
Boosting MUS Extraction

Santiago Macho González and Pedro Meseguer

IIIA, Institut d’Investigació en Intel.ligència Artificial
CSIC, Consejo Superior de Investigaciones Cient́ıficas

Campus UAB, 08193 Bellaterra, Catalonia, Spain.
{smacho|pedro}@iiia.csic.es

Abstract. If a CSP instance has no solution, it contains a smaller un-
solvable subproblem that makes unsolvable the whole problem. When
solving such instance, instead of just returning the “no solution” mes-
sage, it is of interest to return an unsolvable subproblem. The detection
of such unsolvable subproblems has many applications: failure expla-
nation, error diagnosis, planning, intelligent backtracking, etc. In this
paper, we give a method for extracting a Minimal Unsolvable Subprob-
lem (MUS) from a CSP based on a Forward Checking algorithm with
Dynamic Variable Ordering (FC-DVO). We propose an approach that
improves existing techniques using a two steps algorithm. In the first
step, we detect an unsolvable subproblem selecting a set of constraints,
while in the second step we refine this unsolvable subproblem until a
MUS is obtained. We provide experimental results that show how our
approach improves other approaches based on MAC-DVO algorithms.

1 Introduction

Constraint Satisfaction Problems (CSPs) have been applied with great success
to tasks dealing with resource allocation, scheduling, planning, configuration and
others. When a CSP instance has solution, the solver returns an assignment of
values to variables such that all constraints are satisfied. But when a CSP in-
stance is unsolvable, often the solver just returns a “no solution” message. In
recent years, conflict-based reasoning is gaining interest in the field of constraint
satisfaction. Instead of just certify that a CSP instance is unsolvable, more in-
teresting is explaining why this instance has no solution. These explanations are
useful in many settings: interactive applications, error diagnosis, planning, intel-
ligent backtracking, etc. In early years, several authors focused on conflict based
reasoning [19, 8, 22]. More recent work [13] focuses on extracting a minimal un-
solvable subset (MUS) from the unsolvable problem, where minimal means that
all subproblems of the MUS are solvable and all superproblems are unsolvable.

In the SAT field (Boolean satisfiability), many methods for finding MUSes
have been developed. Early work [4, 3, 18, 23] was limited to find a single unsat-
isfiable subformula (US) but without guaranteeing its minimality. These unsat-
isfiable subformula can be minimized into a MUS using the “Minimal Unsatisfi-
ability Prover” developed in [11]. Very interesting is the work presented in [15]

where authors developed a sound and complete technique for finding all MUSes
of a CNF formula, based on a strong relationship between maximal satisfiability
and minimal unsatisfiability [17]. This relationship also was noted by [1].

The notion of Maximal Satisfiable Subset(MSS) as a complement of a MUS is
presented in [16]. The authors show that MUSes and MSS are implicit encoding
one of the other. They have shown that a the complement of a MSS (CoMSS)
is a hitting set of the set of MUSes and contains the minimal set of constraints
that should be removed in order to restore consistency.

We have to mention the approach presented in [10] that computes a MUS
using a two-step algorithm. Firstly they filter constraints that will not participate
in the no-solution condition, obtaining an unsolvable subset of the original CSP.
This subset is used in the second step, to identify the constraints that belong
to a MUS. In order to have a competitive algorithm, authors use a solver that
implements a MAC algorithm with dynamic variable ordering (DVO). Up to
our knowledge, this combination achieves the highest efficiency among published
approaches for MUS extraction.

The contribution that we present in this paper follows a similar strategy.
Given a CSP instance without solution, in a first step we obtain an unsolv-
able subproblem by performing a forward checking search with dynamic vari-
able ordering (FC-DVO), and computing the hitting set among the subsets of
constraints involved in the no-solution condition. This process is iterated while
getting unsatisfiable subproblems of lower size, with the help of a heuristic to
select variables that are likely to be in a MUS. In a second step, once a MUS can-
didate has been selected, it is refined until obtaining a true MUS, as the second
step of [10]. Experimentally, we obtain a significant improvement in performance
with respect to the results of [10].

This paper is organized as follows. In Section 2, we discuss the relation of our
approach with abstraction in constraint processing. In Section 3 we introduce
the theoretical background needed for the paper. The detailed algorithm appears
in Section 4, while the experimental results are in Section 5. There, we compare
the performance of our approach against the algorithm described in [10] that is
the most efficient implementation we have found to calculate a MUS. Finally in
Section 6, we summarize our approach and discuss future work.

2 MUS and Abstraction

In the constraint reasoning literature, a new contribution to CSP solving is usu-
ally given at low level : typically, a new algorithm, heuristic, or combination of
solving methods is presented in every detail, showing how the individual ele-
ments of a CSP instance (variables, values, constraints) evolve to find a solution
or to show that none exists. On the other hand, contributions that see a CSP
instance as a collection of subproblems that interact among them are much more
scarce. We call these high level descriptions, where the emphasis is not on the
atomic components of the instance, but on subproblems, as an intermediate en-
tity between individual elements and the whole instance. High level descriptions

provide an alternative view on CSPs, allowing for a kind of reasoning different
from the one based on atomic elements. For instance, one may want to find a sub-
problem having a particular property. This may generate heuristics of variable
ordering, original ways of constraint processing or unexpected solving strategies.
Although infrequent, this approach is not new in the constraint literature. With-
out trying to be exhaustive, we mention as representative examples the following
works [6] [21] [5].

A simple example of high level description is the analysis of unsolvable CSP
instances. If an instance has no solution, it contains at least one minimal un-
satisfiable subproblem (MUS). Until this MUS is not solved (modifying it by
removing some constraints or enlarging domains), the whole instance will re-
main without solution. Therefore, once we have seen that the original instance
has no solution, the identification and extraction of this MUS by efficient algo-
rithms is a primary goal, if we want to be able to solve the original CSP instance
(in fact, an instance closer to the original instance, since this one is unsolvable).

High level descriptions can be seen as abstractions, where the emphasis is put
on subproblem properties and particular details of atomic elements are ignored.
Abstractions provide new perspectives on the problem, and allow for useful rea-
soning mechanisms. By no means we are advocating to consider reasoning at
high level only, and forgetting the low level description. We stress the usefulness
of reasoning at high level, but once it is done, you have to go down the low level
and perform the work there. In some sense, reasoning at high level drives the
computational activity to be performed at low level.

This paper combines reasoning at both levels. Our goal is to find an efficient
way to extract a MUS, once the original instance has been proven unsolvable.
Efficiency is crucial here, because after MUS extraction, the new instance has to
be solved again. Without an efficient MUS extraction, the whole approach would
be practically unfeasible. Reasoning at high level, we have devised an heuristic
for selecting candidate variables for an hypothetical MUS. This heuristic is ap-
plied at low level, combined with a forward checking algorithm [9]. We obtain
a unsolvable subproblem, which is later refined to obtain a true MUS, using an
already known approach. Experimentally, we have seen that this heuristic gives
quite good results, improving the efficiency of the most performant approach
published up to date [10].

3 Theoretical Background

This Section provides the reader with the notions needed to follow the paper.

Definition 1 (CSP). A CSP is defined by a tuple 〈X, D, C〉 where,

– X = {x1, x2, ..., xn} is a set of n variables.
– D = {D1, D2, ..., Dn} is a set of n domains, where variable xk takes values

in Dk.

– C = {c1, c2, . . . , cr} is a set of r constraints. A constraint c involves a se-
quence of variables var(c) = 〈xp, . . . , xq〉 denominated its scope. The exten-
sion of c is the relation rel(c) defined on var(c), formed by the permitted
value tuples on the constraint scope.

A solution of the CSP is an instantiation of values to all variables such that the
assigned values belong to the corresponding domains, and this instantiation sat-
isfies all constraints in C. Sometimes, it is not possible to find such instantiation,
in that case the problem is unsolvable.

Definition 2 (Subproblem). Let P = 〈X, D, C〉 be a CSP. A subset of vari-
ables S ⊂ X defines the subproblem P |S = 〈S, D|S , C|S〉, where D|S is the subset
of domains of variables in S and C|S is the subset of constraints with their scopes
in S. The size of the subproblem is |S|.

When a CSP is unsolvable, instead of return the message of “no solution”, could
be interesting to return the unsolvable subproblem that makes unsolvable the
whole problem. If we refine this unsolvable subproblem, identifying the minimal
subset of constraints causing that the problem has no solution, we obtain a
subproblem useful in many applications: explanation, diagnosis, planning, etc.

Definition 3 (Minimal Unsolvable Subproblem). Let P = 〈X, D, C〉 be
a CSP without solution. A minimal unsolvable subproblem is determined by a
subset of variables S ⊂ X such that P |S is unsolvable, but for any proper subset
S′ (S, P |S′ is solvable.

Definition 4 (Hitting Set). Given a collection of sets S = {S1, . . . , Sn}, a
hitting set of S, HST (S), is a set that contains at least one element from each
set S1, . . . , Sn, that is, ∀Si ∈ S, HST (S) ∩ Si 6= ∅.

Example 1. Let S = {S1, S2, S3} where S1 = {c12} S2 = {c03, c23, c13} S3 =
{c23, c13}. There are several hitting sets of S, i.e: HST1(S) = {c12, c23} HST2(S) =
{c12, c13} HST3(S) = {c12, c13, c03}.

The hitting set problem can be prove to be NP-complete by a reduction from
the vertex cover problem [7].

Proposition 1. Let P = 〈X, D, C〉 be a CSP without solution, explored by the
forward checking (FC) algorithm. Let CONS ⊂ X be the subset of variables
that have been assigned by FC. Let EMPTY ⊂ X be the subset of variables for
which an empty domain has been detected. Calling S = CONS ∪EMPTY , the
subproblem Q = 〈S, D|S , C ′〉, where C ′ = {c ∈ C|c is responsible for eliminating
values of the domain of a variable that either was assigned or became empty at
each branch} is unsolvable.

Proof. To prove this result, it is enough to realize that FC only assigns variables
in CONS and only requires variables in EMPTY to detect that there is no
solution, using constraints of C ′. Therefore, if S = CONS ∪ EMPTY , FC will
find that Q has no solution, by simply repeating the variable instantiation order
used in the FC execution on P . �

(a) (b)

Fig. 1. (a) CSP (b) Its search tree generated by the FC algorithm.

Thus, following proposition 1, we can obtain an equivalent unsolvable subprob-
lem of the original unsolvable CSP using a FC Solver. It is important to remark
that proposition 1 is true either for static or dynamic variable ordering.

Example 2. Let MUS = {x0, x1, x2} be a minimal unsolvable subset of the CSP
shown in Figure 1(a) where constraints indicate allowed values between variables.
Figure 1(b) shows the corresponding search tree generated by FC algorithm with
static order x1, x0, x3, x2. Here CONS = {x1, x0}, EMPTY = {x2, x0, x3}.

Example 3. Figure 2 shows the generated unsolvable subproblem following propo-
sition 1. This subproblem is made by the union of the failed constraints of all
branches. In the example, C = {c01 ∧ c02, c01 ∧ c03, c01 ∧ c02, c01, c13, c01, c13}
that is equivalent to C = {c01, c02, c03, c13}. In this example, the unsolvable
subproblem obtained is equal than the original CSP.

Fig. 2. An unsolvable subproblem of the CSP shown in Figure 1(a).

We notice in example 3 that the selected constraints are more than enough
to guarantee the no-solution condition. If we study in more detail the search tree
of the Figure 1(b), in every failed branch we have a disjunction of constraints,
i.e: the leftmost branch has as failed constraints {c01∧c02, c01∧c03}. That means
that in this branch, only the constraint c01 ∧ c02 or the constraint c01 ∧ c03 is
necessary to produce an empty domain in variable x2. The same analysis is valid
for all branches of the search tree. Thus, if we select at least one constraint
from each branch, the resulting set will be an unsatisfiable subset of the original
problem. This is the definition of Hitting Set. The set of constraints of every
branch, CCi, is made by selecting the constraints C ′ that justify failure in each
branch as explained in proposition 1. This generates the following result.

Proposition 2. Let 〈X, D, C〉 be a CSP without solution, explored by FC. Let
CC be the collection of subsets of constraints that justify failure at each branch.
Then, 〈X, D, HTS(CC)〉 is unsolvable.

Proof. CC = {CC1, ..., CCk} is the collection of subsets of constraints justifying
failure, one for each branch. The structure of one of these subsets is CCi =
{{ci1 , ..., cip

}, ..., {cir
, ..., cit

}}, meaning that each element of CCi is enough to
justify failure in its branch. Since HTS(CC) takes at least one element of each
subset CCi, FC on the subproblem 〈X, D, HTS(CC)〉 will also fail in every
branch. So this subproblem has no solution. �

Example 4. In the CSP of the Figure 1(a), let CCi represents the set of the
selected failed constraints by proposition 1. From the leftmost branch to the
rightmost branch of the search tree 1(b), we obtain: CC1 = {c01 ∧ c02, c01 ∧
c03}, CC2 = {c01∧ c02}, CC3 = {c01, c13}, CC4 = {c01}, CC5 = {c13}. Let CC =
{CC1, CC2, CC3, CC4, CC5}. Every Hitting Set of CC produces an unsolvable
subset. i.e: HST (CC) = {c01, c02, c13} as shown in Figure 3.

Thus, we can develop an algorithm to obtain an unsolvable subset, firstly
selecting the constraints that justify failure at every branch of the search tree

Fig. 3. An unsolvable subproblem of the CSP shown in Figure 1(a).

and afterwards calculating its HST. In addition, if the variables that are likely
to be in a MUS are put first in the search tree, the subproblem size tend to be
smaller. The following result helps to detect such variables.

Proposition 3. Let a CSP without solution, explored by FC-SVO. Let EMPTY ⊂
X be the subset of variables for which an empty domain has been detected during
search. EMPTY contains a variable of a MUS.

Proof. Let us consider the deepest branch instantiated by FC-SVO, formed by
the ordered set of variables {x1, ..., xk}. From the FC-SVO search, we know that
{x1, ..., xk} ∪ EMPTY is unsolvable. But the subset of variables {x1, ..., xk} is
solvable, because FC-SVO has instantiated it. Therefore, it should exist at least
one variable in EMPTY , the other subset of variables, that makes the whole
subproblem unsolvable. To see that it must belong to a minimal unsolvable
subproblem, it is enough to realize that inside any unsolvable subproblem there
is a minimal unsolvable one. �

We will use this result, valid for static variable ordering only, as a heuristic
when forward checking uses dynamic variable ordering. This heuristic will help
trying to detect MUS variables, as we will see in the next Section.

4 The CORE-FC Algorithm

In this Section we present the algorithm CORE-FC, that implements our ap-
proach. It extracts a MUS from an unsolvable CSP instance, using the theoretical
background previously introduced. Having an unsolvable CSP, the basic idea of
CORE-FC (algorithm 1) is first to generate an unsolvable subset using the func-
tion CORE-FC1 and afterwards refine this subset with function CORE-FC2
until a minimal subset is found. We describe these algorithms in the following.

4.1 The CORE-FC1 Algorithm

As mentioned before, the goal of CORE-FC1 (algorithm 2) is to obtain an
unsolvable subproblem (not necessary minimal) of an unsolvable CSP instance.
This algorithm is based on propositions 2 and 3. We decided to use a solver based
on a Forward Checking algorithm with Dynamic Variable Ordering (FC-DVO),
where variables are selected according to the popular minimum domain heuristic
[9]. The reason for this choice is that using a solver based on a backtracking with

Algorithm 1 The CORE-FC algorithm.
Require: X, D, C is an unsolvable problem
1: procedure CORE-FC(X, D, C)
2: Xus, Dus, Cus ← CORE-FC1(X, D, C) {Xus, Dus, Cus is an unsolvable subset of X, D, C}
3: Xmus, Dmus, Cmus ← CORE-FC2(Xus, Dus, Cus)
4: return Xmus, Dmus, Cmus

Ensure: Xmus, Dmus, Cmus is a minimal unsolvable subset of X, D, C

DVO is not competitive. A solver based on MAC-DVO is competitive, but we
notice that we can select a smaller subset of constraints involved in a MUS by
using a solver based on FC-DVO. Experiments show that FC-DVO tends to
find smaller MUS candidates than MAC-DVO. We explain this fact as follows.
MAC performs arc-consistency on every constraint. When MAC realizes that
the instance has no solution, it has to include each constraint that is responsible
for removing a value into the MUS candidate (this includes constraints among
variables that never have been instantiated). On the other hand, FC propagation
is simpler: it performs arc consistency on constraints connecting assigned and
unassigned variables at any stage of search. In particular, constraints among
variables that have never been instantiated are not considered. For this reason,
we believe that FC focuses better than MAC on suitable MUS candidates. This
intuition is confirmed in practice (see Section 5).

CORE-FC1 works as follows. It takes as input an unsolvable CSP instance.
It returns as output an unsolvable subproblem of that instance. Firstly, it pass
the instance to a modified FC-DVO solver. This solver takes as input a CSP
instance and a variable (line 5). This variable is forced to be the first one in-
stantiated by the solver although the DVO criteria does not select it first. The
reason for this will become apparent later. As output, it returns a variable with
empty domain in the deepest branch explored by FC-DVO.

In CC we collect the subsets of constraints that justify failure at each branch
of FC-DVO (line 6). By proposition 2, we know that the subproblem generated
by the hitting set of CC, HTS(CC), has no solution. Therefore, we replace the
input instance by this subproblem. Algorithm 3 computes the Hitting Set of a
set of constraints. This function is used by the algorithm 2 in order to obtain an
unsolvable subproblem (line 7).

To decrement the size of the unsolvable subproblem, one can repeat the above
process with a different variable ordering. If variables that belong to a MUS are
instantiated at the first levels of the FC search tree, the resulting unsolvable
subproblem tend to be smaller. Following this idea, we consider that a variable
with empty domain in the deepest branch explored by FC-DVO in the current
iteration it is likely to be in a MUS. This is based on proposition 3, which
expresses a result valid for SVO, while we use it here as heuristic for DVO.

Algorithm 2 The CORE-FC1 algorithm.
Require: X, D, C is an unsolvable problem
1: function CORE-FC1(X, D, C)
2: uscur ← C
3: repeat
4: usprev ← uscur

5: xk ← solveCSP-FC-DVO(X, D, C, x1) { xk is candidate to belong to the MUS}
6: CC ← collection of subsets of constraints that justify failure at each branch of FC-DVO
7: uscur ← HST (CC)
8: reorder variables so that xk becomes x1
9: until |usprev| ≤ |uscur|

10: < Xus, Dus, Cus >← generateCSP (usprev)
11: return < Xus, Dus, Cus >

Ensure: < Xus, Dus, Cus > is an unsolvable subset of < X, D, C >

Algorithm 3 The Hitting Set algorithm.
1: procedure HST(CC)
2: hittingSet← ∅
3: CC ← initialPurge(CC)
4: while ¬isHittingSet(hittingSet) do
5: c← chooseConstraint(CC)
6: hittingSet← hittingSet ∪ {c}
7: CC ← purge(CC)
8: end while

9: return hittingSet

Then, we take that variable to be instantiated first at the next iteration (line
8). This variable is returned by the FC-DVO solver. The whole process iterates
until the unsolvable subproblem does no longer decrement its size (line 9).

We are interested in a hitting set algorithm that minimizes the number of
variables that are added to the HST when a new constraint is included. Unfortu-
nately [14] shows that calculating the minimal hitting set is an NP-hard problem.
We implement a strategy to minimize the number of variables that are included
in the hitting set using the function chooseConstraint. This function selects the
constraint that minimizes the number of variables that we include in the HST.
Note that this heuristic does not guarantee that the resulting hitting set has a
minimum number of variables, but empirically it works well and provides good
results. The purge function remove sets that are superset of others.

4.2 The CORE-FC2 Algorithm

CORE-FC2 (algorithm 4) refines the unsolvable instance that takes as input,
and returns a MUS of that instance. It is based on the dcMUC function shown
in [10]. The algorithm enters in a loop (lines 4 - 12) where new variables that
belongs to the MUS are discovered using the DichotomicSearch function (line
5). When a new variable xk is discovered, it is included in the MUS candidate
(line 6). If this candidate has no solution (line 9), then it is confirmed as MUS
(line 10) and the loop ends. Otherwise, the original instance is searched again for
more variables in the MUS, looking into the subproblems that at least contain
{x0, . . . , xk+1} (line 12).

In order to identify a variable that belongs to a MUS, the next procedure
can be used. Starting from the first variable in the given order, add at every step
one more variable until the CSP becomes unsatisfiable. When that occurs the
last added variable belongs to a MUS. If we want to speed up this algorithm,
we can use a dichotomic search. The DichotomicSearch function (algorithm 5)
starts a dichotomic search in order to find a variable that belongs to the MUS
(similar to function dcTransition described in [10]). It searches this variable in
the set {xmin, . . . , xmax}. Initially, index min takes value k, while max takes
the total number of variables. Parameter k is the limit between the discovered
variables of the MUS and the undiscovered ones. The algorithm enters in a loop
between lines 3-12 until a variable of the MUS is discovered. It takes the set
{x0, . . . , xcenter} and checks if it is solvable or not. If it is solvable, it searches

Algorithm 4 The CORE-FC2 algorithm.
Require: X, D, C is a superset of a MUS
1: function CORE-FC2(X,D,C)
2: XMUS ← ∅, DMUS ← ∅, CMUS ← ∅
3: MUS ← false, k ← 0
4: while ¬MUS do
5: xk ← DichotomicSearch(X, D, C, k)
6: XMUS ← XMUS ∪ {xk} {we include this var to the MUS}
7: CMUS ← CMUS ∪ {cik} {cik is a set of constraints involving variable xk}
8: DMUS ← DMUS ∪ {dk}
9: if solveCSP-MAC-DVO(XMUS , DMUS , CMUS) = UNSAT then

10: MUS ← true
11: end if
12: k ← k + 1
13: end while
14: return XMUS , DMUS , CMUS {minimal unsolvable subproblem}
Ensure: XMUS , DMUS , CMUS is a MUS

Algorithm 5 The Dichotomic Search algorithm.
1: procedure DichotomicSearch(X,D,C,k)
2: min← k, max← |X|
3: while min 6= max do
4: center ← (min + max)/2
5: XDIC ← {x0, . . . , xcenter}
6: CDIC ← set of constraints involving vars {x0, . . . , xcenter}
7: DDIC ← {d0, . . . , dcenter}
8: if solveCSP-MAC-DVO(XDIC , DDIC , CDIC) = SAT then
9: min← center + 1

10: else
11: max← center
12: end if
13: end while

14: return xmin

for the variable of the MUS among the set {xcenter+1, . . . , xmax}. If the problem
is unsolvable then the variable belongs to the set {xmin, . . . , xcenter}. Doing this
procedure, the variable that belongs to the MUS is obtained when xmax = xmin

(line 3).

5 Experimental Results

In this section we have performed several experiments in order to compare the
performance of our approach against the PCORE+WCORE algorithm de-
scribed in [10], that at the present seems to be the most performant published
algorithm. We use non competitive FC and MAC solvers based on the JCL
library [12, 20].

The PCORE+WCORE described in [10] works as follows. This is a 2-
step algorithm, the PCORE step and the WCORE step. In the PCORE step, a
MAC-DVO solver is used to return an unsolvable subproblem made by all the
constraints that during the search removed at least one value in the domain
of a variable. A dom/wdeg heuristic is used to choose the order in which vari-
ables will be instantiated. Calls to the MAC-DVO solver are done (updating
the heuristic at every call) until the size of the obtained subproblem does not

BENCHMARK PCORE + WCORE
Name VARS CONS SIZE CHECKS SIZE TIME CHECKS VIS

US MUS NODES
PCORE PCORE WCORE

randomB-25-58 25 58 19 4181 8 9.3s 60731 569
randomB-16-90 16 90 16 2648 7 4.2s 25072 364
randomB-26-6 26 63 17 7591 6 3.7s 17534 228
randomB-31-347 31 347 20 2550 8 9.8s 55033 582
randomB-43-176 43 176 35 34859 15 50.7s 381684 2012
randomB-36-470 36 470 21 1116 7 5.8s 10719 314
randomB-48-220 48 220 29 39116 16 47.1s 410452 1992
randomB-45-739 45 739 19 1818 7 8.3s 13725 426
pigeons5 5 10 5 1400 5 0.23s 3903 250
pigeons6 6 15 6 8250 6 0.76s 19683 883
pigeons7 7 21 7 52092 7 3.73s 102378 4219
pigeons8 8 28 8 369446 8 25.22s 618219 26825
pigeons9 9 36 9 2963760 9 219.54s 4597144 209178
pigeons10 10 55 10 26686962 10 2458s 40353999 1872587
pigeons11 11 55 11 266889620 11 26324s 400961870 18708727
dual-ehi-85-297-0 297 4094 60 120167 25 742.98s 1489447 10001
dual-ehi-85-297-1 297 4112 83 143760 19 738.69s 988227 7136
dual-ehi-85-297-7 297 4111 82 152272 18 627.45s 1167588 6030
dual-ehi-85-297-9 297 4118 64 55215 20 599.06s 911398 6322
dual-ehi-85-297-18 297 4120 69 144520 18 683.49s 927860 6577
dual-ehi-85-297-20 297 4106 72 85655 20 576.08s 1033272 6166
dual-ehi-85-297-24 297 4105 70 89563 19 694.70s 1037183 6703
dual-ehi-85-297-26 297 4102 19 115150 19 282.94s 1032841 6876
dual-ehi-85-297-27 297 4120 57 80516 20 575.42s 939922 6399
dual-ehi-85-297-44 297 4130 70 96148 16 474.16s 639734 4677
dual-ehi-85-297-49 297 4124 61 118023 22 495.73s 1255883 7603
dual-ehi-85-297-65 297 4116 74 147270 21 539.22s 975204 7997
dual-ehi-85-297-83 297 4099 90 169078 20 802.28s 1789755 8064
dual-ehi-85-297-88 297 4119 69 114815 18 603.50s 758366 6306
dual-ehi-85-297-92 297 4106 65 142880 20 595.57s 947950 7133
dual-ehi-85-297-99 297 4115 117 124209 19 710.32s 1319022 7371

Table 1. Results for the PCORE+WCORE algorithm.

longer decrease. Once the PCORE step returns an unsolvable subproblem (not
minimal), the WCORE step extract a MUS from this unsolvable subproblem,
using a dichotomic search.

We ran three different set of benchmarks. Firstly, we have generated unsolv-
able subproblems using a modified random model B generator, where we forced
the random generator to return unsolvable CSPs. The second set of constraints
is the well known problem of the pigeons, where we have to put n pigeons into
n-1 boxes, one pigeon per box. These pigeons problems are interesting, because
the whole problem is a MUS. Finally we ran experiments on the dual-ehi bench-
marks that are 3-SAT instances converted to binary CSP instances using the
dual method. The pigeons and the dual-ehi benchmarks can be found in [2].

Table 1 shows the performance of the algorithm proposed in [10], while table
2 shows the performance of our approach described in the previous section.
The columns indicates: the name of the benchmark, the number of variables and
constraints the benchmark has, the size of the US (not minimal) and the number

of checks after the first step, the size of the obtained MUS, the execution time
in seconds, the total number of checks and the number of visited nodes.

We study separately the results for the three different types of benchmarks.

5.1 Random Benchmarks

We generated several unsolvable random problems using the model B. We have
modified our generator in order to force it to return unsolvable instances. The
generated problems have between 15 to 48 variables and from 58 to 739 con-
straints. It is important to point that we cannot control if the generated prob-
lems have more than one unsolvable subproblem, thus, it is possible that the
algorithms find different MUSes. Comparing the benchmarks where both algo-
rithms returns the same MUS, randomB-36-470 and randomB-45-739, we notice
that our first step returns smaller unsolvable subproblems than the first step of
the PCORE+WCORE algorithm. The second step are equivalent for both al-
gorithms, but our approach has the advantage that the unsolvable subproblem
that is the input of the second step is smaller than the unsolvable subproblem of
the PCORE+WCORE algorithm. Experiments show that our approach reduces
the execution time, the number of checks and the number of visited nodes.

5.2 Pigeons Benchmarks

The pigeons benchmarks are problems where we have to put n pigeons into n-
1 boxes, one pigeon per box. These problems have the characteristic that any
proper subproblem is solvable (the whole problem is a MUS). Tables 1 and 2
show that with these benchmarks our algorithm has a worse performance in time
than the PCORE+WCORE approach. We notice that the first step makes the
difference; while our algorithm uses a FC-DVO solver, the PCORE+WCORE
approach uses a MAC-DVO solver. In both approaches all constraints will be
selected (the whole problem is unsolvable). The MAC-DVO solver is faster than
the FC-DVO solver, thus there is an important gain in time at the end of the
first step for the PCORE+WCORE algorithm over our approach. Our approach
has a better number of checks because a FC solver does less checks that a MAC
solver. In the opposite, the number of visited nodes is greater for the FC than
the MAC due to the MAC propagation.

5.3 Dual-ehi Benchmarks

The dual-ehi benchmarks are problems where benchmarks that are 3-SAT in-
stances are converted to binary CSP instances using the dual method. We ran
several experiments with 297 variables and between 4094 to 4130 constraints.
Tables 1 and 2 show that our algorithm has a better performance. In these
benchmarks, we decrease the execution time by a factor of 3, also decreasing the
number of checks and the number of visited nodes. It is interesting to point that
very often the unsatisfiable subset obtained at the first step is a MUS. There-
fore our second step is faster than the PCORE+WCORE approach, where the
output of the first step is a bigger unsolvable subproblem.

BENCHMARK CORE-FC1 + CORE-FC2
Name VARS CONS SIZE CHECKS SIZE TIME CHECKS VIS

US CORE- MUS NODES
CORE- FC1 CORE-
FC1 FC2

randomB-25-58 25 58 11 4452 7 1.32s 10931 391
randomB-16-90 16 90 8 2602 8 1.05s 12355 359
randomB-26-63 26 63 9 1176 8 1.19s 15498 271
randomB-31-347 31 347 8 5803 7 1.53s 9056 248
randomB-43-176 43 176 12 7705 10 4.40s 41842 974
randomB-36-470 36 470 7 2592 7 1.54s 3987 112
randomB-48-220 48 220 6 2954 5 1.78s 6110 230
randomB-45-739 45 739 7 3645 7 2.58s 5418 138
pigeons5 5 10 5 584 5 0.24s 3041 298
pigeons6 6 15 6 3170 6 0.79s 14489 1123
pigeons7 7 21 7 19452 7 4.45s 69506 5659
pigeons8 8 28 8 136850 8 36.75s 385201 36905
pigeons9 9 36 9 1095824 9 381.78s 2728478 289818
pigeons10 10 55 10 9863874 10 4161.96s 23529833 2598347
pigeons11 11 55 11 98640740 11 47335.87s 232711461 25966327
dual-ehi-85-297-0 297 4094 25 42881 25 252.39s 555210 7461
dual-ehi-85-297-1 297 4112 19 31790 19 227.96s 224513 4164
dual-ehi-85-297-7 297 4111 18 22259 18 236.66s 163585 3061
dual-ehi-85-297-9 297 4118 21 25756 20 187.65s 186456 3985
dual-ehi-85-297-18 297 4120 18 20782 18 187.22s 207200 3165
dual-ehi-85-297-20 297 4106 20 22432 20 187.95s 218315 3969
dual-ehi-85-297-24 297 4105 19 50346 19 248.93s 186793 5327
dual-ehi-85-297-26 297 4102 19 32803 19 241.15s 180389 4005
dual-ehi-85-297-27 297 4120 20 44817 20 198.32s 202829 5585
dual-ehi-85-297-44 297 4130 16 20296 16 232.46s 119877 1930
dual-ehi-85-297-49 297 4124 22 20971 22 248.95s 312244 4909
dual-ehi-85-297-65 297 4116 21 22402 21 245.80s 304262 4291
dual-ehi-85-297-83 297 4099 20 15077 20 189.53s 310092 3778
dual-ehi-85-297-88 297 4119 18 25994 18 186.60s 174942 3390
dual-ehi-85-297-92 297 4106 20 29802 20 189.48s 217860 4103
dual-ehi-85-297-99 297 4115 19 11820 19 185.97s 242962 3178

Table 2. Results for the CORE-FC1+CORE-FC2 algorithm.

6 Conclusions

We have developed a new approach for extracting a MUS from an unsolvable
CSP instance. It is based on a two-step algorithm. In the first step, an unsolvable
subproblem is obtained, using a FC-DVO solver combined with the computation
of a hitting set on the constraints responsible for the no solution condition. To
remove variables which do not belong to the minimal version of this subprob-
lem, this process is iterated with the help of a heuristic to identify variables
that are likely to be in a MUS. The iteration ends when the computed unsolv-
able subproblem does no longer decrement its size. The second step refines this
unsolvable subproblem using a dichotomic search until a true MUS is found.

We compared our approach with the best approach we have found so far
called PCORE + WCORE [10] which is also a two-step algorithm. The main
difference between these two approaches occurs in the first step. While PCORE
+ WCORE iterates using a MAC-DVO solver, our approach iterates using a
FC-DVO solver combined with the hitting set computation and the heuristic to

select likely MUS variables. As result, our approach is able to compute MUS
candidates of smaller size (first step of CORE-FC), with less computational
effort. As consequence, the effort required in the second step is also smaller.
Experimental results show that our approach is beneficial in most benchmarks,
although in some benchmarks (pigeons) our approach is not competitive. It is
worth realizing that each pigeon instance is itself a MUS, so we hypothesize that
when the original unsolvable instance is already minimal, our approach is not
competitive (in that case, the hitting set computation and the heuristic do not
bring any benefit, they add overhead only). But we believe that this is not the
general case. Usually, unsolvable instances contain smaller MUSes, for which we
believe that our approach is adequate. Our intuition behind the claim that a
FC algorithm is better that a MAC algorithm for finding MUSes is that whilst
a FC just considers constraints between past and future constraints a MAC
algorithm tends to maintain the consistency of the CSP. Thus a MAC algorithm
will select more candidate constraints than a FC algorithm. This is explain why
our algorithm finds a smaller and better unsolvable candidate.

The capacity of reasoning at subproblem level has been crucial to develop
this approach. The hitting set idea considers the different subsets of constraints
that are responsible for the no solution condition of the whole subproblem. The
heuristic for variables likely to be in a MUS is inspired in a property of the
complete subproblem. This view abstracts atomic CSP components, focusing on
subproblems. We believe that this perspective offers new and interesting ways of
reasoning in constraint solving, able to improve existing techniques or to develop
new ones.

Acknowledgements

Authors thank anonymous reviewers for their constructive criticisms.

References

1. J. Bailey and P. J. Stuckey: Discovery of Minimal Unsatisfiable Subsets of Con-
straints Using Hitting Set Dualization, 2005. pp174-186. In Proc. PADL05, volume
3350

2. Benchmark problems. http://cpai.ucc.ie/05/Benchmarks.html
3. R. Bruni: Approximating minimal unsatisfiable subformulae by means of adaptive

core search. Discrete App.. Math. Journal Vol. 130,(2), 85 – 100, 2003. Elsevier
Science Publishers B. V.

4. R. Bruni and A. Sassano: Restoring Satisfiability or Maintaining Unsatisfiability by
Finding Small Unsatisfiable Subformulae. (LICS) 2001 Workshop on Theory and
Applications of Satisfiability Testing (SAT 2001) Boston (Massachusetts, USA),
June 14-15, 2001, Proceedings. Elsevier Science Pub (2001).

5. B. Faltings and S. Macho-Gonzalez: Open Constraint Programming. Artificial In-
telligence, vol 161, pp 181–208, 2005.

6. E. Freuder and P. Hubbe: Extracting Constraint Satisfaction Subproblems. In Proc.
of the 14th International Joint Conference on Artificial Intelligence, 1995, pp 548-
555.

7. M. R. Garey and D. S. Johnson: Computers and Intractability: A Guide to the
Theory of NP-Completeness (1979). Publisher W. H. Freeman & Co.

8. M.L. Ginsberg: Dynamic backtracking. Journal of Artificial Intelligence Research,
1:25-46, 1993.

9. R. Haralick and G. Elliot: Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence, vol 14, pp 263–313, 1980.

10. F. Hemery, C. Lecoutre, L. Sais and F. Boussemart: Extracting MUCs from con-
straint networks. In Proceedings of the 17th European Conference on Artificial
Intelligence (ECAI’06), 2006.

11. J. Huang: MUP: a minimal unsatisfiability prover. ASP-DAC ’05: Proceedings
of the 2005 conference on Asia South Pacific design automation, 2005, 432–437.
Shanghai, China. ACM Press.

12. Java Constraint Library (JCL). http://liawww.epfl.ch/JCL/
13. U. Junker: QUICKXPLAIN: Conflict Detection for Arbitrary Constraint Propa-

gation Algorithms. IJCAI’01 Workshop on Modelling and Solving problems with
constraints (CONS-1), 2001.

14. R. M. Kar: Reducibility among combinatorial problems. Complexity of Computer
Computations, 1972. pp 85-103

15. M. H. Liffiton, Z. S. Andraus, and Karem A. Sakallah: From Max-SAT to Min-
UNSAT: Insights and Applications. Technical Report CSE-TR-506-05, February
2005.

16. M. H. Liffiton, M. D. Moffitt, M. E. Pollack, and K. A. Sakallah: Identifying Con-
flicts in Overconstrained Temporal Problems, in Proc. IJCAI-05, pp. 205–211, Ed-
inburgh, Scotland, 2005.

17. M. H. Liffiton and K. A. Sakallah: On Finding All Minimally Unsatisfiable Sub-
formulas. in Proc. 8th International Conference on Theory and Applications of Sat-
isfiability Testing (SAT-2005), pp. 173-186, June 2005.

18. Y. Oh, M. N. Mneimneh and Zaher S. Andraus and Karem A. Sakallah and Igor
L. Markov: AMUSE: a minimally-unsatisfiable subformula extractor. DAC ’04: Pro-
ceedings of the 41st annual conference on Design automation (2004),518–523,ACM
Press.

19. P. Prosser: Hybrid algorithms for the constraint satisfaction problem. Computa-
tional Intelligence, 9: 268-299, 1993.

20. M. Torrens, R. Weigel and B. Faltings: Java constraint library: Bringing constraints
technology on the Internet using the java language. (1997). In Constraints and
Agents: Papers from the 1997 AAAI Workshop, 21–25. Menlo Park, California.

21. G. Verfaillie, M. Lemaitre and T. Schiex: Russian Doll Search. In Proc. of the 13th
National Conference on Artificial Intelligence, 1996, pp 181–187.

22. M. Yokoo: Asynchronous weak-commitment search for solving distributed con-
straint satisfaction problems. CP’95: 88-102, 1995

23. L. Zhang and S. Malik: Extracting small unsatisfiable cores from unsatisfiable
Boolean formula. In Proceedings of the Sixth International Conference on Theory
and Applications of Satisfiability Testing (SAT’03), 2003.

