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ABSTRACT
As artificial agents become increasingly embedded in our society,
we must ensure that their behavior aligns with human values. Value
alignment entails value inference, the process of identifying values
and reasoning about how humans prioritize values. We introduce
a holistic framework that connects the technical (AI) components
necessary for value inference. Subsequently, we discuss how hybrid
intelligence—the synergy of human and artificial intelligence—is
instrumental to the success of value inference. Finally, we illustrate
how value inference both poses significant challenges and provides
novel opportunities for multiagent systems research.
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1 INTRODUCTION
Values are the abstract motivations that drive our opinions and
actions [81]. The relative importance we ascribe to different values
(our value preferences) guides our actions. However, how individuals
prioritize values is significantly influenced by the socio-cultural
environment [23] and the decision context [42, 56]. For instance,
consider how the conflict between the values of freedom and safety
has shaped the conversation around COVID-19. In sociotechnical
systems (STSs) [64, 68], values can be operationalized at both micro
and macro [18, 66, 100] levels. At a micro level, an agent ought
to align its actions with individuals’ value preferences, e.g., by
respecting their desire of privacy [1, 63, 65]. At a macro level, values
can yield norms to govern the STS [7, 61, 68, 83].
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An important step toward a value-aligned STS is value inference,
the process of identifying values and reasoning about stakeholders’
value preferences. Value inference is a prerequisite for creating
systems that align with stakeholders’ value preferences. However,
inferring values is not trivial. Directly asking humans about their
value preferences (e.g., through questionnaires [31, 81]) often leads
to incomplete and hypothetical answers that do not reflect real-life
behavior [14]. Thus, value preferences ought to be observed from
behavior [77]—from our actions and justifications for those.

We identify the fundamental steps of value inference in an STS as
(1) identification (which values are relevant to a context?), (2) estima-
tion (how does each stakeholder prioritize values?), and (3) aggrega-
tion (what is the societal consensus from individual preferences?).

Value inference cannot be performed solely via computational
methods (e.g., machine learning from human behavioral data). Since
value reasoning is cognitively challenging [51, 73] and implicit in
human thinking [41, 53], values may not be explicitly evident in
behavioral data. Further, often humans can express their values
only in concrete situations, and values can be emergent [43]. Thus,
humans should be systematically guided through the processes of
self-reflection [53, 72] and deliberation [22, 37] to become aware of
their value preferences and how they change based on context.

There is an increasing body of AI literature on value inference,
focusing on the identification of values [55, 56, 98], the classifica-
tion of values in text [4, 45, 54], the estimation of individual value
preferences [85], and the societal aggregation of value preferences
[52]. However, real-world applications often require a combination
of these functionalities. In this paper, we offer a holistic view on
how the pieces of value inference fit together.

2 VALUE INFERENCE
Figure 1 outlines the challenges of value inference as a modular
framework consisting of the steps necessary to go from the be-
havioral data to the individual and aggregated value preferences.
The dark blocks in Figure 1 represent processes and the light blocks
represent the data these processes consume or produce.

Our framework’s modularization has two advantages. First, the
separation of concerns into processes delineates research challenges.
Second, the interdependencies between processes expose research
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Figure 1: Value inference processes (dark-colored blocks) and data (light-colored blocks) as a modular framework.

challenges that can otherwise fall through the gaps. For example, al-
though value identification influences value preferences estimation
and aggregation, these connections are largely unexplored.

In our framework, values are inferred from behavioral data. We
consider stakeholders’ actions, e.g., how they choose over com-
peting alternatives [11, 95, 101] or solve a problem [36, 67, 77],
as behavioral data. However, value preferences are often implicit
in actions and inferring values solely based on actions is difficult.
Since language is an important means of value expression, the value
preferences underlying our decisions can be observed in the justifi-
cations we provide for those decisions [31, 80]. Thus, we can exploit
the observation of both actions and justifications as the behavioral
data that is input to the value inference framework.

Value Identification. Value identification is the process of identi-
fying the set of values relevant to a decision context.

State-of-the-Art. Lists of basic human values, applicable across cul-
tures and contexts, have been proposed by ethicists [75, 81] and
psychologists [31]. However, such lists are too generic for practical
applications [51, 56, 72] and are identified by experts without active
stakeholder participation. Value Sensitive Design (VSD) [26] pro-
poses participatory methods for identifying stakeholders’ values,
e.g., Tuomela et al. [93] employ sensory ethnography to identify the
values of users of a smart home energy management system. How-
ever, VSD methods usually involve small numbers of stakeholders.
Data-driven methods for identifying values have also been pro-
posed, e.g., Wilson et al. [98] (building on Boyd et al. [15]) identify
a hierarchy of basic values from user-generate textual content.

Directions. Research suggests that not all basic values are relevant
to all contexts [51, 56, 72, 81]. Further, an individual’s value pref-
erences may not be consistent across contexts [20, 96]. That is,
how an individual interprets and prioritizes values depends on con-
text. For instance, one might generally value freedom over safety,
but prioritize safety over freedom during a global pandemic. Lis-
cio et al. [55, 56] advocate for context-specific values, applicable
and defined within a context, arguing that context-specific values
are more suitable than basic values for concrete applications (e.g.,
designing policies). They propose a method for identifying context-
specific values, but they involve stakeholders only passively (i.e., by
analyzing their deliberation input), while the value identification
process is performed by a small group of experts. A comprehensive
value list ought to be identified with the active involvement of a
representative set of stakeholders and updated over time.

Value Systems Estimation. Values can be ordered according to
their subjective importance as guiding principles [81]. Each person
has a value system that internally defines the importance of values
according to their preference and context. In literature, value sys-
tems are typically represented as preference rankings over a set of

values [83, 85, 102]. Value estimation is the process of determining
an individual’s value system based on their observed behavior.

State-of-the-Art. Value systems are traditionally estimated via sur-
veys [32, 81, 97] over a predefined value list. However, surveys are
criticized for not grounding value preferences to a context [56, 72].
VSD methods situate value estimation in a design context by, e.g.,
showing relevant photos [51, 72] or videos [93]. Yet, the need for
human moderation limits the scale in which VSD methods can
be applied. In contrast, Inverse Reinforcement Learning (IRL) [67]
learns humans’ reward functions based on the observed actions,
and Cooperative IRL (CIRL) [36] augments IRL with human feed-
back. However, IRL assumes that humans are aware of their reward
functions and is criticized for the infeasibility of estimating an
individual’s rationality and value preferences simultaneously [60].

Directions. As language is our preferred way to express values
[31, 80], we envision value systems estimation to be based on both
actions and justifications. To this end, Siebert et al. [85] estimate
individual value systems from choices and motivations provided
in a survey, prioritizing the values expressed in motivations. Re-
cently, several natural language processing (NLP) methods have
been proposed for value classification [4, 6, 40, 45, 54], a task iden-
tified as necessary for large-scale data processing by the European
Commission [79]. With the combination of NLP methods and CIRL,
AI agents can estimate value preferences, interactively. However,
AI techniques alone are not sufficient, as value preferences are
often implicit in our thinking and change over time [41, 60, 91].
Thus, value estimation must be an iterative process, facilitated via
self-reflection and deliberation, as we elaborate in Section 3.

Value Systems Aggregation. Value aggregation is the process of
aggregating individual value systems into a societal value system,
aiming to best represent the societal value canvas [27].

State-of-the-Art. The problem of aggregating preferences (e.g., rank-
ings) over a set of objects is widely studied in the computational
social choice literature. González-Pachón and Romero [29, 30] show
how to aggregate preferences considering an ethical principle that
is either utilitarian (i.e., the consensus value system is closest to the
majority) or egalitarian (i.e., the consensus value system minimizes
the maximum distance with the most displaced individual, hence
avoiding the “tyranny of the majority”). To the best of our knowl-
edge, the only work that explicitly addresses value aggregation is
by Lera-Leri et al. [52], who propose a method to compute the con-
sensus value system according to any ethical principle, including
non-egalitarian and non-utilitarian ones, and test the method on
answers to the European Value Survey [95].

Directions. Lera-Leri et al. [52] compute one consensus value sys-
tem according to one ethical principle. However, it is necessary to
consider multiple consensus value systems when individuals are



naturally clustered around different consensuses instead of a single
consensus that might not be representative of any individual. From
an optimization perspective, this endeavor amounts to solving a
clustering [25] or, more generally, a coalition structure generation
problem [17]. Further, value systems can be computed according to
multiple ethical principles at the same time as individuals might not
agree on a single ethical principle for the aggregation problem. Fi-
nally, recent research has investigated the importance of providing
explanations for decision-making algorithms such as computational
social choice [12, 13] and team formation [28]. Explanations are
instrumental in collecting stakeholders’ feedback, which is critical
to validating and improving the value aggregation process.

3 HYBRID VALUE INFERENCE
Value inference, as a purely AI task, where a sequence of computa-
tional (e.g., machine learning) methods are applied on behavioral
data, is not likely to yield good estimates of individual and so-
cietal value systems. This is because value preferences are often
implicit to humans [41, 53, 91] and are, thus, not easily observable
in the behavioral data. Hence, we must actively engage humans, via
self-reflection and deliberation, for successful value inference. This
makes value inference a hybrid intelligence endeavor [2], requiring
human and artificial intelligence to augment each other. Figure 2
shows an overview of the hybrid framework we envision.
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Figure 2: A hybrid framework, where agents assist humans in
self-reflecting and deliberating on value inference processes.

Self-Reflection. Humansmust bemade aware of values and guided
through value reasoning via a process of self-reflection [53, 72]. Self-
reflection can be achieved by creating feedback loops among the
components in our framework. That is, based on the observed be-
havior and the inferred values, AI agents can interact with humans
and help them reflect about their value systems. Agents can facili-
tate self-reflection by situating value reasoning in specific contexts
and behaviors, e.g., by asking concrete questions such as what moti-
vated a human to choose a specific action in a context, as opposed to
asking generic and hypothetical questions over value preferences.

Deliberation. In addition to self-reflection, deliberating with oth-
ers [22, 37] and confronting individuals with different value systems
[79] help us in discovering our own value systems. To this end, an
increasing number of digital deliberation platforms have been pro-
posed [48, 84]. However, the deliberation quality in unmoderated
platforms is often poor, due to polarization and lack of inclusivity

[16, 46]. AI-supported human moderation improves deliberation
quality [47] but requires large numbers of human moderators. Re-
cently, artificial moderating agents [34, 35] have been proposed
to facilitate large-scale deliberation, e.g., a moderating agent can
automatically add targeted comments to foster back-and-forth dis-
cussions and increase the depth of deliberation.

A Motivating Example
We introduce an example to demonstrate how self-reflection and
deliberation can be fostered in a hybrid value inference framework.

Consider a participatory decision-making situation in which
policy makers consult the relevant stakeholders to create COVID-
19 regulations. In this case, there is a large variety of stakeholders,
including ordinary citizens, healthcare providers, transit authorities,
small businesses, and so on. The policy makers seek regulations that
satisfy technical constraints (e.g., beds available in the intensive
care units) but also align with the stakeholders’ value preferences.

To infer the stakeholders’ values about potential COVID-19 regu-
lations, policy makers set up a digital deliberation on the issue [38],
where participants discuss the impacts of proposed regulations on
the healthcare system and the society, and they may vote on differ-
ent proposals. Artificial agents moderate the discussion by fostering
idea sharing and confrontation to increase the deliberation quality.

Value inference can be initially performed based on the partici-
pants’ behavior on the platform, and subsequently refined through
self-reflection and deliberation. Consider that, for a stakeholder,
Amber, the estimated individual value system is noticeably dif-
ferent from the aggregated societal value system. Amber’s agent
investigates this discrepancy. Amber’s value system can be incor-
rectly inferred because (1) the set of identified values does not
fully represent Amber’s value sentiment (which requires revisiting
value identification), (2) Amber’s behavior has been misinterpreted
(which requires revisiting value estimation), or (3) Amber disagrees
that her value system is different from the societal value system
(which requires revisiting value aggregation).

Next, Amber’s agent can guide her in reflecting on the estimated
value systems. For example, if the estimated individual value system
is inaccurate because not enough input has been provided in the
deliberation, the agent may ask Amber for additional value-laden
input through targeted questions (e.g., asking a justification for a
specific upvote). The agent can additionally provide explanations
about the value inference processes or show the values that were
identified from the arguments proposed by Amber. Eventually, the
individual value system can remain dissimilar to the aggregated
value system. However, through this investigation, Amber is sys-
tematically guided by her agent to reflect on her value system.

Finally, Amber and her agent may initiate discussions with other
stakeholders and their agents to adjust the value inference pro-
cesses. For instance, the value list may have to be updated, the NLP
model for value estimation may need to account for a minority
language, or an aggregation parameter may need to be adjusted to
egalitarian instead of utilitarian setting. Importantly, the adjustment
of the value inference processes should not be fully automatic. The
involvement of relevant stakeholders is essential for meaningful
human control [86] on the value inference framework.



4 CHALLENGES AND OPPORTUNITIES
We now relate the computational and human-centered research
challenges and opportunities associated with hybrid value inference
to several emerging research topics in AI. This demonstrates that
value inference is a cross-cutting topic that can contribute to and
benefit from interdisciplinary research.

Explainability. We identify three connections between explain-
able AI (XAI) and value inference. First, we emphasize the impor-
tance of interactive explanations [9, 59, 76], as AI users find a single
explanation insufficient [49]. Dialogue-based interactive explana-
tions are a key research challenge for realizing the hybrid value
inference framework we envision. Second, explanations are crucial
for validating the value inference processes. We envision an AI
system that provides explanations for each value inference pro-
cess with the intent of improving the process itself. To this end,
actionable explanations (i.e., explanations that humans or agents
can act upon) constitute an essential research avenue [9, 44, 74].
Third, we point to the novel challenge of generating value-based
explanations [99], i.e., natural language clarifications that expose
an underlying value reasoning. Such explanations are necessary
for communicating the results of value inference to stakeholders.

Bias, Fairness, andQuality of Data. Value inference is crucial
for sensitive AI applications, e.g., to make life-changing decisions
in a healthcare STS. Therefore, it is essential to guarantee that these
decisions do not reflect discriminatory behavior. This amounts to
ensuring that the value inference processes are fair and free of
bias [50, 57]. This is part of the broader challenge of ensuring the
quality of the data employed by the value inference processes. To
this end, strategies must be devised to curate (build, maintain, and
evaluate) the datasets involved in value inference. For example,
qualitative and quantitative relationships between value datasets
can be modeled in a knowledge graph to describe the links between
the (context-specific) values inferred in the associated contexts.
This is in line with the emerging trend on Data-Centric AI [90],
which recommends a focus shift from the models to the underlying
data used to train and evaluate models.

Resilience. Value inference is sensitive to misbehavior, as humans
may misreport or maliciously misguide their agents when provid-
ing feedback. We envision two related research challenges. On the
one hand, we can consider how to deter manipulation, which is
challenging because it calls for the detection of individual and col-
lective misbehaviors [3]. This would require collaboration with
social scientists and economists to design mechanisms for encour-
aging truthful reporting and feedback that prevent manipulation.
On the other hand, we ought to analyze and empirically quantify
the resilience of the value inference processes when coping with
varying populations of misbehaving humans (e.g., by investigating
the robustness of the system [62, 82]). For example, the aggregation
procedure proposed by Lera-Leri et al. [52] can be sensitive to mis-
reports when computing a consensus according to an egalitarian
ethical principle (i.e., with the focus on minorities), since even a
single misreport can significantly affect the outcome of the aggrega-
tion. Importantly, given the compositional nature of the proposed
value inference framework, resilience should be quantified both for
individual processes and for the framework as a whole.

Verification and Validation. The results of value inference need
to be both verified (i.e., checking whether the processes operate
as intended) and validated (i.e., checking whether the system op-
erates to the satisfaction of the users) [8]. Both verification and
validation can be performed via hybrid intelligence as described in
Section 3. Although value inference can be incrementally verified
and validated throughout the lifecycle of an STS, it is necessary
to define a moment in which the results are sufficiently satisfac-
tory for being operationalized (e.g., to design policies). Identifying
such satisfaction criterion is a significant research challenge. This
investigation is akin to measuring saturation in qualitative analysis
[78], which considers, among other, stakeholders’ validation of each
value inference process, time and effort required by stakeholders,
and evolution of the results (e.g., by identifying asymptotic trends).

Responsible Autonomy. Designing autonomous agents that align
with their human users’ values is an important step toward trust-
worthy AI [87, 88]. To this end, the value inference processes must
be legitimate [10, 33]. The involvement of stakeholders in the hy-
brid value inference processes is key to legitimacy, as stakeholders
ought to believe that the overall procedure is fair [69]. In particular,
consent and dissent are important aspects for ensuring legitimacy
[24, 88]. On the one hand, for value inference to be legitimate, the
stakeholders must consent to the inference processes. In addition,
there must be explicit dissent channels for the stakeholders to ques-
tion the outcomes of the inference processes. On the other hand,
value inference enables a broader understanding of consent, as
advocated by Pitkin [70, 71], as not merely seeking a stakeholder’s
permission but evaluating whether the consented action aligns
with the stakeholder’s values. Although the concepts of consent
and dissent are well-studied in the legal literature [5], computa-
tional modelling of these abstractions is an open challenge.

5 CONCLUSIONS
Values ought to be considered when building an ethical STS. We
explore the challenge of value inference—the endeavor of identi-
fying values and eliciting value preferences both at the individual
and societal levels. We outline the components of value inference
(identification, estimation, and aggregation), and motivate how a
hybrid intelligence approach is instrumental in performing value
inference. Finally, we present the related research challenges and
opportunities that span multiple AI fields (e.g., MAS and NLP), but
also other disciplines including ethics and social sciences.

In practice, value inference is followed by the operationalization
of values, both at agent and STS levels, which has been explored in
the multiagent community. Values have been used for modeling an
individual agent’s behavior [1, 63, 65, 94], eliciting appropriate trust
[58], plan selection [19], negotiation [7], social simulation [39], and
engineering normative systems [61, 62, 83, 89]. We envision value
inference and operationalization as actively influencing each other
throughout the lifecycle of an STS. An example of such a connection
is the evaluation of norm compliance [21, 92], i.e., assessing whether
the implemented norms align with the inferred values. Investigating
the interdependence of value inference and operationalization is a
significant task on its own, which we defer to future work.
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