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Abstract In this study we compare the use of dif-
ferent music representations for retrieving alternative

performances of the same musical piece, a task com-

monly referred to as version identification. Given the

audio signal of a song, we compute descriptors rep-

resenting its melody, bass line and harmonic progres-
sion using state-of-the-art algorithms. These descrip-

tors are then employed to retrieve different versions

of the same musical piece using a dynamic program-

ming algorithm based on nonlinear time series analysis.
First, we evaluate the accuracy obtained using individ-

ual descriptors, and then we examine whether perfor-

mance can be improved by combining these music rep-

resentations (i.e. descriptor fusion). Our results show

that whilst harmony is the most reliable music rep-
resentation for version identification, the melody and

bass line representations also carry useful information

for this task. Furthermore, we show that by combining
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these tonal representations we can increase version de-
tection accuracy. Finally, we demonstrate how the pro-

posed version identification method can be adapted for

the task of query-by-humming. We propose a melody-

based retrieval approach, and demonstrate how melody

representations extracted from recordings of a cappella
singing can be successfully used to retrieve the original

song from a collection of polyphonic audio. The cur-

rent limitations of the proposed approach are discussed

in the context of version identification and query-by-
humming, and possible solutions and future research

directions are proposed.

Keywords Music similarity · version identification ·

cover song detection · query by humming · melody

extraction · bass line · harmony · music retrieval

1 Introduction

Music similarity is a key aspect in the development of
music retrieval systems [25], and developing automatic

methods for quantifying music similarity addresses part

of a more general problem: making sense of digital infor-

mation [28]. Music similarity is, however, an ambiguous
term. Apart from involving different musical facets such

as instrumentation, tonality or rhythm, it also depends

on cultural (or contextual) and personal (or subjective)

aspects [15,21]. There are many factors involved in mu-

sic similarity judgments, and some of them are difficult
to measure [1].

To assess the similarity between music documents,

some Music Information Retrieval (MIR) researchers

have devoted their efforts to the related task of ver-

sion identification. Remarkably, and in contrast to mu-

sic similarity, the relation between versions is context-

independent and can be objectively measured [35]. In

The final publication is available at http://link.springer.com/article/10.1007/s13735-012-0026-0
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addition, research on version identification can yield

valuable clues on how music similarity can be modeled.

This task, of automatically detecting versions of the

same musical piece, has received much attention from

the research community over recent years (see [36] for a
survey). Potential applications range from the detection

of copyright violations on websites such as YouTube, to

the automation of computational analyses of musical

influence networks [4]. Version identification on its own
also represents an attractive retrieval task for end users.

Systems for the automatic detection of versions ex-

ploit musical facets which remain mostly unchanged

across different renditions, primarily tonal information

[36]. In this context, the term tonality refers, in a broad
sense, to “the systematic arrangement of pitch phe-

nomena and relations between them” [16]. Perhaps the

most common tonal representation for version identi-

fication is chroma. Chroma features (also called pitch
class profiles) represent, in polyphonic music signals,

the relative intensity of each of the 12 semitones in an

equal-tempered chromatic scale, discarding octave in-

formation. As such, chroma features are related to har-

mony, understood as “the combining of notes simulta-
neously, to produce chords, and successively, to produce

chord progressions” [5]. Common techniques for com-

paring sequences of chroma features include dynamic

time warping and simple cross-correlation [36]. Another
tonal representation that has been considered for ver-

sion identification is the predominant melody, either by

attempting to fully transcribe it [42], or by using it as a

mid-level representation for computing similarity [23].

Melodic representations have also been widely used for
related tasks such as query-by-humming [6] or music

retrieval using symbolic data [43].

Whilst good results have been achieved using sin-

gle music representations (in particular harmony rep-

resented by chroma features [36]), some recent stud-
ies suggest that version detection could be improved

through the combination of different musical cues [9,

19,35]. However, not much research has been carried

out in this direction. One of the first studies to auto-
matically extract features derived from different music

representations for version identification was conducted

by Foucard et al. [9], in which a source separation algo-

rithm was used to separate the melody from the accom-

paniment. The authors then compared the performance
of a version identification system using the melody, the

accompaniment, the original mix, and their combina-

tion, by employing different fusion schemes. The study

showed that considering different information modali-
ties (i.e. main melody and accompaniment) is a promis-

ing research direction, but also noted the intrinsic limi-

tation of simple fusion schemes whose capabilities

seemed to be limited to merging modalities that carry

more or less the same type of information. In the work

of Ravuri and Ellis [29], the task of detecting musi-

cal versions was posed as a classification problem, and

different similarity measures were combined to train a
classifier for determining whether two musical pieces

were versions or not. However, only chroma features

were used to derive these similarity measures. There-

fore, they were all in fact accounting for the same mu-
sical facet: the harmony.

In this paper we expand the study of version identifi-

cation using different music representations. In particu-

lar, we explore three related yet different tonal represen-

tations: melody, bass line and harmony. To extract the
melody, we employ a state-of-the-art melody extraction

algorithm [32] which returns a per-frame estimate of the

fundamental frequency corresponding to the pitch of

the predominant melody. The bass line is extracted us-
ing a modified version of the same algorithm. Harmony

is represented by means of chroma features [11], which

have already been used successfully in state-of-the-art

version identification systems [36]. Beyond comparing

identification performance for each of the three tonal
representations separately, we also study their combi-

nation. For this we use the power of a standard clas-

sification approach, similar to Ravuri and Ellis [29]. In

addition, we compare a number of classification algo-
rithms and assess their ability to fuse the information

coming from the three different representations.

As mentioned earlier, a task very much related to

version identification is that of query-by-humming

(QBH). A QBH system allows users to search for songs
by singing or humming part of the melody. As such,

QBH can be considered a special case of version iden-

tification in which the version used as a query is pro-

duced by the user (rather than an artist) and contains

only melody information. The task has received much
attention from the research community, both because of

the challenges it presents in computational music simi-

larity and because of its attractive potential application

for end users (see [6] for a comparative evaluation and
[18] for a more recent survey). One important problem

in the creation of QBH systems is the generation of a

melody database (song index) against which the sung

queries are to be compared. Until recently, the lack of

reliable melody extraction algorithms meant that most
effort was focused on matching queries against sym-

bolic databases (e.g. MIDI files) [6]. Whilst it is pos-

sible to find MIDI versions of many songs on the In-

ternet, such an approach will always be limited since
it is not feasible to generate (i.e. transcribe) MIDI files

manually for very large music collections, not to men-

tion all the new music that will be composed in the
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future. Another solution that has been proposed is to

match queries against other queries, as performed by

services such as SoundHound1 and Tunebot [27]. Whilst

this avoids the need for manual transcription, the ap-

proach still suffers from the same “cold start” problem –
a song “does not exist” until someone records it, so the

need for manual labour remains. In light of this, a fully

automated solution in which the melody database can

be generated automatically is highly attractive. Audio-
to-audio QBH algorithms have been proposed in, e.g.,

[7,30,41]. However, results indicate there is still much

work to be done before these systems perform as well

as audio-to-symbolic QBH (e.g. the approach in [30]

obtains an MRR of 0.57 for a database of 427 audio
songs compared to 0.91 for a database of 2048 symbolic

songs). In the final sections of this paper we describe

how our proposed version identification approach can

be adapted into a fully automated audio-to-audio QBH
system with very few modifications.

The structure of the remainder of the paper is as fol-

lows: in Section 2 we describe the music representations
compared in this study, how we compute descriptors to

represent them, the computation of version similarity,

and our approach for descriptor fusion. In Section 3 we

start by describing our evaluation strategy for version

identification, including the music collection and eval-
uation measures used to assess the retrieval accuracy.

This is followed by the results of the evaluation for both

individual descriptors and descriptor fusion, including

a detailed discussion of the results. In Section 4 we
explain how the proposed approach can be applied to

the related task of query-by-humming. We describe the

test collections, evaluation measures and queries used

to evaluate the approach and discuss the retrieval re-

sults. The contributions of the paper are summarised
in Section 5.

2 Methodology

In the following subsections we present our approach

for (dis)similarity-based music retrieval. We start by

describing the different tonal representations extracted

from the audio signal, which are based on the melody,
bass line and harmonic progression of a musical piece.

For melody and bass line, we define a representation

abstraction process for removing performance-specific

information that may hinder the matching procedure.

Next, we explain how song matching is performed us-
ing a local alignment algorithm based on nonlinear time

series analysis. Finally, we describe our approach for in-

1 http://www.soundhound.com/

tegrating the different music representations for version

identification using a classification technique.

2.1 Tonal Representations

2.1.1 Melody Representation

To extract a representation of the melody from the au-

dio signal we use the state-of-the-art melody extraction

algorithm presented in [32]. This algorithm, which is
based on the characterisation of melodic pitch contours,

obtained the highest mean overall accuracy in the most

recent MIREX evaluation campaign [31]. A brief sum-

mary of the different stages of the algorithm is provided

here.

In the first stage of the algorithm, the audio signal

is analyzed and spectral peaks (sinusoids) are extracted

[32,33]. This process is comprised of three main steps:

first, a time-domain equal loudness filter is applied [45],
which has been shown to attenuate spectral components

belonging primarily to non-melody sources [33]. Next,

the short-time Fourier transform is computed and the

local maxima (peaks) of the spectrum are detected at

each frame. In the third step, the estimation of the spec-
tral peaks’ frequency and amplitude is refined by cal-

culating each peak’s instantaneous frequency (IF) us-

ing the phase vocoder method [8] and re-estimating

its amplitude based on the IF. The detected spectral
peaks are subsequently used to compute a representa-

tion of pitch salience over time: a salience function. The

salience function is based on harmonic summation with

magnitude weighting, and spans a range of almost five

octaves from 55Hz to 1760Hz. Further details are pro-
vided in [33]. In the next stage, the peaks of the salience

function are grouped over time using heuristics based

on auditory streaming cues [3]. This results in a set of

pitch contours, out of which the contours belonging to
the melody need to be selected. The contours are auto-

matically analyzed and a set of contour characteristics

is computed. In the final stage of the system, the con-

tour characteristics and their distributions are used to

filter out non-melody contours. The melody F0 at each
frame is selected out of the remaining pitch contours

based on their salience. A full description of the melody

extraction algorithm, including a thorough evaluation,

is provided in [32].

2.1.2 Bass Line Representation

The bass line is extracted by adapting the melody ex-

traction algorithm described above. Instead of applying

an equal loudness filter (which attenuates low frequency
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content), we apply a low-pass filter with a cutoff fre-

quency of 261.6Hz, as proposed in [12]. The window

size is increased to 185ms, since for the bass we require

more frequency resolution. The salience function is ad-

justed to cover a range of two octaves from 27.5Hz to
110Hz. As before, the salience peaks are grouped into

pitch contours. However, since we do not expect other

instruments to compete for predominance in the bass

frequency range, the detailed contour characterisation
and filtering used for melody extraction is less impor-

tant in the case of bass line extraction. Therefore, the

bass line is selected directly from the generated con-

tours based on their salience.

2.1.3 Representation Abstraction

Once the melody and bass line sequences are extracted,
we must choose an adequate representation for comput-

ing music similarity or, in the case of this study, a rep-

resentation for retrieving versions of the same musical

piece. Since the matching algorithm can handle trans-

position, a first guess might be to use the extracted
representation as is, i.e. to compare the F0 sequences

directly. However, initial experiments showed that this

(somewhat näıve) approach is unsuccessful.

When considering the task of version identification,
we must take into consideration what kind of musical

information is maintained between versions, and what

information is subject to change. In the case of the

melody, we can expect the general melodic contour to

be maintained. However, more detailed performance in-
formation is likely to change between versions [36]. Be-

sides changing the key and tempo in which the melody

is sung (or played), performers might change the octave

in which some segments of the melody are sung to ad-
just them to their vocal range. More importantly, the

use of expressive effects (such as ornaments, glissando

and vibrato) will obviously vary across versions. Over-

all, this means we should aim for a representation which

abstracts away specific performance information and
details, whilst maintaining the basic melodic tonal pro-

gression. To this effect, we defined the following types

of information abstraction:

– Semitone abstraction: quantise pitch information into

semitones. This will help in removing some local ex-

pressive effects.
– Octave abstraction: map all pitch information onto

a single octave. This will help in removing potential

octave changes of the melody within the piece.

– Interval abstraction: replace absolute pitch informa-
tion with the difference between consecutive pitch

values (delta values). This may provide robustness

against key changes.

Before applying any abstraction, all frequency val-

ues were converted into a cent scale, so that pitch is

measured in a perceptually meaningful way. We then

ran initial matching experiments comparing the differ-

ent degrees of abstraction applied to melody sequences:
none, semitone, interval, interval+semitone, and semi-

tone+octave (by definition, the interval and octave ab-

stractions are not compatible). For these experiments

we used a collection of 76 songs, described in Section
3.1.1, and evaluated the results as detailed in Section

3.1.2. We found that results using the semitone+octave

abstraction were considerably better than the other

types of abstraction, obtaining a mean average precision

of 0.73, compared to 0.26–0.28 for all other abstractions
considered. Perhaps not surprisingly, we note that this

abstraction process is quite similar to the one applied

for computing chroma features (described in the follow-

ing section). In particular, the observations above sug-
gest that octave information can be quite detrimental

for the task of version identification. For the remainder

of the study we use the semitone+octave abstraction

for both the melody and bass line descriptors.

The exact abstraction process is as follows: first, all
frequency values are converted into cents. Then, pitch

values are quantised into semitones, and mapped onto

a single octave. Next, we reduce the length of the se-

quence (whose original hop size is 2.9ms), by summariz-
ing every 150 frames as a pitch class histogram2. This

produces a shortened sequence where each frame is a

12-bin vector representing the distribution of the pitch

classes of the melody over roughly half a second. This

window length has been reported to be suitable for
version identification by several authors, see e.g. [19,

36]. The motivation for the summary step is two-fold:

firstly, it reduces the sequence length and therefore re-

duces the computation time of the matching algorithm.
Secondly, it reduces the influence of very short pitch

changes which are more likely to be performance spe-

cific (e.g. ornamentations). Finally, the vector of each

frame is normalised by the value of its highest bin. The

steps of the representation abstraction are depicted in
Figure 1 for a melody and in Figure 2 for a bass line.

2.1.4 Harmony Representation

To represent harmony, we compute the sequence of har-

monic pitch class profiles (HPCP) [10,11], a specific
chroma feature implementation. The HPCP is derived

from the frequency-dependent energy in a given range

(typically from 50 to 5000Hz) in short-time spectral

2 The contribution of each frame to the histogram is
weighted by the salience of the melody at that frame, de-
termined by the melody extraction algorithm.



Tonal Representations for Music Retrieval: From Version Identification to Query-by-Humming 5

0 4 8 12 16 20 24
2000

3000

4000

C
e
n
ts

(a)

0 4 8 12 16 20 24
20

30

40

S
e
m

it
o
n
e
s

(b)

0 4 8 12 16 20 24
1

6

12

P
it
c
h
 C

la
s
s

(c)

Time (s)

P
it
c
h
 C

la
s
s

(d)

 

 

0 4 8 12 16 20 24

12

6

1 0

0.5

1

Fig. 1 Melody representation abstraction process: (a)
melody pitch in cents, (b) quantised into semitones, (c)
mapped onto a single octave, (d) summarised as a pitch his-
togram and normalised.

0 4 8 12 16 20 24
500

1500

2500

C
e
n
ts

(a)

0 4 8 12 16 20 24
5

15

25

S
e
m

it
o
n
e
s

(b)

0 4 8 12 16 20 24
1

6

12

P
it
c
h
 C

la
s
s

(c)

Time (s)

P
it
c
h
 C

la
s
s

(d)

 

 

0 4 8 12 16 20 24

12

6

1 0

0.5

1

Fig. 2 Bass line representation abstraction process: (a) bass
line pitch in cents, (b) quantised into semitones, (c) mapped
onto a single octave, (d) summarised as a pitch histogram
and normalised.

representations of the audio signal (e.g. 100ms; frame-

by-frame extraction). The energy is mapped into an

octave-independent histogram representing the relative

intensity of each of the 12 semitones of the equal-

tempered chromatic scale (12 pitch classes). To nor-

malise with respect to loudness, the histogram is di-

vided by its maximum value, leading to values between
0 and 1. Three important preprocessing steps are ap-

plied during the computation of the HPCP: tuning esti-

mation, sinusoid extraction and spectral whitening [10].

This means the HPCP is tuning-frequency independent
and robust to noise and changes in timbre, which makes

it especially attractive for version identification.

Chroma features are a standard tool in music infor-

mation research, and the HPCP in particular has been

shown to be a robust and informative chroma feature
implementation [10,24,37]. For more details we refer

the interested reader to [10] and references therein. For

the purpose of this study, and in order to facilitate the

comparison with previous work on version identifica-
tion, the HPCP is computed using the same settings

and parameters as in [39].

2.2 Matching

For deriving a similarity measure of how well two ver-

sions match we employ the Qmax method [39]. This is

a dynamic programming algorithm which computes a

similarity measure based on the best subsequence par-

tial match between two time series. Therefore, it can
be framed under the category of local alignment algo-

rithms. Dynamic programming approaches using local

alignment are among the best-performing state-of-the-

art systems for version identification [36], and have also
been extensively used for melody-based retrieval [6].

The Qmax algorithm is based on general tools and

concepts of nonlinear time series analysis [17]. There-

fore, since the algorithm is not particularly tied to a

specific time series, it can be easily used for the com-
parison of different (potentially multivariate) signals.

Furthermore, the Qmax method has provided the high-

est MIREX accuracies in the version identification task,

using only HPCPs [39]. Therefore, it is a very good
candidate to test how melody and bass line compare

to HPCPs, and to derive competitive version similarity

measures to be used in our fusion scheme.

Given a music collection containing various sets of

covers, we use the Qmax algorithm to compute the sim-
ilarity, or in the case of our method, the dissimilarity,

between every pair of songs in the collection. The result-

ing pairwise dissimilarities are stored in a dissimilarity

matrix which can then be used either to evaluate the
performance of a single descriptor (as explained in Sec-

tion 3.1.2), or for descriptor fusion as described in the

following section.
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2.3 Fusing Descriptors

In addition to evaluating each representation separately

for version identification, another goal of this study is

to see whether there is any information overlap between

these representations, and whether results for this task

can be improved by combining them. To this end, we
propose a classification approach similar to [29] – each

descriptor is used to calculate a dissimilarity matrix be-

tween all query-target pairs as described in Section 2.2

(4,515,625 pairs in total for the collection used in this
study). Every query-target pair is annotated to indi-

cate whether the query and target are versions or not.

We then use five different balanced subsets of 10,000

randomly selected query-target pairs to train a clas-

sifier for determining whether two songs are versions
of the same piece. The feature vector for each query-

target pair is three-dimensional, and contains the dis-

similarities produced by the matching algorithm using

each of the three representations: melody, bass line and
harmony (feature columns are linearly normalised be-

tween 0 and 1 prior to classification). In this way we

can study different combinations of these descriptors,

and most importantly, rather than imposing a simple

fusion scheme, the combination of different descriptors
is determined in an optimal way by the classifier it-

self. The only potential limitation of the proposed ap-

proach is our employment of a late-fusion strategy (as

opposed to early-fusion). Nonetheless, in addition to
being straightforward, previous evidence suggests that

late-fusion provides better results for version identifi-

cation [9]. Since the modalities employed in this study

are different from the ones in [9], the preferability of

a late-fusion strategy over early-fusion should still be
validated, and we intend to explore this in future work.

The classification is performed using the Weka data

mining software [13]. We compare five different classi-

fication algorithms: random forest, support vector ma-
chines (SMO with polynomial kernel), simple logistic

regression, k-star, and Bayesian network [47]. For all

classifiers we use the default parameter values provided

in Weka. By comparing different classifiers we are able

to assess which classification approach is the most suit-
able for our task. Furthermore, by verifying that any

increase (or decrease) in performance is consistent be-

tween classifiers, we ensure that the improvement is in-

deed due to the descriptor fusion and not merely an
artefact of a specific classification technique.

3 Version Identification

Our main goal is to evaluate the proposed tonal repre-

sentations for the task of version identification. We start

by describing our evaluation methodology for this task,

followed by the evaluation results and an in-depth dis-

cussion of the results. The complete matching process

for version identification, using either a single tonal rep-

resentation or descriptor fusion, is depicted in the block
diagram of Figure 3.

3.1 Evaluation Strategy

3.1.1 Music Collection

To evaluate the performance of our method (using ei-
ther a single music representation or the descriptor fu-

sion strategy), we use a music collection of 2125 songs

[38]. The collection includes 523 version sets (i.e. groups

of versions of the same musical piece) with an average
set cardinality of 4.06. The collection spans a variety

of genres including pop, rock, electronic, jazz, blues,

world, and classical music. We note that this collection

is larger than the collection used in the MIREX ver-

sion identification task3, and as such contains a greater
variety of artists and styles.

For training the parameters of the Qmax matching

algorithm, a small subset of 76 songs from the full col-

lection was used. This 76-song collection was also used
for the preliminary experiments on information abstrac-

tion outlined in Section 2.1.3. Importantly, we made

sure that all songs in this subset have a main melody

(and all but 3 have a clear bass line). The full collection,

on the other hand, includes versions where there is no
main melody (e.g. minus one versions of jazz standards)

or no bass line (e.g. singing voice with acoustic guitar

accompaniment only). In a manually annotated random

sample of 300 songs from the full collection, 88.7% had a
melody, 89.7% a bass line and 95.3% included harmony

(the confidence intervals for the statistics as represen-

tative of the full collection with 95% confidence are 3.3,

3.2 and 2.2 respectively). Whilst we can expect this dif-

ference to affect the relative performance of the melody
and bass-line-based representations, the statistics are

representative of a real-world music collection and, as

such, the results for this collection will reflect those we

would expect to obtain in a real-world scenario.

3.1.2 Evaluation Measures

The dissimilarity matrix produced by each descriptor

can be used to generate an ordered list of results for
each query. The relevance of the results (ideally versions

of a query should all appear at the top of the list) can

3 http://www.music-ir.org/mirex/wiki/Audio_Cover_

Song_Identification
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Fig. 3 Matching process for version identification using either a single tonal representation (top right corner) or descriptor
fusion (bottom right corner).

then be evaluated using standard information retrieval
metrics, namely the mean average precision (MAP) and

the mean reciprocal rank (MRR) [22]. Note that since

we want to retrieve all versions of the query in our col-

lection we cannot compute the MRR (which assumes

there is only one correct answer) directly. Hence, we
define a measure we refer to as the mean averaged re-

ciprocal rank (MaRR). For a given query, the averaged

reciprocal rank (aRR) is given by computing the aver-

age of the reciprocal ranks of all the targets in the result
list that are versions of the query. The MaRR is then

the mean aRR over all queries. For assessing the results,

recall that the the MAP ranges from 0 (worst case) to

1 (best case). The MaRR range depends on the number

of versions a query has in the collection. For example, if
a query has 3 target versions in the collection, the high-

est possible MaRR will be (1

1
+ 1

2
+ 1

3
)/3 = 0.61. Since

the average version-set cardinality in our collection is

approximately 4, we can consider this value (0.61) as a
rough upper-bound for the MaRR. Both the MAP and

MaRR measures are a common choice for assessing the

accuracy of version identification systems based on a

single information source [36].

Since we use classification to fuse different informa-

tion sources (dissimilarities based on different descrip-

tors), an alternative evaluation approach is required to

evaluate the results obtained using descriptor fusion.
Here, the results produced by each classifier are eval-

uated in terms of classification accuracy (%) using 10-

fold cross validation, averaged over 10 runs per clas-

sifier. The classification is carried out using the bal-
anced subsets of 10,000 randomly selected query-target

pairs mentioned in Section 2.3. We repeat the evalua-

tion process for 5 such subsets (non-overlapping), and

Table 1 Results for single tonal representation (76 songs).

Feature MAP MaRR

Melody 0.732 0.422
Bass line 0.667 0.387
Harmony 0.829 0.458

Table 2 Results for single tonal representation (full collec-
tion, 2125 songs).

Feature MAP MaRR

Melody 0.483 0.332
Bass line 0.528 0.355
Harmony 0.698 0.444

average the results over all subsets. Note that we en-

sure each training subset contains an equal amount of
pairs that are versions and pairs that are not. In this

way we ensure the subsets are not biased and, there-

fore, the baseline accuracy (corresponding to making

a random guess) is 50%. The statistical significance of
the results is assessed using the paired t-test [46] with

a significance threshold of p < 0.001.

3.2 Results

3.2.1 Single Tonal Representation

We start by comparing the results obtained when us-
ing a single descriptor, either the melody, the bass line

or the harmony. In Table 1 we present the MAP and

MaRR results for the 76-song subset which was used

for training the parameters of the matching algorithm.
At first glance we see that the harmonic representa-

tion yields better results compared to the melody and

bass line descriptions. Nonetheless, the results also sug-
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Table 3 Fusion results for the different classifiers considered.

Random SMO Simple KStar Bayes
Feature Forest (PolyKernel) Logistic Net

M 69.84 76.73 75.29 77.98 77.90
B 73.34 81.03 78.98 81.31 81.03
H 82.04 87.69 86.42 87.74 87.58

M+B 79.80 82.05 80.91 84.62 84.46
H+M 84.29 87.73 86.51 88.01 87.81
H+B 84.72 87.80 86.77 88.32 88.14

H+M+B 86.15 87.80 86.83 88.46 88.24

gest that the latter two representations do indeed carry

useful information for version identification. Evidence

for the suitability of melody as a descriptor for version

identification has been reported elsewhere [23,36,42].
However, no evidence for the suitability of bass lines

has been acknowledged prior to this study. Moreover,

to the best of our knowledge, no direct comparison be-

tween these three music representations has been per-

formed previously in the literature.

To properly assess the performance of each descrip-

tor, however, a more realistic collection size is required.

Thus, we now turn to the results obtained using the
full 2125 song collection, presented in Table 2. As ex-

pected, there is a drop in performance for all three rep-

resentations (cf. [36]). The harmonic representation still

outperforms the melody and bass line descriptors, for
which the drop in performance is more considerable. It

is worth noting that the MAP results we obtain using

melody or bass line, though lower than those obtained

using harmony, are still considerably higher than those

obtained by other version identification systems using
similar (and different) types of descriptors [36].

As suggested earlier, one probable reason for the su-

periority of the harmonic representation is that some
versions simply do not contain a main melody, and

(though less often) some songs do not contain a bass

line (e.g. a singer accompanied by a guitar only). Still,

as seen in the results for the 76-song subset, even when
the melody and bass line are present, the harmonic rep-

resentation produces better matching results in most

cases. This can be attributed to the different degree of

modification applied to each tonal representation across

versions: whilst some versions may apply reharmoni-
sation, in most cases the harmony remains the least

changed out of the three music representations. Differ-

ences in the melody and bass line may also be increased

due to transcription errors, an additional step which is
not necessary for computing the HPCP.

Since the HPCP is computed using the complete au-

dio mix, we know that the melody and bass line may
also be, to some degree, represented in the HPCP. Thus,

even though the HPCP descriptor is considered to be

related to harmony, it is interesting to ask to what de-

gree is the information it encapsulates different from

the melody and bass line descriptors. This aspect, al-

beit very simple, has not been formally assessed before.

To answer this question we turn to the second part of
the evaluation, in which we examine whether fusing the

different representations results in improved matching

or not.

3.2.2 Fusion of Music Representations

The classification results for individual descriptors and

fusion approaches are presented in Table 3, where we

use “M” for melody, “B” for bass line and “H” for har-

mony (HPCP). Several observations can be made from

the results. Firstly, we note that for all descriptors and
all classifiers the results are significantly above the base-

line of 50%. We see that most classifiers perform rela-

tively similarly, though there are some notable differ-

ences. In particular, the random forest classifier pro-
vides lower results, whilst k-star consistently provides

the highest (the difference between the two is for all

cases statistically significant). As before, we note that

when using only a single representation, the harmony

provides the best performance, followed by the bass line
and, finally, the melody.

Perhaps the most interesting results are those ob-

tained by descriptor fusion. For all classifiers, combining

the melody and bass line provides increased classifica-

tion accuracy compared to using either of the two de-

scriptors separately (the increase is statistically signifi-
cant). Not surprisingly, this confirms that the two mu-

sic representations carry complementary information

and hence their combination results in increased perfor-

mance. Still, using melody and bass line together does
not outperform using the harmony on its own. The re-

maining question is thus whether combining harmony

with other descriptors improves classification accuracy.

The results are less straightforward this time. In the

case of the random forest classifier, the improvement is

clear and statistically significant. However, for the re-
mainder of classifiers the increase is not as considerable.

This suggests that the benefits of considering different

music representations are particularly important when
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the classifier has (relatively) low performance. Nonethe-

less, if we consider the results of the best performing

classifier (k-star), it turns out that the increase in ac-

curacy when combining harmony, melody, and bass line

compared to harmony alone is in fact statistically signif-
icant. Still, the small increase in accuracy (less than 1%)

indicates that our harmonic representation (HPCP), to

a great extent, carries overlapping information with the

melody and bass line.

3.3 Discussion

To better understand how these different tonal repre-

sentations can complement each other, we manually ex-
amined cases where the melody or bass line descrip-

tors produced better matching results than the HPCP.

In Figure 4 we present three dissimilarity matrices of

10 queries compared to 10 targets, where the same 10

songs are used both as the queries and the targets.
The three dissimilarity matrices are computed using (a)

HPCP, (b) melody, and (c) bass line. The dissimilarities

in each matrix are normalised by the greatest value in

each matrix so that they are visually comparable. Cells
for which the query and target are versions of the same

musical piece are marked with a black box.

An example where melody works better than the

HPCP can be seen for the version group with IDs 3,

4, and 5. We see that when using the HPCP, song 4 is
considered relatively different from songs 3 and 5 (light

color), whilst the dissimilarity is much smaller (darker

colour) when using the melody. The three songs are

different versions of the song “Strangers in the Night”
popularized by Frank Sinatra. Listening to the songs we

found that whilst versions 3 and 5 have relatively sim-

ilar orchestral arrangements, version 4 includes several

reharmonisations and entire sections where the melody

is played without any accompaniment. It is clear that
in such a case using the melody on its own will produce

smaller dissimilarities between the versions. The bass

line descriptor on the other hand does not work well in

this example, for the very same reasons.
Another interesting example is provided by the ver-

sion group with IDs 8, 9 and 10. The three songs are

different versions of the song “White Christmas” by Irv-

ing Berlin, made famous by Bing Crosby back in 1941.

Here we see that whilst song 8 is poorly matched to
songs 9 and 10 using either HPCP or melody, it is well

matched to song 10 when we use the bass line. When

listening to the songs we found that unlike versions 9

and 10, in version 8 there are sections where the melody
is solely accompanied by the bass line. In other parts

of the song the accompaniment, played by a string sec-

tion, consists of melodic motifs which interleave with
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Fig. 4 Dissimilarity matrices for 10 query and 10 target
pieces, produced using: (a) HPCP, (b) melody, (c) bass line.

the singing. Furthermore, unlike the more traditional

vocal renditions in 9 and 10, the melody in 8 is sung

in a more “talk-like” fashion, which combined with the

predominant melodic motifs of the string section causes
greater confusion in the melody extraction. The various

aforementioned differences explain why in this case the

bass line succeeds whilst the melody and HPCP do not

perform as well. Curiously, whilst song pairs 8-10 and

9-10 are well matched using the bass line, the pair 8-
9 is not. Though investigating the exact cause for this

inequality is beyond the scope of this study, a possible

explanation could be the greater degree of transcrip-

tion errors in the extracted bass line of song 9. Since
the dissimilarity computation is not metric, it is possi-

ble for transcription errors to have a greater effect on

the matching of some songs compared to others.
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The results above show that, while in most cases

the HPCP (most closely related to the harmony) is the

most reliable music representation for version match-

ing, the melody and bass line can provide useful infor-

mation in cases where the harmony undergoes consid-
erable changes or is otherwise completely removed (e.g.

a cappella singing in unison). Although this observa-

tion may seem somewhat obvious, approaches for ver-

sion matching using descriptor fusion such as [9] and the
one proposed in the current study do not take this into

account since they always use all descriptors even when

one of them may not be appropriate. Thus, a poten-

tial approach for improving matching accuracy would

be, rather than always using all descriptors, to first at-
tempt to determine which descriptors will provide the

most reliable matching results and then use only those.

For example, if we detect that one version has accom-

paniment and the other does not, we might decide to
use just the melody rather than the melody, bass line

and harmony. Another possibility would be to train a

classifier for each representation using a classification

algorithm that returns a confidence measure along with

its prediction. Then, the prediction of the classifier with
the highest confidence could be selected, unless there is

no clear winner in which case we could use the predic-

tion obtained by descriptor fusion as described in this

study.
Whilst the generality of the matching algorithm em-

ployed in this study (Section 2.2) means it can be easily

adapted to different types of time series, it is still rele-

vant to ask whether it is the most appropriate match-

ing approach for the melody and bass line sequences.
Since the algorithm was originally designed to work

with chroma features (HPCPs), it is possible that it

introduces a slight bias towards this type of time se-

ries. Another conjecture is that the intrinsic lower di-
mensionality of the melody and bass line features may

in part be the cause for the reduced performance of

these features. One of our goals for future work will be

to address these questions by evaluating and compar-

ing different matching algorithms with the melody and
bass line representations proposed in this study.

4 Query-by-Humming

As mentioned earlier, query-by-humming can be consid-
ered a special case of the more general task of version

identification. We are still interested in matching differ-

ent renditions of the same musical piece, only this time

one of the renditions is monophonic and produced by
the user themselves. The QBH method proposed here

is an almost direct application of the version identifi-

cation approach proposed in this study, with very lit-

tle modification. One important difference is that for

this task, we only use the melody-based representation.

This is because unlike the version vs. version scenario,

in this case queries will only contain melody informa-

tion (users cannot/will rarely sing the harmony or bass
line and will almost always focus on the main melody).

The melody descriptor database is created using the

same process described earlier for representing a song

for version identification: given a polyphonic recording,
we first extract the melody using [32] as outlined in Sec-

tion 2.1.1, and then perform the representation abstrac-

tion described in section 2.1.3. This step only needs to

be performed once for every song in the database and,

as noted earlier, is fully automatic.

To query for a song, the user records a (relatively)

short segment of the melody by either singing or hum-

ming into a microphone. The query may contain any

part of the melody (i.e. it does not necessarily start at
the beginning of the song), in any key, with or with-

out lyrics. The recording must then be converted into

the same representation used for complete songs in the

database. Conveniently, the polyphonic melody extrac-
tion algorithm used for full songs [32] also works very

well for monophonic transcription. This is because a

query can be viewed as a simplified song where only

the melody is present without any accompaniment. The

only significant change made to the algorithm is the re-
moval of the voicing detection step, since all detected

pitch contours will belong to the melody. Additionally,

a simple energy threshold is applied to filter any mi-

crophone noise detected during silent segments of the
query. Once the query pitch is extracted we apply the

same representation abstraction applied to full songs.

Matching is performed as before using the Qmax
algorithm [39]. The query representation is compared

against every song in the database and songs are then
returned in order of increasing dissimilarity (i.e. the

song most similar to the query is returned first, then

the second closest song, etc.). A block diagram of the

proposed approach is presented in Figure 5.

It is important to note that the proposed approach

is a proof-of-concept prototype. Most importantly, in a

large-scale QBH system it might not be feasible to com-

pare the query against every song in the database in a

reasonable amount of time, and some type of indexing
technique would be required to speed up the search. Al-

though the dissimilarity measure returned by Qmax is

not metric, indexing could be achieved using techniques

based on hashing [34] or vantage indexing [40,44]. Alter-
natively, methods exist for converting non-metric dis-

tance measures into metric distances [20], which would

allow the use of more standard indexing methods [2].
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Fig. 5 Block diagram of the proposed query-by-humming system.

4.1 Evaluation Strategy

4.1.1 Music Collections

The proposed QBH approach is evaluated using two col-

lections. The first collection contains only the canonical

version of every song from the full 2125 song collection
described in Section 3.1.1. Version sets which do not

contain the original/canonical version were discarded

due to potential confusion of the user when recording

a query (33 out of the 523 version sets described in
Section 3.1.1). This resulted in a total of 481 songs for

this “canonical” collection. Note that for this collection

there is only one correct answer for every query.

The second collection is the full set of 2125 songs

[38]. Note that this collection presents both an advan-
tage and a disadvantage compared to the canonical col-

lection. On the one hand, it is more than four times

larger, and an increase in database size often results

in a decrease in retrieval performance [34,36]. On the
other hand, the additional songs are (almost) all ver-

sions of the songs in the canonical collection, which

might increase the probability of successful retrieval

since a query that is poorly matched against the canon-

ical version of a song might be well matched against one
of its alternative versions. A list of the songs included

in the canonical and full collections is provided online4.

4.1.2 Queries

For the purpose of this evaluation, we recorded a set

of sung queries corresponding to songs in the canonical

collection described in the previous section. Subjects
were presented with a list of all 481 songs in the collec-

tion out of which they were asked to select songs and

record queries. A total of 118 queries were recorded by

17 subjects (9 female and 8 male). The smallest amount
of queries recorded by a subject was 1 and the largest

4 http://mtg.upf.edu/download/datasets/MTG-QBH

was 11, with a mean of 6.8 queries per subject. The

musical experience of the subjects ranged from none at
all to amateur musicians. To simulate a realistic sce-

nario all queries were recorded using a basic laptop mi-

crophone and no post-processing was applied. Query

duration ranged from 11 seconds to 98 seconds and the

average query duration was 26.8 seconds. The complete
set of 118 queries is available online4.

One factor that we expected to have a notable in-

fluence on the performance of the system was the self-

tuning of the sung queries. By this we refer not to the

difference in key between the query and the target song,
but to whether the singer maintains the same refer-

ence tuning throughout the query. If they do not, the

same (theoretical) note might be represented by very

different frequencies within a single query, thus dra-

matically changing the contour of the melody. Such de-
tuning was observed for roughly one third of the sub-

jects, where the reference tuning was abruptly changed

several times during a single query. To observe the effect

of this de-tuning on performance, we manually divided
the subjects into two groups: “Good Tuning” and “Bad

Tuning”. It is important to note that this division was

only based on the tuning of the singer with respect to

themselves, not on the resemblance of the sung query

to the original melody nor on any other singing quality
criterion.

4.1.3 Evaluation Measures

Two evaluation measures are used to asses the perfor-

mance of the proposed approach. The first is the mean
reciprocal rank (MRR) mentioned previously, which is

the standard measure for evaluating QBH algorithms

[6]. Recall that this measure is different from the MaRR

used to evaluate version identification in the previous
sections – for version identification we were interested

in recovering all versions of the query, and hence for

every query we computed the reciprocal ranks of all
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Table 4 QBH results for the canonical collection (481 songs).

MRR Top-X hit rate (%)
Singers 1 3 5 10
Good Tuning 0.56 50.00 60.00 61.25 63.75
Bad Tuning 0.23 21.05 21.05 23.68 26.32
All 0.45 40.68 47.46 49.15 51.69

Table 5 QBH results for the full collection (2125 songs).

MRR Top-X hit rate (%)
Singers 1 3 5 10
Good Tuning 0.67 61.25 70.00 73.75 78.75
Bad Tuning 0.33 28.95 34.21 34.21 39.47
All 0.56 50.85 58.47 61.02 66.10

target versions and averaged them, and then averaged

this value over all queries. For QBH, we are only inter-

ested in the rank of the highest correct match. Thus,
the MRR (which ranges from 0 in the worst case to 1

in the best case) for N queries is defined as:

MRR =
1

N
ΣN

i=1

1

ri

(1)

where ri is the highest rank obtained by any version of

the correct target song for query i.

The second measure is the top-X hit rate, which re-

ports the proportion of queries for which ri ≤ X . If the

system had an interface which returned X results for

every query, the top-X hit rate would describe the per-
centage of queries for which at least one of the displayed

results corresponds to the correct target song.

4.2 Results and Discussion

The retrieval results for the canonical collection are pre-

sented in Table 4. The first thing we note is that there is

a significant difference in performance between subjects

with good tuning and subjects with bad tuning. For the
former group, the correct song is ranked first in the re-

sults list 50% of the time, whilst for the latter group

only 20% of the time. Still, it is worth noting that for

all singers results are well above the random baseline
(returning a song at random from the database) which

would obtain an MRR of 0.01, top-1 hit rate of 0.15%

and top-10 hit rate of approximately 2%. It is also in-

teresting to note that the top-1 hit rate for singers with

good tuning is not too far below the top-1 hit rate re-
ported for humans attempting to identify queries manu-

ally (66%), as reported by Pardo and Birmingham [26].

When comparing the two groups we note that whilst

for good tuning increasing the size of the result list in-
creases the chance of finding the correct answer (14%

increase between the top-1 and top-10 hit rate), for sub-

jects with poor tuning the increase is a lot smaller (5%).

Another interesting observation is that even for sub-

jects with good tuning, the correct song appears in the

top-10 results just 64% of the time, suggesting there is

still much room for improvement. Nonetheless, the re-

sults are definitely encouraging, obtaining comparable
performance to [30] (and outperforming [7]) on a collec-

tion of similar size even though only few changes were

made to adapt the approach from version identification

to QBH. For singers with poor tuning on the other hand
it is clear that there is much work to be done. It is in-

teresting to note that despite its significant influence

on performance, the issue of query self-tuning has not

been addressed in the previous studies mentioned here.

In the future we intend to further investigate the influ-
ence of query de-tuning on performance, and research

techniques for overcoming such de-tuning. Another pos-

sibility would be to try and avoid the de-tuning problem

altogether by helping subjects maintain a fixed refer-
ence tuning (e.g. providing a fixed reference tone dur-

ing query recording). Finally, it is probably valid to ask

whether we should expect a singing-based retrieval sys-

tem to work for subjects with poor tuning, who might

be directly better off trying search methods which do
not involve singing such as query-by-example [34] or

query-by-tapping [14].

Next, we turn to the results obtained for the full

2125 song collection (Table 5). We see that there is a
significant improvement in performance for both sub-

ject groups. As proposed earlier, the cause for this im-

provement (despite the increased database size) is the

addition of cover versions to the collection, meaning we

increase the possibility of finding a correct match for
queries that do not match the canonical version of the

song. Another potential cause for this improvement is

that using several versions of each song increases the

probability of extracting at least one version of the
melody with high-accuracy, thus improving retrieval

performance for songs where the melody extraction step

did not work well for the canonical version.

The improved performance for the full collection is

encouraging, with an MRR of 0.67 and top-10 hit rate
of almost 80% for subjects with stable reference tun-

ing. It also highlights an important fact – the more

versions we have of the same song in the collection,

the better the chances of retrieving it will be. This

fact is exploited by approaches such as [27] where the
database is directly composed of queries. By combin-

ing the two approaches, we can obtain a system that

does not suffer from the cold start problem (the initial

descriptor database is created using the melody extrac-
tion algorithm) and whose performance improves the

more people use it (by adding successful queries into

the database).
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5 Conclusion

To date, the use of different music representations for
computing version similarity has not received the at-

tention it deserves. In this paper we have taken a nec-

essary step in this research direction, which not only

holds the promise of improving identification accuracy,
but also improving our understanding of the relation-

ship between different musical cues in the context of

music similarity. Three types of descriptors were com-

pared in this study, related to the melody, bass line and

harmony. We studied different degrees of abstraction
for representing the melody and bass line, and found

that abstracting away octave information and quantis-

ing pitch information to a semitone level are both nec-

essary steps for obtaining useful descriptors for version
identification. The new melody and bass line descrip-

tors were evaluated on a relatively large test collection,

and shown to carry useful information for version iden-

tification. Combined with the proposed matching al-

gorithm, our melody and bass line descriptors obtain
MAP results comparable to (and in some cases higher

than) other state-of-the-art version identification sys-

tems. Still, it was determined that in most cases the

harmony based descriptor gives better matching accu-
racy. We have also shown that by using a classification

approach for descriptor fusion we can improve accuracy,

though the increase over using harmony alone is (albeit

significant) small.

Finally, we have demonstrated how the proposed

version identification method can be adapted for the
related task of query-by-humming. A prototype sys-

tem was presented and evaluated against two collec-

tions, one containing only the canonical version of each

song and the other containing both the canonical and
cover versions of each song. The approach was shown

to obtain results comparable to those presented in pre-

vious studies, and current limitations were identified

for future improvement. It was then shown how perfor-
mance can be increased significantly by including more

than one version of each song in the target database.

In the future we intend to investigate the influence of

different factors on retrieval performance such as query

length and melody extraction accuracy. Also, as with
the proposed version identification method, we intend

to evaluate the proposed QBH approach using different

distance measures and compare the results to those ob-

tained using Qmax. Whilst there is still much work to
be done in this area, the results presented here serve

as a proof-of-concept and will hopefully lead to the fu-

ture development of fully automated high-performance

QBH solutions.
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