] uses a combination of several random K-D trees in order to
quantize the feature space. Given a set of labeled training descriptors (i.e. de-
scriptors with a category label associated), the K-D trees of the ERF are built



Efficient Object Pixel-Level Categorization using Bag of Features 5

recursively in a top-down manner as follows: Every node of the K-D trees splits
the training descriptors from the previous level in two disjoint sets with a boolean
test in a random descriptor vector position. The boolean test consists in divid-
ing the descriptors in two groups according to a random threshold θt applied at
descriptor vector dimension Dt, also chosen randomly. For each node, the ran-
dom boolean test is scored using the Shannon entropy until a minimum value
Smin is attained or a maximum number of trials Tmax has been reached. Then,
the selected random boolean test is the one that has a highest score. Parame-
ter Smin can be used to select the randomness of the obtained K-D trees. For
instance Smin = 1 creates a highly discriminant tree while Smin = 0 creates a
completely random tree. The main advantage of the random K-D tree compared
to other quantization methods is its low computational cost. Quantizing a D-
dimensional descriptor vector using a random K-D tree with V visual words is
O(log2 V ). Since a random K-D tree usually has less discriminative power than
other clustering methods, like the k-means or the HKM, several K-D trees are
combined together to obtain a more discriminative codebook. Finally, the result-
ing histogram of the ERF is created by concatenating the histograms generated
by each K-D tree of the forest.

2.3 Integral Linear Classifiers

The “integral image” representation has been first introduced by Viola and Jones
to quickly extract Haar-wavelet type features [14]. Since then, integral images
have been applied to many different tasks like invariant feature extraction [15],
local region descriptors [11], to compute histograms over arbitrary rectangular
image regions [16] or to compute bag of feature histograms [4]. Inspired by these
previous works, we propose the use of an integral image to quickly calculate the
output score of the linear classifier which is applied to bag of features histograms.

To categorize a V dimensional histogram of visual words, we use a linear
classifier with weight vector W and bias b. Then, the output score of the linear
classifier is:

1
‖X‖

V∑
i=0

xiwi + b > 0 (1)

where xi is the frequency of the i-th visual word of the codebook, ‖X‖ is the
norm of histogram X and wi is the i-th component of the linear classifier weight
vector W . If all components of W are positive, then sum of the previous equation
can be calculated using an integral image. Therefore, we define the classifier
weight vector W̃ components as:

w̃i = wi −Wm (2)

where Wm is the wi component with the lowest value. Then, replacing W by
W̃ in Eq. 1 the output score of the linear classifier is:

1
‖X‖

V∑
i=0

xiw̃i +
Wm

‖X‖

V∑
i=0

xi + b > 0 (3)



6 D. Aldavert, A. Ramisa, R. Toledo and R. Lopez de Mantaras

a) b)

Fig. 2. Image containing the components of a linear classifier for bikes b) obtained
from extracting dense features every four pixels in the original image a).

We normalize the histogram X using L1 norm (i.e. the amount of visual words
that casted a vote in the histogram) since it is fast to compute using an integral
image. Then, Eq. 3 becomes:

1
N

V∑
i=0

xiw̃i +Wm + b > 0 (4)

where N is the L1 normalization of histogram ‖X‖. Once all W̃ components
are positive, the integral image can be used to calculate the sum in Eq. 4. For
each linear classifier c, let Lc(x, y) be the sum of components w̃c

i corresponding
to the visual words at pixel (x, y). In Fig. 2 an example of Lc image for the bikes
classifier is shown. Then, each image Lc is transformed into an integral image
Ic, so that, the sum of Eq. 4 of a rectangular image region R can be calculated
using the integral image Ic:

HR = Ic(xu, yu) + Ic(xb, yb)− Ic(xu, yb)− Ic(xb, yu) (5)

where (xu, yu) and (xb, yb) are respectively the upper left and bottom right corner
coordinates of region R. Then, the output score of a linear classifier applied to
any rectangular image region can be calculated as follows:

1
N
HR +Wm + b > 0 (6)

Using integral images, the computational complexity of classifying any rectan-
gular image region is reduced to 8 memory access, 10 additions and 2 products,
independently of the size of rectangular region.

3 Experiments

We have evaluated the performance of our pixel-level categorization method on
the Graz02 database [17]. The Graz02 database is a challenging database consist-



Efficient Object Pixel-Level Categorization using Bag of Features 7

ing on three categories (bikes, cars and people) where objects have an extreme
variability in pose, orientation, lighting and different degrees of occlusion. The
Graz02 annotation only provides a pixel segmentation mask for each image, so
that, it is impossible to known how many object instances are present in the
image. In consequence, to evaluate the performance of our pixel-level catego-
rization method we use the pixel-based precision-recall curves as in [18]. Active
pixels of the ground truth segmentation mask scorrectly categorized as object
are counted as true positives, and as false negatives otherwise. Also, incorrectly
classified background pixels of the ground truth segmentation mask are counted
as false positives. Finally, we have taken the odd images as train and the even as
test as in [18, 4]. However, due to the high variation we observed in the results
depending on the train/test sets, we decided to also use random selection to split
half of the images for train and half for test. The final result of a test when using
the random sampling is the mean of a 1, 000-repetitions experiment to ensure
statistical invariance of the selected train/test sets.

1 3 5 7 9
Number of trees

0.05

0.25

0.5

0.75

0.95

R
a
n
d
o
m

n
e
ss

 f
a
ct

o
r

66.10%

66.04%

66.12%

65.99%

66.05%

68.12%

68.17%

68.25%

68.26%

68.17%

68.77%

68.85%

68.82%

68.79%

68.73%

69.01%

69.04%

69.04%

69.02%

69.02%

69.17%

69.18%

69.19%

69.17%

69.19%

Precision and Recal @ EER for different ERF parameter configurations.

Fig. 3. Precision-recall at EER comparison for the ERF using different randomness
factor and number of trees.

3.1 Parameter setting

The results were obtained using the same parameters in each experiment. The
IHOG descriptors have been densely sampled each four pixels. Descriptors that
have a low gradient magnitude before normalization are discarded as in [4]. Each
IHOG descriptor is extracted from a 40 × 40 pixels patch and it has 8 orienta-
tion bins and 4 positional bins (i.e. a 32 dimensional descriptor). Therefore, as
Graz02 images have a regular size of 640×480, a maximum of 16,500 descriptors
are extracted per image. Then, bag of features histograms are computed accu-
mulating the visual words that are inside a region of 80× 80 pixels. Later, those
histograms are categorized using a support vector machine. The SVM has been
trained using logistic regression (LR-SVM)[19] with the LIBLINEAR software



8 D. Aldavert, A. Ramisa, R. Toledo and R. Lopez de Mantaras

package [20]. Finally, the shown times results have been obtained using laptop
with an Intel T7700 Core Duo CPU and 2Gb of RAM.

3.2 Parameters of the ERF

The performance of the ERF depends on the K-D tree randomness parame-
ter and the amount of trees in the forest. Therefore, we wanted to evaluate
which combination of those parameters gives better results for our categoriza-
tion method. In Fig. 3 the mean precision-recall values at Equal Error Rate
(EER) obtained for the different parameter combinations are shown. The re-
sults shows that the performance for the ERF largely depends on the amount
of trees, while the randomness factor has little, if any, effect in the performance.
For the remaining experiments, we have selected a randomness factor of 0.05 (i.e.
a completely random forest) and 5 trees, which are a good compromise between
performance and computational cost.

3.3 Comparison between HKM and ERF

To compare the performance of the HKM and the ERF, dense features have
been computed for all the 450 training images, resulting in about 6,000,000
training features. For the HKM we have selected a branch factor of 10 as in [4]
to generate a codebook with 200,000 visual words in average. For the ERF, using
the parameters selected in the previous section, we have obtained a codebook of
150,000 visual words in average. We have done two different tests: the “Single”
test only uses the images containing objects from the tested category (e.g. using
the bike classifier only for the images where a bicycle can be actually found),
and the “Multi” test uses all test images (e.g. using the bike classifier for all 450
test images). As can be seen in Table 1 the precision-recall values obtained at
EER show that the ERF performs slightly better than the HKM, both in the
“Single” and the “Multi” tests. In the “Multi” test we can see that, when 300
images not containing objects are added to the test set, precision decreases a
reasonable 32%. Finally, Fig. 4 shows the precision-recall curves for the different
categories of the Graz02 database. As can be seen, the ERF has a slightly better
performance than the HKM.

3.4 Time cost evaluation

Finally, regarding the computational cost of the categorization approach, the
average time needed to construct the HKM is of 5 minutes, while that of the
ERF depends on the randomness factor and the number of trees used, ranging
from 100 milliseconds for a completely random ERF with a single tree, to 12
minutes for a highly discriminative ERF with 9 trees. The cost of training a
linear classifier using the LR-SVM is of about 2 minutes for the histograms
generated with HKM codebook, and from 2 to 5 minutes for those generated
with the ERF (it depends on the amount of trees of the ERF). In Fig. 4.d) we



Efficient Object Pixel-Level Categorization using Bag of Features 9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

Precision-Recall curves for Bikes.

HKM Single
HKM Multi
ERF Single
ERF Multi

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

Precision-Recall curves for Cars.

HKM Single
HKM Multi
ERF Single
ERF Multi

a) b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

o
n

Precision-Recall curves for Persons.

HKM Single
HKM Multi
ERF Single
ERF Multi

1 3 5 7 9
Number of trees

0

20

40

60

80

100

120

M
ill

is
e
co

n
d
s

Vocabulary Tree

Mean time needed to categorize pixels of an image.

c) d)

Fig. 4. Precision-recall curves obtained by the HKM and ERF codebooks using random
sampling for the a) bikes, b) cars and c) persons categories of the Graz02 database.
For each category, both methods have been evaluated using only the category images
(Single) and using all testing images (Multi). In d) the mean time spent evaluating an
image for the ERF and the HKM is shown.

can see the average time needed to categorize all image pixels using a HKM and
ERF codebooks. Although being a bit slower in the training phase, the ERF is
faster than the HKM in the categorization phase, where speed is truly essential.
Using a ERF with 5 K-D trees, the whole scheme needs about 72.6 milliseconds
to categorize an image, so that, we can process about 13 images per second.

4 Conclusions

In this paper we have presented an efficient method to assign a category label
to each pixel of an image. Our main contribution is the introduction of integral
linear classifier, which is used to bypass the accumulation step and directly obtain



10 D. Aldavert, A. Ramisa, R. Toledo and R. Lopez de Mantaras

Sampling Test Method Bikes Cars Persons

Even/Pair
Single

HKM 73.77% ± 0.20% 63.90% ± 0.17% 61.80% ± 0.40%
ERF 73.63% ± 0.32% 65.68% ± 0.60% 62.59% ± 0.30%

Multi
HKM 63.42% ± 0.24% 47.09% ± 0.45% 44.36% ± 0.31%
ERF 63.27% ± 0.32% 47.62% ± 1.45% 46.34% ± 0.43%

Random
Single

HKM 74.33% ± 1.21% 65.70% ± 1.45% 62.13% ± 1.30%
ERF 74.17% ± 1.22% 68.39% ± 1.44% 63.27% ± 1.38%

Multi
HKM 64.55% ± 1.26% 49.60% ± 1.61% 42.78% ± 1.86%
ERF 63.98% ± 1.28% 51.30% ± 2.03% 44.30% ± 2.12%

Table 1. Comparison of the precision-recall values obtained at equal error rate on the
Graz02 database both using odd/even and random train/test sampling. The catego-
rization methods have been evaluated using only images that contain objects from the
searched category in the “Single” test and using all the images in the “Multi” test.

the classification score for an arbitrary sub-window of the image. Besides, we have
compared the performance of the Hierarchical K-Means (HKM) and Extremely
Randomized Forest (ERF). The obtained results show that the ERF performs
slightly better than the HKM and with a lower computational cost. We have
shown that the proposed method with the ERF feature quantization approach
is suitable for real-time applications. In future work, we plan to improve this
method and use it in an online learning scheme with a mobile robot.

Acknowledgements

This work was supported by TIN 2006-15308-C02-02 project grant of the Min-
istry of Education of Spain, the CSD2007-00018 and the MIPRCV Consolider
Ingenio 2010, the European Social Fund, the project grant 200450E550, FEDER
funds, and the grant 2009-SGR-1434.

References

1. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. Journal
of Computer Vision 60 (2004) 91–110

2. Csurka, G., Bray, C., Dance, C., Fan, L.: Visual categorization with bags of key-
points. In: Workshop on Stat. Learning in Computer Vision, ECCV. (2004) 1–22

3. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proc.
of Computer Vision and Pattern Recognition. (2006) 2161–2168

4. Fulkerson, B., Vedaldi, A., Soatto, S.: Localizing objects with smart dictionaries.
In: Proc. of European Conference on Computer Vision. (2008) 179–192

5. Sastre, R., Tuytelaars, T., Bascon, S.: Class Representative Visual Words for
Category-Level Object Recognition. In: IbPRAI, 2009, Springer (2009)

6. Moosmann, F., Nowak, E., Jurie, F.: Randomized clustering forests for image
classification. IEEE Trans. on Pat. Anal. and Machine Intel. 30 (2008) 1632–1646



Efficient Object Pixel-Level Categorization using Bag of Features 11

7. Shotton, J., Johnson, M., Cipolla, R., Center, T., Kawasaki, J.: Semantic texton
forests for image categorization and segmentation. In: Proc. of Computer Vision
and Pattern Recognition. (2008) 1–8

8. Ramisa, A.: Localization and Object Recognition for Mobile Robots. PhD thesis,
Universitat Autonoma de Barcelona (2009)

9. Lampert, C.H., Blaschko, M.B., Hofmann, T.: Beyond sliding windows: Object lo-
calization by efficient subwindow search. In: Proc. of Computer Vision and Pattern
Recognition. (2008) 1–8

10. Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image
classification. In: European Conference on Computer Vision. (2006) 490–503

11. Zhu, Q., Yeh, M.C., Cheng, K.T., Avidan, S.: Fast human detection using a
cascade of histograms of oriented gradients. In: Proc. of Computer Vision and
Pattern Recognition. (2006) 1491–1498

12. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
Proc. of Computer Vision and Pattern Recognition. (2005) 886–893

13. Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for
classification of texture and object categories: A comprehensive study. Int. Journal
of Computer Vision 73 (2007) 213–238

14. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple
features. In: Proc. of Computer Vision and Pattern Recognition. (2001) 511–518

15. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features.
Computer Vision and Image Understanding (CVIU) 110 (2008) 346–359

16. Porikli, F.: Integral histogram: A fast way to extract histograms in cartesian spaces.
In: Proc. of Computer Vision and Pattern Recognition. (2005) 829–836

17. Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic object recognition with
boosting. IEEE Trans. on Pat. Anal. and Machine Intel. 28 (2006) 416–431

18. Marszalek, M., Schmid, C.: Accurate object localization with shape masks. In:
Proc. of Computer Vision and Pattern Recognition. (2007) 1–8

19. Lin, C.J., Weng, R.C., Keerthi, S.S.: Trust region newton methods for large-scale
logistic regression. In: Int. Conf. on Machine Learning. (2007) 561–568

20. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library
for large linear classification. J. Mach. Learn. Res. 9 (2008) 1871–1874


