
Ricardo Oscar

Rodriguez

Olim Frits Tuyt

Francesc Esteva

Llúıs Godo

Simplified Kripke Semantics
for K45-Like Gödel Modal
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Abstract. In this paper we provide a simplified, possibilistic semantics for the logics

K45(G), i.e. a many-valued counterpart of the classical modal logic K45 over the [0, 1]-

valued Gödel fuzzy logic G. More precisely, we characterize K45(G) as the set of valid

formulae of the class of possibilistic Gödel frames 〈W, π〉, where W is a non-empty set of

worlds and π : W →[0, 1] is a possibility distribution on W . We provide decidability results

as well. Moreover, we show that all the results also apply to the extension of K45(G) with

the axiom (D), provided that we restrict ourselves to normalised Gödel Kripke frames, i.e.

frames 〈W, π〉 where π satisfies the normalisation condition supw∈W π(w) = 1.

Keywords: Possibilistic semantics, Epistemic logics, Many-valued modal logics.

1. Introduction

Possibilistic logic [10,11,13] is a well-known uncertainty logic to reason with
graded (epistemic) beliefs on classical propositions by means of necessity
and possiblity measures. In this setting, (graded) epistemic states of an
agent are represented by possibility distributions. If W is a set of classical
interpretations, or possible worlds, for a given propositional language L, i.e.
W is the set of mappings w : L �→ {0, 1} respecting the classical truth-
functions, a possibility distribution on W is a mapping π : W �→ [0, 1]. If
supw∈W π(w) = 1, π is called normalized. Such a map π ranks interpretations
according to its plausibility level: π(w) = 0 means that w is rejected, π(w) =
1 means that w is fully plausible, while π(w) < π(w′) means that w′ is
more plausible than w. A possibility distribution π induces a pair of dual
possibility and necessity measures on propositions, defined respectively as:

Π(ϕ) = sup{π(w) | w ∈ W,w(ϕ) = 1}
N(ϕ) = inf{1 − π(w) | w ∈ W,w(ϕ) = 0}.
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Given a graded epistemic state π, Π(ϕ) measures the degree in which ϕ is
plausible or possible, in the sense that at least a world satisfying ϕ is plausi-
ble (to some degree), while N(ϕ) measures to what degree ϕ can be consid-
ered certain, in the sense that all worlds falsifying ϕ are implausibe (to some
degree). Both measures are dual, in fact, Π(ϕ)
= 1−N(¬ϕ), so that the degree of possibility of a proposition ϕ equates the
degree in which ¬ϕ is not certain. If the normalized condition over possibility
distribution is dropped, then we gain the ability to deal with inconsistency.
In [12], a possibility distribution which satisfies supw∈W π(w) < 1 is called
sub-normal. In this case, given a set W of classical interpretations, a degree
of inconsistency can be defined in the following way:

inc(W ) = 1 − sup
w∈W

π(w)

When the normalised possibility distribution π is {0, 1}-valued, i.e. when π is
the characteristic function of a subset ∅ �= E ⊆ W , then the structure 〈W,π〉,
or better 〈W,E〉, can be seen in fact as a K45 frame. Indeed, it is known
(see e.g. [19]) that modal logic K45, which is sound and complete w.r.t. the
class of Kripke frames 〈W,R〉 where R is a euclidean and transitive binary
relation, also has a simplified semantics given by the subclass of frames
〈W,E〉, where E is a subset of W (understanding E as its corresponding
binary relation RE defined as RE(w,w′) iff w′ ∈ E).

When we go beyond the classical framework of two valued logic to many-
valued frameworks, one has to come up with appropriate extensions of the
notion of necessity and possibility measures for multiple truth values. Several
generalisations have been proposed in the literature, most of them (if not
all) take the following form:

Π(ϕ) = sup
w∈W

{π(w) ∗ w(ϕ)}
N(ϕ) = inf

w∈W
{π(w) ⇒ w(ϕ)},

where W is the set of many-valued interpretations w : L �→ S on a
suitable linearly ordered scale S (usually the real unit interval [0, 1]),
π : W →S is a possibility distribution on W , and where ∗ and ⇒ are a pair
of, respectively, a many-valued conjunction and a many-valued implication
operators on S. Different formalisations make different choices for the these
operators. For instance, in [18] the authors define a modal logic, called
MVKD45, to reason about possibility and necessity degrees of propositions
in the frame of the finite-valued �Lukasiewicz logics �Lk, with truth-values
in the sets Sk = {0, 1/k, . . . , (k − 1)/k, 1}, where x ∗ y = min(x, y) and
x ⇒ y = max(1 − x, y). This approach was later generalised in [2] to define
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similar modal logics over any finite MTL-chain, using truth-constants, and
where ∗ and ⇒ are taken resp. as the monoidal operation and its residuum
operation of the given MTL-chain. On the other hand, in his book [17],
for a given propositional axiomatic extension C of his basic fuzzy logic BL,
Hájek defines a fuzzy extension of KD45, that he calls FMBEL(C), as the
set of valid formulas in the class of possibilistic C-Kripke models 〈W,π, e〉,
with values over arbitrary C-algebras, and with similar semantics for the
modal possibility and necessity operators.1 Hájek writes “we shall present
no definitive results, only some observations”, and he leaves as an open prob-
lem to find an elegant axiomatization for FMBEL(C) with models over all
C-algebras [17, Chapter 8, pp. 226-228]. Some attempts to solve this open
problem have been done, considering that the most natural semantics for a
fuzzy counterpart of KD45 is the one of Hájek’s possibilistic Kripke models
or frames with values on BL-algebras. However, it has not been an easy prob-
lem to deal with. In fact, reviewing the literature on logical formalizations
of fuzzy possibilistic reasoning, one can find results which have a limited
scope since they only apply to particular cases of fuzzy modal logics (see
e.g. the overview in [2]). In particular, some authors consider cases where
either the C-algebras are finite, sometimes expanded with truth constants
and the Monteiro-Baaz’s Δ operator (as in [2]), and/or where the modal
language is restricted. The latter is the case of the so-called two-tiered log-
ics, see e.g. [9,16], where the language is defined in a two-level manner:
non-modal formulas are formulas from a given propositional logic L1 (e.g.
classical or a fuzzy propositional logic) and then modal formulas are propo-
sitional combinations (according to a second fuzzy logic L2) of atomic modal
formulas �ϕ and ♦ϕ, where ϕ ∈ L1. This kind of languages allow neither
formulas with nested modalities nor formulas mixing both non-modal and
modal subformulas.

In this paper we consider the particular context of Gödel fuzzy logic [17]
extended with two modal operators � and ♦ with a full general language.
In this setting, epistemic states will be modelled as well by possibility distri-
butions π : W → [0, 1], but now worlds from W are considered to be Gödel
propositional [0, 1]-valued interpretations, that induce the following gener-
alized possibility and necessity measures over Gödel logic propositions:2

Π(ϕ) = sup
w∈W

{min(π(w), w(ϕ))}

1In fact he considers countably-many modalities �n, ♦n for each natural n.
2Strictly speaking, the possibility measure is indeed a generalization of the classical

one, but the necessity measure is not, since x ⇒ 0 �= 1 − x and hence Π(ϕ) �= 1 − N(¬ϕ).
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N(ϕ) = inf
w∈W

{π(w) ⇒G w(ϕ)},

where ⇒G is Gödel implication, that is, for each x, y ∈ [0, 1],

x ⇒G y =

{
1 if x ≤ y

y otherwise.

These expressions agree with the ones commonly used in many-valued modal
Kripke frames 〈W,R〉 to respectively evaluate modal formulas ♦ϕ and �ϕ
(see for example [1] and references therein) when the [0, 1]-valued accessibil-
ity relation R : W × W → [0, 1] is of the particular form R(w, w′) = π(w′),
for any w,w′ ∈ W , for of a given possibility distribution π : W → [0, 1].

Actually, modal extensions of Gödel fuzzy logic have been studied by
Caicedo and Rodriguez [6], providing sound and complete axiomatizations
for different classes of [0, 1]-valued Kripke models. These structures are
triples M = 〈W,R, e〉, where W is a set of worlds, R : W × W →[0, 1] is
a [0, 1]-valued accessibility relation, as above, and e : W × V ar → [0, 1] is
such that, for every w ∈ W , e(w, ·) is a [0, 1]-valued Gödel evaluation of
propositional variables (more details in next section) that extends to modal
formulas as follows:

e(w,♦ϕ) = sup
w′∈W

{min(R(w,w′), e(w′, ϕ))},

e(w,�ϕ) = inf
w′∈W

{R(w,w′) ⇒G e(w′, ϕ)}.

We will denote by K45(G) the class of [0, 1]-models M = 〈W,R, e〉 where
R satisfies the following many-valued counterpart of the classical properties:

• Transitivity: ∀w,w′, w′′ ∈ W , min(R(w,w′), R(w′, w′′)) ≤ R(w, w′′)

• Euclidean: ∀w,w′, w′′ ∈ W , min(R(w,w′), R(w, w′′)) ≤ R(w′, w′′) .

In this setting, the class ΠG of possibilistic Kripke models 〈W,π, e〉, where
π : W → [0, 1] is a possibility distribution (not necessarily normalized) on
the set of worlds W , can be considered as the subclass of K45(G) models
〈W,R, e〉 where R is independent of the world in its first argument, in the
sense that R(w,w′) = π(w′) for all w,w′ ∈ W . Since ΠG � K45(G), it fol-
lows that the set V al(K45(G)) of valid formulas in the class of K45(G) is a
subset of the set V al(ΠG) of valid formulas in the class ΠG, i.e. V al(K45(G))
⊆ V al(ΠG). The interesting question is therefore whether the converse in-
clusion V al(ΠG) ⊆ V al(K45(G)) holds, and thus whether the class ΠG
provides a simplified possibilistic semantics for the modal logic K45(G).
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In [3] the authors claim to provide a positive answer, not for the class
K45(G) models but for the subclass of KD45(G) models, i.e. those K45(G)
models M = 〈W,R, e〉 further satisfying the many-valued counterpart of
seriality:

• Seriality: ∀w ∈ W , supw′∈W R(w,w′) = 1 .

Indeed, they prove that the logic KD45(G), complete w.r.t. the class of
KD45(G) models, is also complete w.r.t. the class Π∗G of possibilistic models
〈W,π, e〉, where π : W → [0, 1] is a normalized possibility distribution on W .
Unfortunately, it has to be noted that the completeness proof in [3] has some
flaws. In this paper we provide a correct proof, not only for the completeness
of KD45(G) with respect to its corresponding class of possibilistic frames,
but also for the weaker logic K45(G) accounting for partially inconsistent
possibilistic Kripke frames.

This paper is organized as follows: Sect. 2 introduces the main notions
about minimum propositional modal Gödel logic and its relational seman-
tics; Sect. 3 then formally introduces a calculus for the logic K45(G), some
of its extensions and several of its main theorems; Sect. 4 presents our simpli-
fied possibilistic semantics and the results of completeness; Sect. 5 is devoted
to analyze the finite model property for the new semantics; finally, Sect. 6
provides some conclusions. We gather in an appendix some technical proofs.

2. Preliminaries on Propositional and Modal Gödel Logic

This section is devoted to preliminaries on the Gödel fuzzy logic G. We
present their syntax and semantics, their main logical properties and the
notation we use throughout the article.

The language of Gödel propositional logic L(V ar) is built as usual from a
countable set of propositional variables V ar, the constant ⊥ and the binary
connectives ∧ (conjunction) and → (implication).

� := ⊥ → ⊥
ϕ ∨ ψ := ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ)

¬ϕ := ϕ →⊥
ϕ ≡ ψ := (ϕ → ψ) ∧ (ψ → ϕ).

The following are the axioms of G:

(A1) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))

(A2) (ϕ ∧ ψ) → ϕ
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(A3) (ϕ ∧ ψ) → (ψ ∧ ϕ)

(A4a) (ϕ → (ψ → χ)) → ((ϕ ∧ ψ) → χ)

(A4b) ((ϕ ∧ ψ) → χ) → (ϕ → (ψ → χ))

(A6) ϕ →(ϕ ∧ ϕ)

(A7) ((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ)

(A8) ⊥ → ϕ

The deduction rule of G is modus ponens.

Gödel logic can be obtained in fact as the axiomatic extension of Hájek’s
Basic Fuzzy Logic BL [17] (which is the logic of continuous t-norms and
their residua) by means of the contraction axiom (A6) ϕ →(ϕ ∧ ϕ). Since
the unique idempotent continuous t-norm is the minimum, this yields that
Gödel logic is strongly complete with respect to its standard fuzzy seman-
tics that interprets formulas over the structure [0, 1]G := 〈[0, 1], min,⇒G,
0, 1〉,3 i.e. semantics defined by truth-evaluations e such that e(ϕ ∧ ψ) =
min(e(ϕ), e(ψ)), e(ϕ →ψ) = e(ϕ) ⇒G e(ψ) and e(⊥) = 0.

Gödel logic can also be seen as the axiomatic extension of intuitionistic
propositional logic by the pre-linearity axiom (ϕ →ψ) ∨ (ψ → ϕ). In fact, it
is sound and complete in the following stronger sense, see [5].
Proposition 2.1. (i) If T ∪{ϕ} ⊆ L(V ar), then T �G ϕ implies inf{v(θ) |
θ ∈ T} ≤ v(ϕ) for any valuation v : V ar → [0, 1].

(ii) If T is countable, and T �G ϕi1 ∨ .. ∨ ϕin
for each finite subset of a

countable family {ϕi}i∈I there is an evaluation v : L(V ar) → [0, 1]
such that v(θ) = 1 for all θ ∈ T and v(ϕi) < 1 for all i ∈ I.

We mention in passing that the algebraic semantics of Gödel logic is given
by the variety of prelinear Heyting algebras, also known as Gödel algebras. A
Gödel algebra is a structure A = 〈A, ∗,⇒, 0, 1〉 which is a bounded integral
commutative residuated lattice satisfying the contraction equation

x ∗ x = x,

and the pre-linearity equation

(x ⇒ y) ∨ (y ⇒ x) = 1,

where x ∨ y = ((x ⇒ y) ⇒ y) ∗ ((y ⇒ x) ⇒ x)).
Let us consider a modal expansion of Gödel logic with two operators �

and ♦. The set of formulas L�♦(V ar) is built as L(V ar) (always assuming

3Called standard Gödel algebra.
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countability of the set of propositional variables V ar) but extending the set
of operations with two unary symbols � and ♦. Whenever V ar is clear from
the context we will simply write L�♦.

In the style introduced by Fitting [14,15] and studied in the works men-
tioned in the introduction, we define the Gödel Modal Logic as arising from
its semantic definition. This is given by enriching usual Kripke models with
evaluations over the previous standard algebra, as in [5,6] and others. For-
mally:

Definition 2.1. A Gödel-Kripke model is a structure 〈W,R, e〉 where W
is a non-empty set of so-called worlds, and R : W × W → [0, 1] and e : W ×
V ar → [0, 1] are arbitrary mappings.

The evaluation e can be uniquely extended to a map with domain W ×
L�♦ in such a way that it is a propositional Gödel homomorphism (for the
propositional connectives) and where the modal operators are interpreted
as infima and suprema, namely: for all w ∈ W ,

• e(w,⊥) := 0,

• e(w,ϕ ∧ ψ) := min(e(w,ϕ), e(w,ψ)),

• e(w,ϕ ∨ ψ) := max(e(w,ϕ), e(w,ψ)),

• e(w,ϕ →ψ) := e(w,ϕ) ⇒G e(w,ψ),

• e(w,�ϕ) :=
∧

w′∈W (R(w,w′) ⇒G e(w′, ϕ)),

• e(w,♦ϕ) :=
∨

w′∈W min(R(w,w′), e(w′, ϕ)).

A formula ϕ is valid in a Gödel-Kripke model 〈W,R, e〉 if e(w, ϕ) = 1
for all w ∈ W . We will denote by G the class of Gödel Kripke models and
will say that a formula ϕ is G-valid, written |=G ϕ, if ϕ is valid in all Gödel
Kripke models.

In their paper [6] Caicedo and Rodriguez define the logic K(G) as the
smallest set of formulas containing some axiomatic version of Gödel-Dummet
propositional calculus, that is, Heyting calculus plus the prelinearity law,
and the following additional axioms and rule:

(K�) �(ϕ →ψ) →(�ϕ →�ψ) (K♦) ♦(ϕ ∨ ψ) →(♦ϕ ∨ ♦ψ)
(P ) �(ϕ →ψ) →(♦ϕ →♦ψ) (F�) ��

(FS2) (♦ϕ →�ψ) →�(ϕ →ψ) (Nec) from ϕ infer � ϕ

They denote deduction in this system as �K(G) and they show the fol-
lowing result:
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Theorem 2.1. ([6, Theorem 3.1]) Let ϕ ∈ L�♦. Then

�K(G) ϕ if and only if |=G ϕ.

Proofs with assumptions are allowed with the restriction that (Nec) can be
applied only when the premise is a theorem. This restriction allows for the
following convenient reduction (see [5]).

Lemma 2.1. Let ThK(G) be the set of theorems of K(G) with no assump-
tions, then for any theory T and formula ϕ in L�♦ : T �K(G) ϕ if and only
if T ∪ ThK(G) �G ϕ where �G denotes deduction in Gödel fuzzy logic G.

The following are some theorems of K(G), see [6]:

T1. ¬♦ϕ ↔ �¬ϕ
T2. ¬¬�ϕ → �¬¬ϕ
T3. ♦¬¬ϕ → ¬¬♦ϕ
T4. (�ϕ → ♦ψ) ∨ �((ϕ → ψ) → ψ)
T5. ♦(ϕ →ψ) →(�ϕ →♦ψ)

The first one is an axiom in Fitting’s systems in [14], the next two were
introduced in [6], the fourth one will be useful in our completeness proof
and is the only one depending on prelinearity. The last is known as the first
connecting axiom given by Fischer Servi. In addition, it is interesting to
notice that the following rule is derivable:

(Nec♦) from ϕ →ψ infer ♦ϕ →♦ψ

Indeed, if �K(G) ϕ →ψ, then �K(G) �(ϕ →ψ) by Nec, and by using axiom
(P ) and modus ponens we get �K(G) ♦ϕ →♦ψ.

In the next section, we focus on an extension of K(G) for which we are
able to simplify the Gödel Kripke semantics introduced in this section.

3. The Logic K45(G)

The logic K45(G) is defined by adding to K(G) the following axioms:

(4�) �ϕ →��ϕ (4♦) ♦♦ϕ →♦ϕ
(5�) ♦�ϕ →�ϕ (5♦) ♦ϕ →�♦ϕ

And we define the logic KD45(G) by adding to K45(G) the following ax-
iom:

(D) ♦�



Simplified Kripke Semantics for K45-Like Gödel Modal Logics... 1089

and KT45(G) by adding the following axioms to K45(G):

(T�) �ϕ →ϕ (T♦) ϕ →♦ϕ

A first observation is that the following is a theorem of KD45(G):

(D′) �ϕ →♦ϕ

Indeed, we can replace � by ϕ →ϕ in Axiom (D) and then use T5. In fact,
(D) and (D′) are interderivable in K(G), that is, we have both ♦� �K(G)

�ϕ →♦ϕ and �ϕ → ♦ϕ �K(G) ♦�, the latter holding by first instantiating
(D′) with ϕ = � and getting �� →♦�, and then using that �� is an axiom
of K(G).

Next we show that in K45(G) some iterated modalities can be simplified.
This is in accordance with our intended simplified semantics for K45(G)
that will be formally introduced in the next section.

Proposition 3.1. The logic K45(G) proves the following schemes:

(F♦�) ♦�� ↔ ♦� (G45) (�ϕ →♦ψ) →�(�ϕ →♦ψ)
(U♦) ♦♦ϕ ↔ ♦ϕ (U�) ��ϕ ↔ �ϕ
(T4�) (�ϕ →♦�ϕ) ∨ �ϕ (T4♦) (�♦ϕ →♦ϕ) ∨ �♦ϕ
(Sk♦) (♦� →♦ϕ) ↔ �♦ϕ (T4′

♦) (�♦ϕ →♦ϕ) ∨ (♦� →♦ϕ)

Proof. (F♦�) is an immediate consequence of F� and Nec♦. As for schemes
U♦ and U�, axioms 4� and 4♦ give one direction of them. The opposite
directions, together with the rest of schemes, are obtained as follows:
Proof (U♦) :

♦ϕ →�♦ϕ axiom (5♦)
�(ϕ →♦ϕ) by MP and (FS2)
♦ϕ →♦♦ϕ by MP and (P )

Proof (U�) :

♦�ϕ →�ϕ axiom (5�)
�(�ϕ →ϕ) by MP and (FS2)
��ϕ →�ϕ by MP and (K�)

Proof (T4�) :

(��ϕ →♦�ϕ) ∨ ��ϕ by (T4), replacing ϕ and ψ by �ϕ
(�ϕ →♦�ϕ) ∨ �ϕ by (U�)

Proof (T4♦) :

(�♦ϕ →♦♦ϕ) ∨ �♦ϕ by (T4), replacing ϕ and ψ by ♦ϕ
(�♦ϕ →♦ϕ) ∨ �♦ϕ by (U♦)
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Proof (G45) :

(�ϕ →♦ψ) →(�ϕ →�♦ψ) by applying (5♦)
(�ϕ →�♦ψ) →(♦�ϕ →�♦ψ) by applying (5�)
(♦�ϕ →�♦ψ) →�(�ϕ →♦ψ) by (FS2)

Proof (Sk♦) :

�(� → ♦ϕ) →(♦� →♦♦ϕ) by (P)
�♦ϕ →(♦� →♦ϕ) by (U♦) and equivalences
(♦� →�♦ϕ) →�(� →♦ϕ) by (FS2)
(♦� →♦ϕ) →�♦ϕ by (5♦)

Proof (T4′
♦): using (T4♦) and (Sk♦)

Moreover, if we restrict ourselves to formulas starting with � or ♦ we
can prove the following property.

Lemma 3.1. Let X = {�θ, ♦θ : θ ∈ L�,♦}. If ϕ ∈ X then the schemas

ϕ →�ϕ and ♦ϕ →ϕ

are theorems of K45(G).

Proof. We check that K45(G) derives ϕ →�ϕ if ϕ ∈ X, the other schema
is similar. In fact, we have two cases: if ϕ = �ψ, then ϕ →�ϕ is in fact one
direction of (U�); if ϕ = ♦ψ, then this is axiom (5♦).

From now on we will use ThK45(G) to denote the set of theorems of
K45(G). We close this section with the following observation.

Lemma 3.2. If T is a finite set of formulas, T �K45(G) ϕ iff �K45(G)

T∧ → ϕ, where T∧ =
∧{ψ | ψ ∈ T}.

Proof. By Lemma 2.1, we have T �K45(G) ϕ iff T ∪ ThK45(G) �G ϕ. By
the deduction theorem of Gödel logic, the latter is equivalent to ThK45(G)
�G T∧ → ϕ, and by (i) again, this is equivalent to �K45(G) T∧ → ϕ.

Remark 3.1. It is worth noting that for any valuation v such that v(ThK45
(G)) = 1 there is no formula ϕ such that v(♦�) < v(∇ϕ) < 1 with
∇ ∈ {�,♦} because both formulae (�ϕ →♦ϕ) ∨ �ϕ and ♦ϕ →♦� are in
ThK45(G).

4. Simplified Kripke Semantics and Completeness

In this section we will show that K45(G) is complete with respect to a class
of simplified Kripke Gödel frames.
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Definition 4.1. A possibilistic Kripke frame, or Π-frame, is a structure
〈W,π〉 where W is a non-empty set of worlds, and π : W → [0, 1] is a possi-
bility distribution over W .

A possibilistic Gödel Kripke model, ΠG-model for short, is a triple
〈W,π, e〉 where 〈W,π〉 is a Π-frame and e : W × V ar → [0, 1] provides a
Gödel evaluation of variables in each world. For each w ∈ W , e(w,−) ex-
tends to arbitrary formulas in the usual way for the propositional connectives
and for modal operators in the following way:

e(w,�ϕ) := inf
w′∈W

{π(w′) ⇒G e(w′, ϕ)}
e(w,♦ϕ) := sup

w′∈W
{min(π(w′), e(w′, ϕ))}.

If π is normalised, i.e. if supw∈W π(w) = 1, then 〈W,π, e〉 will be called a
normalised possibilistic Gödel Kripke model, or Π∗G-model. A formula ϕ is
valid in a ΠG-model 〈W,π, e〉 if e(w,ϕ) = 1 for all w ∈ W .

We will denote by ΠG the class of possibilistic Gödel Kripke models, and
by Π∗G the subclass of normalised models. We say that a formula ϕ is ΠG-
valid, written |=ΠG ϕ, if ϕ is valid in all possibilistic Gödel Kripke models,
and Π∗G-valid, written |=Π∗G ϕ, if ϕ is valid in all normalised possibilistic
Gödel Kripke model.

Observe that the evaluation of formulas beginning with a modal op-
erator is in fact independent from the current world. Also note that the
e(−,�ϕ) and e(−,♦ϕ) are in fact generalisations for Gödel logic proposi-
tions of the necessity and possibility degrees of ϕ introduced in Sect. 1 for
classical propositions, although now they are not dual (with respect to Gödel
negation) any longer.

In the rest of this section we are going to show in detail a weak complete-
ness proof of the logic K45(G) (resp. KD45(G)) with respect to the class
ΠG (resp. the subclass Π∗G) of possibilistic Gödel Kripke models. In fact
one can prove a slightly stronger result, namely completeness for deductions
from finite theories.

We start with the case of K45(G). In what follows, for any formula ϕ
we denote by Sub(ϕ) ⊆ L�♦ the set of subformulas of ϕ and containing the
formula ⊥. Moreover, let X := {�θ, ♦θ : θ ∈ L�♦} be the set of formulas
in L�♦ beginning with a modal operator; then L�♦(V ar) = L(V ar ∪ X).
That is, any formula in L�♦(V ar) may be seen as a propositional Gödel
formula built from the extended set of propositional variables V ar ∪ X.
In addition, for a given formula ϕ, let ∼ϕ be the equivalence relation on
[0, 1]V ar∪X × [0, 1]V ar∪X defined as follows:
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u ∼ϕ w iff ∀ψ ∈ Sub(ϕ) : u(�ψ) = w(�ψ) and u(♦ψ) = w(♦ψ).

Now, assume that a formula ϕ is not a theorem of K45(G). Hence by com-
pleteness of Gödel calculus and Lemma 2.1, there exists a Gödel valuation v
such that v(ThK45(G)) = 1 and v(ϕ) < 1. With the valuation v now fixed,
we follow the usual canonical model construction, defining a canonical ΠG-
model Mv

ϕ in which we will show ϕ is not valid.
The canonical model Mv

ϕ = 〈W v
ϕ, πv

ϕ, ev
ϕ〉 is defined as follows:

• W v
ϕ is the set {u ∈ [0, 1]V ar∪X | u ∼ϕ v and u(ThK45(G)) = 1}.

• πv
ϕ(u) = infψ∈Sub(ϕ){min(v(�ψ) ⇒G u(ψ), u(ψ) ⇒G v(♦ψ))}.

• ev
ϕ(u, p) = u(p) for any p ∈ V ar.

In this context, we call the elements of Δϕ := {�θ, ♦θ : θ ∈ Sub(ϕ)} the
fixed points of the Canonical Model. Note that having ν(ThK45(G)) = 1
does not guarantee that ν belongs to the canonical model because it may
not take the appropriated values for the fixed points, i.e. it may be that
u �∼ϕ ν. However, the next lemma shows how to, under certain conditions,
transform such an evaluation into another belonging to the canonical model.

Lemma 4.1. Let u ∈ W v
ϕ and let ν : V ar ∪ X → [0, 1] be a Gödel valuation.

Define δ = max{u(λ) : ν(λ) < 1 and λ ∈ Δϕ} and β = min{u(λ) : ν(λ) =
1 and λ ∈ Δϕ}. If ν satisfies the following conditions:

a. ν(ThK45(G)) = 1;

b. for all λ ∈ X, we have u(λ) > δ implies ν(λ) = 1;

c. for any ψ, φ ∈ {λ : u(λ) ≤ δ and λ ∈ X}: u(ψ) < u(φ) implies ν(ψ) <
ν(φ);

d. for any ψ, φ ∈ Δϕ : u(ψ) ≤ u(φ) implies ν(ψ) ≤ ν(φ),

then there exists a Gödel valuation w ∈ W v
ϕ such that for any ε > 0 with

δ + ε < β, and for any formulae ψ and φ, the following conditions hold:

1. ν(ψ) = 11. implies w(ψ) ≥ δ + ε.

2. ν(ψ) < 1 implies w(ψ) < δ + ε.

3. 1 �= ν(ψ) ≤ ν(φ) implies w(ψ) ≤ w(φ).

4. ν(ψ) < ν(φ) implies w(ψ) < w(φ).

Proof. First of all, notice that if ν satisfies the conditions c and d, then
necessarily δ < β. Indeed, suppose δ ≥ β. Then there are at least two
formulas θ1 and θ2 in Δϕ such that ν(θ1) < 1, ν(θ2) = 1 and δ ≥ u(θ1) ≥
u(θ2) ≥ β. Note that the case u(θ1) > u(θ2) is not possible because it would



Simplified Kripke Semantics for K45-Like Gödel Modal Logics... 1093

violate condition c, and the case u(θ1) = u(θ2) is also impossible because it
would then violate condition d.

Let B = {ν(λ) : λ ∈ Δϕ, ν(λ) < 1} ∪ {0} = {b0 = 0 < b1 < . . . < bN}.
Obviously, bN < 1. For each 0 ≤ i ≤ N , pick λi ∈ Δϕ such that ν(λi) = bi.
Define now a continuous strictly function g : [0, 1] �→ [0, δ + ε) ∪ {1} such
that

g(1) = 1

g(bi) = u(λi) for every 0 ≤ i ≤ N

g[(bN , 1)] = (δ, δ + ε)

Notice that δ = g(bN ). In addition, define another continuous strictly in-
creasing function h : [0, 1] �→ [δ + ε, 1] such that

h(0) = δ + ε

h[(0, β)] = (δ + ε, β)

h(x) = x, for x ∈ [β, 1]

Then we define the valuation w : V ar ∪ X → [0, 1] as follows:

w(p) =

{
g(ν(p)) if ν(p) < 1
h(u(p)) if ν(p) = 1.

Next step is to prove that w satisfies the required Properties 1–4. We
prove it by induction on the maximum of the complexity of both formulae
ψ, φ.

First, we consider the base case when both ψ and φ belong to V ar ∪ X.
Then

1. By definition of w, ν(ψ) = 1 implies w(ψ) = h(u(ψ)) ≥ δ+ε. The same
happens for φ.

2. By definition of w, ν(ψ) < 1 implies w(ψ) = g(ν(ψ)) < δ+ε. The same
happens for φ.

3. Suppose 1 �= ν(ψ) ≤ ν(φ). Since ν(ψ) < 1, by definition of w, we have
w(ψ) = g(ν(ψ)) < δ + ε. Now, we analyse different cases. If ν(φ) < 1
then w(φ) = g(ν(φ)) ≥ g(ν(ψ)) = w(ψ) because g is strictly increasing.
Otherwise, If ν(φ) = 1 then w(φ) = h(u(φ)) ≥ δ+ε > w(ψ) = g(ν(ψ)).

4. Suppose ν(ψ) < ν(φ). In this case, the proof is similar to the previous
one. If ν(ψ) < 1 and ν(φ) = 1 then w(φ) = h(u(φ)) ≥ δ+ε > g(ν(ψ)) =
w(ψ). On the contrary, if both ν(ψ) < 1 and ν(φ) < 1 then w(φ) =
g(ν(φ)) > g(ν(ψ)) = w(ψ) because g is strictly increasing.
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This case will become important when we try to prove that w satisfies
the axioms of K45(G).

In fact, in case both formulae ψ and φ belong to V ar ∪X we can prove
that two further conditions hold:

5. If ν(ψ) = ν(φ) = 1 and u(ψ) ≤ u(φ) then w(ψ) ≤ w(φ).

6. If ν(ψ) = ν(φ) = 1 and u(ψ) < u(φ) then w(ψ) < w(φ).

Indeed, by definition of w, we have w(ψ) = h(u(ψ)) and w(φ) = h(u(φ)),
and since h is strictly increasing, u(ψ) ≤ u(φ) (resp. u(ψ) < u(φ)) implies
h(u(ψ)) ≤ h(u(φ)) (resp. h(u(ψ)) < h(u(φ))), as desired. These properties
will become important when proving that w satisfies the axioms of K45(G).

Now, we consider the inductive step.

Claim. Induction hypothesis (IH): if Properties 1–4 are satisfied by formu-
las with complexity at most n, then these properties also hold for formulae
with complexity at most n + 1.

The proof of this claim is quite technical and it is moved to the appendix.
Finally, we prove that w ∈ W v

ϕ , i.e. we prove that both w ∼ϕ v and
w(ThK45(G)) = 1.

(i) By definition, w ∼ϕ v iff w(�φ) = v(�φ) and w(♦φ) = v(♦φ) for all φ ∈
Sub(ϕ). Let A ∈ {�φ,♦φ} ⊆ Δϕ. By definition of w, w(A) = g(ν(A)) if
ν(A) < 1, and w(A) = h(u(A)), otherwise. Since A ∈ Δϕ, if ν(A) < 1
then, by construction (u(A) ≤ δ), we have g(ν(A)) = u(A) ≤ δ, and if
ν(A) = 1, again by construction (u(A) ≥ β), we have h(u(A)) = u(A).
So, we have proved that w ∼ϕ u, but by hypothesis u ∼ϕ v as well, thus
w ∼ϕ v as well.

(ii) We first prove that all axioms of K45(G) are evaluated to 1 by w. The
axioms of G are evaluated to 1 by any Gödel valuation. As for the specific
axioms of K45(G) (i.e. axioms (4�), (4♦), (5�), (5♦)), observe that all
these axioms are of the form φ →ψ for some φ, ψ ∈ X. Then it is enough
to prove that for any ϕ,ψ ∈ X, if ν(φ →ψ) = 1 then w(φ →ψ) = 1.
Indeed, if ν(φ →ψ) = 1, then ν(φ) ≤ ν(ψ) and we have two possibilities:

– If 1 �= ν(φ) ≤ ν(ψ), then by Property 3, we have w(φ) ≤ w(ψ).
– If ν(φ) = ν(ψ) = 1, then by definition of w, w(φ) = h(u(φ)) and

w(ψ) = h(u(ψ)). But since u ∈ W v
ϕ , we have u(φ →ψ) = 1, because

we assume that φ →ψ ∈ K45(G) with φ, ψ ∈ X. Thus u(φ) ≤ u(ψ)
and, by Property 5, we know w(φ) = h(u(φ)) ≤ h(u(ψ)) = w(ψ).
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Finally, let us consider the axioms of K(G) (Sect. 2). We have to prove
that w(χ) = 1 for each of such axioms χ, knowing by assumption that
ν(χ) = 1. The case of (F�) is easy since (F�) ∈ X, and then, by def-
inition, w(F�) = h(u(F�)) = 1. As for axiom (K�), note that, us-
ing propositional reasoning, it can be equivalently expressed first as
(�(φ →ψ) ∧ �φ) →�ψ, and then as (�(φ →ψ) →�ψ) ∨ (�φ →�ψ).
Therefore, if ν(K�) = 1, it means either ν(�(φ →ψ) →�ψ) = 1 or
ν(�φ →�ψ) = 1. But these two cases concern implications of formu-
las from X, and hence we are in the same situation above as with the
specific axioms of K45(G), and hence using the same reasoning, we can
conclude that either w(�(φ →ψ) →�ψ) = 1 or w(�φ →�ψ) = 1.

The case of axioms (K♦) and (P ) can be with in an analogous way, as
they can be written as a disjunction of implications of formulas from X.
So the case left is that of axiom (FS2), (♦φ →�ψ) →�(φ →ψ).

By hypothesis, we know ν(FS2) = 1, that is ν(♦φ) ⇒G ν(�ψ) ≤
ν(�(φ →ψ)). According to that, we have to prove w(FS2) = 1 as
well. Notice that, since ψ →(φ →ψ) is a tautology, u(�(ψ →(φ →ψ))) =
ν(�(ψ →(φ →ψ))) = 1. Then, by definition, w(�(ψ →(φ →ψ))) = 1 as
well and because axiom (K) is valid for w, we have w(�ψ →�(φ →ψ)) =
1, i.e. w(�ψ) ≤ w(�(φ →ψ)).
Now, we consider the following cases:

– Case u(♦φ) ≤ u(�ψ). Then u(�(φ →ψ)) = 1 which implies
ν(�(φ →ψ)) = 1. Hence, by construction, w(�(φ →ψ))
= h(u(�(φ →ψ))) = 1.

– Case u(♦φ) > u(�ψ). Here we distinguish three subcases:
– u(�ψ) ≤ δ < u(♦φ): by Conditions b and c, ν(♦φ) = 1 and

ν(�ψ) < 1, respectively. Therefore, by Property 4, w(�ψ) <
w(♦φ) and thus w(♦ϕ →�ψ) = w(�ψ) ≤ w(�(φ →ψ)) and
hence w(FS2) = 1.

– δ < u(�ψ) < u(♦φ): by Condition b, 1 = ν(♦φ) = ν(�ψ) ≤
ν(�(φ →ψ)). Thus, by construction, w(FS2) = (h(u(♦ϕ)) ⇒G

h(u(�ψ))) ⇒G h(u(�(φ →ψ)) = 1.
– u(�ψ) < u(♦φ) ≤ δ: by Condition c, ν(�ψ) < ν(♦φ), and

by Property 4, w(�ψ) < w(♦φ), and hence w(♦ϕ →�ψ) =
w(�ψ) ≤ w(�(φ →ψ)), and hence w(FS2) = 1.

So far, we have proved that w(φ) = 1 if φ is a K45(G) axiom. To con-
clude the proof, we need to extend this result to the rest of the formulas
in ThK45(G). Recall that a formula φ in the set ThK45(G) is either an
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axiom of K45(G) or φ can be proved from the axioms and rules of inference
K45(G). In the latter case, there is non-empty finite sequence of formulae
φ1, φ2, . . . , φn, with φn = ψ, and each φi is either an axiom or it has been ob-
tained by application of an inference rule on some of the preceding formulae
φ1, . . . , φi−1. We proceed by induction on the length n of the sequence. The
unique interesting case is when φn is obtained by applying the (Nec) rule
to some φj with 1 ≤ j < n, i.e. φn = �φj . It is clear that φj ∈ ThK45(G),
and by the inductive hypothesis, w(φj) = 1. Of course, �φj ∈ ThK45(G)
as well, and thus ν(�ξ) = 1 too. But since �φj ∈ X, by definition of w,
we hace w(ψ) = w(�φj) = h(u(�φj)) = 1. This finishes the proof of the
lemma.
Completeness will follow from the next truth-lemma.

Lemma 4.2. (Truth-lemma) For any ψ ∈ Sub(ϕ) and any u ∈ W v
ϕ, ev

ϕ(u, ψ)
= u(ψ).

Proof. For simplicity, we will write W c, πc and ec for W v
ϕ , πv

ϕ and ev
ϕ,

respectively. We prove the identity by induction on the complexity of the
formulas in Sub(ϕ), considered now as elements of L�♦(V ar). For ⊥ and the
propositional variables in Sub(ϕ) the equation holds by definition. The only
non trivial inductive steps are: ec(u, �ψ) = u(�ψ) and ec(u, ♦ψ) = u(♦ψ)
for �ψ, ♦ψ ∈ Sub(ϕ). By the inductive hypothesis we may assume that
ec(u′, ψ) = u′(ψ) for every u′ ∈ W c; thus we must prove:

inf
u′∈W c

{πc(u′) ⇒G u′(ψ)} = u(�ψ) (1)

sup
u′∈W c

{min(πc(u′), u′(ψ))} = u(♦ψ) (2)

By definition, πc(u′) ≤ (v(�ψ) ⇒G u′(ψ)) and πc(u′) ≤ (u′(ψ) ⇒G

v(♦ψ)) for any ψ ∈ Sub(ϕ) and u′ ∈ W ; therefore, u(�ψ) = v(�ψ) ≤
(πc(u′) ⇒G u′(ψ)) and min(πc(u′), u′(ψ)) ≤ v(♦ψ) = u(♦ψ). Taking in-
fimum over u′ in the first inequality and the supremum in the second we
get

u(�ψ) ≤ inf
u′∈W c

{πc(u′) ⇒G u′(ψ)} and sup
u′∈W c

{min(πc(u′), u′(ψ))} ≤ u(♦ψ).

Hence, if u(�ψ) = 1 and u(♦ψ) = 0 we directly obtain (1) and (2), re-
spectively. Therefore, it only remains to prove the next two claims for
�ψ, ♦ψ ∈ Sub(ϕ).

Claim 1. If u(�ψ) = α < 1 then, for every ε > 0, there exists a valuation
w ∈ W c such that πc(w) > w(ψ) and w(ψ) < α + ε, and thus (πc(w) ⇒G

w(ψ)) < α + ε.
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Claim 2. If u(♦ψ) = α > 0 then, for any small enough ε > 0, there exists
a valuation w′ ∈ W c such that min(w′(ψ), πc(w′)) ≥ α − ε.

The proofs of these two claims are rather involved and can be found in the
appendix.

Theorem 4.1. (Weak completeness K45(G)) For any formula ϕ in L�♦,
|=ΠG ϕ iff �K45(G) ϕ.

Proof. One direction is soundness, and it is easy to check that the axioms
are valid in the class ΠG of models. As for the other direction, assume
��K45(G) ϕ. Then ThK45(G) ��G ϕ by Lemma 2.1, and thus there is, by
Proposition 2.1, a Gödel valuation v : V ar ∪ X → [0, 1] such that v(ϕ) <
v(ThK45(G)) = 1. Then v is a world of the canonical model Mv

ϕ and by
Lemma 4.2, ev

ϕ(v, ϕ) = v(ϕ) < 1. Thus �|=ΠG ϕ.

In addition, it is easy to generalize the last proof of completeness for
deductions from finite theories.

Theorem 4.2. (Finite strong completeness K45(G)) For any finite theory
T and formula ϕ in L�♦, we have: T |=ΠG ϕ iff T �K45(G) ϕ.

Proof. The proof is an easy adaptation of the one of weak completeness.
We will only mention the main differences. If T ��K45(G) ϕ, by complete-
ness of Gödel logic and Lemma 3.2, there exists a Gödel valuation v such
that v(ThK45(G)) = 1, v(T ) = 1 and v(ϕ) < 1. Now, in order to build a
canonical model, we need to take into account not only v and ϕ but also T .
To do that we have to follow the very same steps as before but replacing
everywhere the set Sub(ϕ) of subformulas of ϕ by the larger set Sub(T, ϕ) of
subformulas of T ∪{ϕ}, i.e. Sub(T, ϕ) =

⋃
ψ∈T∪{ϕ} Sub(ψ). Let us denote by

Mv
T,ϕ = 〈W c, πc, ec〉 the canonical model built accordingly, where v ∈ W c.

Note that there is no need of any modification in neither Lemma 4.1 nor
the Truth Lemma 4.2 (except for replacing Sub(ϕ) by Sub(T, ϕ) in its state-
ment). Then the theorem follows by observing that Lemma 4.2 guarantees
that ec(v, ψ) = v(ψ) = 1 for all ψ ∈ T while ec(v, ϕ) = v(ϕ) < 1. Therefore,
T �|=ΠG ϕ.

Actually, the proofs for weak and finite strong completeness of K45(G)
with respect to the class of simplified possibilistic models ΠG easily
generalize to completeness of KD45(G), the axiomatic extension K45(G)
with axiom D, with respect to the class of normalized possibilistic models
Π∗G.

Corollary 4.1. (Finite strong completeness KD45(G)) For any finite
theory T and formula ϕ in L�♦, we have: T |=Π∗G ϕ iff T �KD45(G) ϕ.
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Proof. We only consider the proof of weak completeness, its extension
to a proof of finite strong completeness can be then devised as in The-
orem 4.2. Indeed, the proof only needs small adaptations to the one for
the case of K45(G). To start with, for technical reasons that will become
clear later, we will actually prove that ��KD45(G) ϕ′ implies �|=Π∗G ϕ′, where
ϕ′ = ♦� → ϕ. Note that since ♦� is an axiom of KD45(G) and is valid
in the class of frames Π∗G, the former condition is indeed equivalent to
prove that ��KD45(G) ϕ implies �|=Π∗G ϕ. Next, in the definition of the set
of worlds W v

ϕ′ of the canonical model Mv
ϕ′ , we need to replace the condition

u(ThK45(G)) = 1 by u(ThKD45(G)) = 1, i.e. we define

W v
ϕ′ = {u ∈ [0, 1]V ar∪X | u ∼ϕ′ v and u(ThKD45(G)) = 1},

and analogously in the condition a. of Lemma 4.1. Then in the proof of this
lemma (item (ii) after the Claim), one has to further check that w(♦�) = 1.
Observe that ♦� is provably equivalent to �� → ♦�, but this formula is of
the form φ →ψ for some φ, ψ ∈ X, and hence it falls under the cases already
considered in the proof. Thus Lemma 4.1 holds, and the same happens
with Lemma 4.2, that holds as well without any modification. Moreover,
Lemma 4.2 allows us to prove that the canonical model belongs in fact to
the class Π∗G of normalized possibilistic models. Indeed, by (2) it follows
that

sup
u′∈W v

ϕ′
{min(πc(u′), u′(ψ))} = u(♦ψ)

for every ♦ψ ∈ Sub(ϕ′), and since ♦� ∈ Sub(ϕ′) and u ∈ W v
ϕ′ (and hence

u(♦�) = 1), we finally have

1 = u(♦�) = sup
u′∈W v

ϕ′
{min(πc(u′), u′(�))} = sup

u′∈W v
ϕ′

πc(u′),

in other words, πc is normalized and thus Mv
ϕ′ ∈ Π∗G. In summary, we have

found a model Mv
ϕ′ = 〈W v

ϕ′ , πc, ev
ϕ′〉 ∈ Π∗G and a world v ∈ W v

ϕ′ such that
ev
ϕ′(v, ϕ′) = ev

ϕ′(v, ϕ) < 1, and therefore �|=Π∗G ϕ.

We would like to finish this section by noting that the same kind of proof
for weak and finite strong completeness for K45 can also be easily adapted
to the logic KT45(G), which is in fact equivalent to KT5(G), since Axiom
(4) is derivable in KT5(G). For that, we need to adapt some details of our
original proof. First, we can take the same definition of the canonical model
but considering ThKT5(G) instead of ThK45(G). Next, we follow with
Lemma 4.1 where we change condition a. by ν(ThKT5(G)) = 1. It is easy
to check that the same proof goes through except that we need to prove now
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that w(�ϕ →ϕ) = w(ϕ →♦ϕ) = 1. But again this is easy to be verified,
and the rest of the proof is working well. Then, we are are able to prove the
following:

Theorem 4.3. (Weak completeness KT45(G)) For any formula ϕ in L�♦:
|=Π5G ϕ iff �KT5(G) ϕ,

where Π5G is the class of possibilistic frames 〈W,π〉 that validate axioms
(T�) and (T♦).

This result is not new however, since it turns out that 〈W,π〉 validates (T�)
and (T♦) iff π is such that π(w) = 1 for every w ∈ W . In other words, Π5G
is in fact the class of universal models, the simplified semantics for S5(G),
a result that is well-known in the literature [8].

5. Decidability

So far, we have shown that V al(ΠG) = ThK45(G), i.e. the set of valid
formulas in ΠG, the class of all ΠG-frames, coincides with the set of the-
orems of the logic K45(G), or in other words, the logic K45(G) is sound
and complete with respect to ΠG-frames. It is natural to ask whether the
logic K45(G) is decidable. Unfortunately, it is easy to check that under the
possibilistic semantics the logic K45(G) does not satisfy the finite model
property. Indeed, consider the formula

�¬¬p → ¬¬�p

where p is a propositional variable. This formula is not valid in the model
M = 〈N, π, e〉, where for all n ∈ N,

π(n) = 1 and e(n, p) = 1
n+1 .

Then, for all n ∈ N we have:

e(n,¬¬p) = (
1

n + 1
⇒G 0) ⇒G 0 = 1,

e(n,�p) = inf
n∈N

{π(n) ⇒G e(n, p)} = inf
n∈N

{1 ⇒G
1

n + 1
} = 0,

e(n,�¬¬p) = inf
n∈N

{π(n) ⇒G e(n,¬¬p)} = inf
n∈N

{1 ⇒G 1} = 1,

and hence e(n,�¬¬p → ¬¬�p) = 0. However, �¬¬p → ¬¬�p is valid in
any ΠG-model 〈W,π, e〉 where W is finite.

Nevertheless, in [7] an alternative semantics was provided for K(G) which
admits the finite model property. In this section, we adapt that semantics
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in order to obtain an equivalent class of ΠG-models. For that, we are going
to use the same strategy used in [7], i.e. by limiting the truth-values of
modal formulae to a finite number of possibilities. According to this idea,
we propose the following adaptation of the original semantics given in [7].

Definition 5.1. A ΠGF -model is a quadruple M = 〈W,π, T, e〉, where
〈W,π, e〉 is a ΠG-model and T ∈ P<ω([0, 1]) is a finite set of truth values
satisfying {0, 1} ⊆ T ⊆ [0, 1]. The valuation e is extended to formulas using
the same clauses in ΠG-models for non-modal connectives, and using the
following revised clauses for modal connectives:

e(w,�ϕ) = max
{

r ∈ T : r ≤ inf
w′∈W

{π(w′) ⇒G e(w′, ϕ)}
}

,

e(w,♦ϕ) = min
{

r ∈ T : r ≥ sup
w′∈W

{min(π(w′), e(w′, ϕ))}
}

.

A formula ϕ is said to be valid in M if e(w, ϕ) = 1 for all w ∈ W . We will
denote by ΠGF the class of all ΠGF -models.

Notice that now the formula ϕ = �¬¬p →¬¬�p has a finite ΠGF -
counter-model. Indeed, consider the ΠGF -model M0 = 〈W,π, T, e〉 with
W = {a}, π(a) = 1, T = {0, 1}, and such that e(a, p) = 1

2 . Then we have:

• e(a,¬p) = 0, π(a) ⇒G e(a,¬¬p) = 1, and so e(a,�¬¬p) = 1.

• Further, e(a,�p) = 0 (since π(a) ⇒G e(a, p) = 1
2 , and 0 is the next

smallest element of T );

• Hence, e(a,¬�p) = 1 and e(a,¬¬�p) = 0.

• Therefore, 1 = e(a,�¬¬p) > e(a,¬¬�p) = 0 and �¬¬p →¬¬�p is not
valid in M0.

Next, we are going to prove that both semantics characterize the same
logic. First we need the following lemmas to prove the main result.

Lemma 5.1. Let M = 〈W,π, T, e〉 be an ΠGF -model. Given an order-embed
ding h : [0, 1] → [0, 1] satisfying h(0) = 0, h(1) = 1, and for any t ∈ T , h(t) =
t, consider M̂ = 〈W, π̂, T, ê〉, with π̂(w) = h(π(w)) and ê(w, p) = h(e(w, p))
for all w ∈ W and p ∈ Var. Then, for all ϕ ∈ L�♦(V ar) and w ∈ W :

ê(w,ϕ) = h(e(w,ϕ))

Proof. It is a special case of part (c) of Lemma 1 in [7].

Now, we provide the key construction of a ΠG-model taking the same
truth values for formulae as a given ΠGF -model.
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Lemma 5.2. For any ΠGF -model M = 〈W,π, T, e〉, there is a ΠG-model
M̂ = 〈Ŵ , π̂, ê〉 with W ⊆ Ŵ , such that ê(w, ϕ) = e(w, ϕ) for all ϕ ∈
L�♦(V ar) and w ∈ WM.

Proof. We proceed similarly to the proof of Lemma 4 in [7]. Given a ΠGF -
model M = 〈W,π, T, e〉, we construct an associated ΠG-model M̂ directly by
taking infinitely many copies of M. Assume T = {α1, . . . , αn} with 0 = α1 <
. . . < αn = 1 and, using Lemma 5.1, define a family of order-embeddings
{hk}k∈Z+ from [0, 1] into [0, 1] satisfying hk(0) = 0 and hk(1) = 1, and such
that for all i ≤ n − 1:

hk(αi) = αi k ∈ Z+

hk[(αi, αi+1)] = (αi, min(αi + 1
k , αi+1)) even k ∈ Z+

hk[(αi, αi+1)] = (max(αi, αi+1 − 1
k ), αi+1) odd k ∈ Z+.

For all k ∈ Z+, we define a ΠG-model M̂k = 〈Ŵk, π̂k, êk〉 such that
each Ŵk is a copy of W with distinct worlds, π̂k = hk(π) and êk(wk, ϕ) =
hk(e(w,ϕ)) for each copy wk of w ∈ W and ϕ ∈ L�♦(V ar). We also let
Ŵ0 = W , π̂0 = π and ê0 = e. Then we define M̂ = 〈Ŵ , π̂, ê〉, where

Ŵ =
⋃
k∈N

Ŵk and for ŵ ∈ Ŵk : π̂(ŵ) = π̂k(ŵ) ; ê(ŵ, p) = êk(ŵ, p).

It then suffices to prove that ê(w,ϕ) = e(w, ϕ) for all ϕ ∈ L�♦(V ar) and
w ∈ W , proceeding by an induction on the complexity of ϕ. The base case
follows directly from the definition of ê. For the inductive step, the cases
for the non-modal connectives follow easily using the induction hypothesis.
Let us just consider the case ϕ = �ψ, the case ϕ = ♦ψ being very similar.
There are two possibilities. Suppose first that

e(w,�ψ) = max{r ∈ T : r ≤ inf{π(w′) ⇒G e(w′, ψ) : w′ ∈ W}} = 1.

This means that, for all w′ ∈ W , π(w′) ≤ e(w′, ψ) and hence, for all k ∈ Z+

and ŵ′ ∈ Ŵ : hk(π(w′)) = π̂k(w′k) = π̂(ŵ′) ≤ hk(e(w′, ψ)) = êk(w′k, ψ) =
ê(ŵ′, ψ). It follows that

ê(ŵ,�ψ) = inf{π̂(ŵ′) ⇒G ê(ŵ′, ψ) : ŵ′ ∈ Ŵ} = 1 = e(w,�ψ).
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Now suppose that e(w,�ψ) = αi < 1, for some i ≤ m − 1. Then, π(v) ⇒G

e(v, ψ) ≥ αi for all v ∈ W , and thus (�): π̂(v̂) ⇒G ê(v̂, ψ) ≥ αi for all v̂ ∈ Ŵ ,
by construction using the order-embeddings {hk}k∈Z+ .

There are two subcases. First, suppose there is at least one w′ ∈ W such
that π(w′) ⇒G e(w′, ψ) = αi; call it w′

0. This means that π(w′
0) > e(w′

0, ψ) =
αi and for all k ∈ Z+, ê(ŵ′

0, ψ) = êk(w′k
0 , ψ) = hk(e(w′

0, ψ)) = hk(αi) = αi.
Since π(w′

0) > αi, also for all k ∈ Z+, π̂(ŵ′
0) = π̂k(w′k

0) = hk(π(w′
0)) >

αi = ê(ŵ′
0, ψ), and hence, using (�), we have:

ê(ŵ,�ψ) = inf{π̂(v̂) ⇒G ê(v̂, ψ) : v̂ ∈ Ŵ} = αi = e(w,�ψ).

Now suppose π(w′) ⇒G e(w′, ψ) > αi for all w′ ∈ W . Since e(w,�ψ) =
max{r ∈ T : r ≤ inf{π(w′) ⇒G e(w′, ψ) : w′ ∈ W}} = αi, there is at least
one w′ ∈ W such that π(w′) ⇒G e(w′, ψ) ∈ (αi, αi+1); call it w′

0. Then,
by construction, for any ε > 0 there is a k ∈ Z+ such that π̂(w′k

0) ⇒G

ê(w′k
0 , ψ) ∈ (αi, αi + ε). Using (�), this ensures that

ê(ŵ,�ψ) = inf{π̂(v) ⇒G ê(v, ψ) : v ∈ Ŵ} = αi = e(w,�ψ).

This ends the proof.

As an immediate consequence of Lemma 5.2, we have the next corollary.

Corollary 5.1. V al(ΠG) ⊆ V al(ΠGF).

The next lemma paves the way to prove in Theorem 5.1 that the logic
K45(G) has the finite model property and offers a bound on the complexity.
We call a set Σ ⊆ L�♦(V ar) a fragment if it is closed under subformulas.

Lemma 5.3. Let Σ ⊆ L�♦(V ar) be a finite fragment. Then, for any ΠG-
model M = 〈W,π, e〉, there is a finite ΠGF -model M̂ = 〈Ŵ , π̂, T̂ , ê〉 with
Ŵ ⊆ W , such that ê(w,ϕ) = e(w,ϕ) for all ϕ ∈ Σ and w ∈ Ŵ , and
moreover, |Ŵ | + |T̂ | ≤ 2|Σ|.
Proof. Let Σ ⊆ L�♦(V ar) be a finite fragment, M = 〈W,π, e〉 a ΠG-
model. First, define Σ� as the set of all box-formulas in Σ, Σ♦ as the set of
all diamond-formulas in Σ, and ΣVar as the set of all variables in Σ. Let us
also define ew[Δ] = {e(w,ϕ) : ϕ ∈ Δ} for any w ∈ W and Δ ⊆ L�♦(V ar). In
addition, let ew[Σ�∪Σ♦]∪{0, 1} = {α1, . . . , αn} with 0 = α1 < . . . < αn = 1.

Next, we choose a finite number of w′ ∈ W . For each �ψ ∈ Σ� such that
e(w,�ψ) = αi < 1, choose a w′ = w′

�ψ ∈ W such that e(w′
�ψ, ψ) < αi+1,

and for each ♦ψ ∈ Σ♦, such that e(w,♦ψ) = αi > 0, choose a w′ = w′
♦ψ ∈ W

such that e(w′
♦ψ, ψ) > αi−1. Then let Ŵ = {w} ∪ {w′

�ψ ∈ W : �ψ ∈ Σ�} ∪
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{w′
♦ψ ∈ W : ♦ψ ∈ Σ♦}. Clearly Ŵ ⊆ W is finite. We define M̂ = 〈Ŵ , π̂, T̂ , ê〉

where T̂ = ew[Σ� ∪ Σ♦] ∪ {0, 1}, and both π̂ and ê are equal to π and e

restricted to Ŵ , respectively. It then follows by induction on complexity
of ϕ that ê(w,ϕ) = e(w,ϕ) for all w ∈ Ŵ and ϕ ∈ Σ. The base case
follows from the definition of ê. For the inductive step, let ϕ ∈ Σ be of
the form ϕ = �ψ (the non-modal cases follow directly, using the induction
hypothesis). We need to consider the same two cases it was considered in
previous Lemma 5.2. First, note that since Ŵ ⊆ W , it is always true that

inf{π(w′) ⇒G e(w′, ψ) : w′ ∈ W} ≤ inf{π̂(ŵ′) ⇒G ê(ŵ′, ψ) : ŵ′ ∈ Ŵ}.

Now suppose that 1 = e(w,�ψ). Then, because 1 ∈ T̂ ,

1 = e(w,�ψ) = inf{π(w′) ⇒G e(w′, ψ) : w′ ∈ W}
≤ inf{π̂(ŵ′) ⇒G ê(ŵ′, ψ) : ŵ′ ∈ Ŵ}
≤ max{r ∈ T̂ : r ≤ inf{π̂(ŵ′) ⇒G ê(ŵ′, ψ) : ŵ′ ∈ Ŵ}}
= ê(w,�ψ).

For the second case, e(w,�ψ) = inf{π(w′) ⇒G e(w′, ψ) : w′ ∈ W} =
αi < 1 for some i ∈ {1, . . . , n − 1}. According to our choise, there exists a
w′

�ψ ∈ Ŵ such that αi ≤ π̂(w′
�ψ) ⇒G ê(w′

�ψ, ψ) < αi+1. Hence,

αi ≤ inf{π̂(ŵ′) ⇒G ê(ŵ′, ψ) : ŵ′ ∈ Ŵ}} ≤ π̂(w′
�ψ) ⇒G ê(w′

�ψ, ψ) < αi+1.

Thus

ê(w,�ψ) = max{r ∈ T̂ : r ≤ inf{π̂(ŵ′) ⇒G ê(ŵ′, ψ) : ŵ′ ∈ Ŵ}} = αi.

The diamond-case case follows similarly to the box-case and is therefore
omitted.

Finally, we note that by the construction of M̂, |Ŵ | ≤ |Σ�∪Σ♦|+1 ≤ |Σ|
and |T̂ | ≤ |Σ� ∪ Σ♦| + 2 ≤ |Σ|, and therefore |Ŵ | + |T̂ | ≤ 2|Σ|.

As a direct consequence of the above lemma we have the converse inclu-
sion of Corollary 5.1.

Corollary 5.2. V al(ΠGF) ⊆ V al(ΠG).

Finally, we can state the main result of this section, taking into account
that, if the length of ϕ is n, the smallest set Σ(ϕ) closed by subformulas
containing ϕ is such that |Σ(ϕ)| ≤ n + 2.
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Figure 1. K45(G) and its relational and possibilistic semantics

Theorem 5.1. For each ϕ ∈ L�♦(V ar) of length n: |=ΠG ϕ iff ϕ is valid in
all (finite) ΠGF -models M = 〈W,π, T, e〉 satisfying |W | + |T | ≤ 2(n + 2).

As a direct consequence we get the decidability of K45(G).

Corollary 5.3. The logic K45(G) is decidable.

Similarly, one can prove that the logic KD45(G) is decidable as well.

Corollary 5.4. The logic KD45(G) is decidable.

6. Conclusions

In this paper we have studied the logic over Gödel fuzzy logic arising from
many-valued Gödel Kripke models with possibilistic semantics, and have
shown that it actually corresponds to a simplified semantics for the logic
K45(G), the extension of Caicedo and Rodriguez’s bi-modal Gödel logic
with many-valued versions of the well-known modal axioms 4 and 5. See
Fig. 1 for a diagram of the results. We have also considered the extension
with the axiom D, the logic KD45(G), and have shown to be captured by
normalised possibilistic Gödel Kripke models. In this way, we have obtained
many-valued Gödel generalizations of the results reported by Pietruszczak
in [19] about simplified semantics for several classical modal logics. We have
also shown the decidability of those logics.

It is worth noting that the truth-value of a formula ♦ϕ in a possibilistic
Kripke model is indeed a proper generalization of the possibility measure
of ϕ when ϕ is a classical proposition, however the semantics of �ϕ is not.
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This is due to the fact that the negation in Gödel logic is not involutive.
Therefore, a first open problem we leave for further research is to consider to
extension of the logic K45(G) with an involutive negation and investigate
its possibilistic semantics. Finally, we would like to study the connection be-
tween our simplified possiblistic semantics and the pseudomonadic algebras
proposed in [4].
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Appendix

Claim from Lemma 4.1. Induction hypothesis (IH): if Properties 1–4 are
satisfied by formulas with complexity at most n then these properties keep
holding for formulae with complexity at most n + 1.

Proof. This case will become important when we try to prove that w
satisfies the axioms of K45(G).

http://creativecommons.org/licenses/by/4.0/
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We consider different cases according to the main operator being either
∧ or →. First, we prove Properties 1 and 2, that involve only one formula:

Case ψ = ψ1 ∧ ψ2.

1. Let ν(ψ1 ∧ ψ2) = 1. Then ν(ψ1) = ν(ψ2) = 1. In such a case, from the
inductive hypothesis, we conclude that w(ψ1) ≥ δ + ε and w(ψ2) ≥ δ + ε.
Therefore, w(ψ1 ∧ ψ2) ≥ δ + ε.

2. Let ν(ψ1 ∧ ψ2) < 1. Then, without loss of generality, we can assume
that ν(ψ1 ∧ ψ2) = ν(ψ1) ≤ ν(ψ2). In the case that ν(ψ1) < 1, we can
apply the inductive hypothesis and conclude that w(ψ1) < δ + ε and
w(ψ1) ≤ w(ψ2), according to Properties 2 and 3, respectively. Therefore,
we obtain w(ψ1 ∧ ψ2) = w(ψ1) < δ + ε.

Case ψ = ψ1 → ψ2.

1. Let ν(ψ1 →ψ2) = 1. Then ν(ψ1) ≤ ν(ψ2). First, we consider the case
ν(ψ1) < 1 where we can apply Property 3 by the inductive hypothesis,
obtaining that w(ψ1) ≤ w(ψ2) and, hence, w(ψ1 →ψ2) = 1 ≥ δ + ε. Now,
we turn to the case ν(ψ1) = 1 = ν(ψ2). In this situation, by applying
Property 1 on ψ2, we conclude that w(ψ1 → ψ2) ≥ w(ψ2) ≥ δ + ε.

2. Let ν(ψ1 →ψ2) < 1. Then ν(ψ1) > ν(ψ2). By inductive hypothesis, by ap-
plying Property 4, we have that w(ψ1) > w(ψ2), and hence w(ψ1 →ψ2) =
w(ψ2), but since ν(ψ2) < 1, then by Property 2, w(ψ2) < δ + ε.

Next we prove Properties 3 and 4, that involve two formulas. We proceed
by considering the four possible combinations.

Case ψ = ψ1 ∧ ψ2 and φ = φ1 ∧ φ2. In this case the proof is easy because,
without loss of generality, we can assume that ν(ψ1 ∧ ψ2) = ν(ψ1) and
ν(φ1 ∧ φ2) = ν(φ1).

3. Let 1 �= ν(ψ1 ∧ ψ2) ≤ ν(φ1 ∧ φ2). According to our assumption, this
means 1 �= ν(ψ1) ≤ ν(φ1), and by applying induction hypothesis we
obtain w(ψ1) ≤ w(φ1) and w(ψ1) < δ + ε. Now, we need to consider two
additional cases:

a. If ν(ψ2) = 1 then, by IH, w(ψ2) ≥ δ + ε. Thus, we obtain w(ψ1 ∧ψ2) =
w(ψ1) < δ + ε. In addition, if ν(φ1) < 1 then, by IH (Property 3),
w(φ1) ≤ w(φ2) and w(ψ1 ∧ ψ2) ≤ w(φ1 ∧ φ2). On the contrary, if
ν(φ1) = 1 then, ν(φ2) = 1 and w(φ1 ∧ φ2) ≥ δ + ε > w(ψ1 ∧ ψ2).
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b. If ν(ψ2) < 1 then, by IH on Properties 2 and 3, w(ψ1) ≤ w(ψ2) < δ + ε
which implies w(ψ1) = w(ψ1 ∧ ψ2) ≤ w(φ1). The proof of this case is
completed by reproducing the both alternatives when ν(φ1) < 1 and
ν(φ1) = 1, which were analyzed in the previous item.

4. Let ν(ψ1 ∧ ψ2) < ν(φ1 ∧ φ2). Again, this means ν(ψ1) < ν(φ1). By IH,
we obtain w(ψ1) < w(φ1) and w(ψ1) < δ + ε (Properties 4 and 2, respec-
tively). The rest of the proof runs as before.

Case ψ = ψ1 →ψ2 and φ = φ1 ∧ φ2. Again, without loss of generality, we
can assume that ν(φ1 ∧ φ2) = ν(φ1).

3. Let 1 �= ν(ψ1 → ψ2) ≤ ν(φ1 ∧φ2). Since ν(ψ1 →ψ2) < 1, we conclude that
ν(ψ1) > ν(ψ2) and 1 �= ν(ψ2) ≤ ν(φ1). By IH, we know that w(ψ2) ≤
w(φ1) and w(ψ1) > w(ψ2). In addition, if 1 �= ν(φ1) ≤ ν(φ2) then, by IH,
we have w(ψ1 →ψ2) = w(ψ2) ≤ w(φ1) = w(φ1 ∧ φ2). On the contrary, if
ν(φ1) = 1 = ν(φ2) then w(φ1 ∧ φ2) ≥ δ + ε > w(ψ2) = w(ψ1 →ψ2).

4. Let ν(ψ1 →ψ2) < ν(φ1 ∧ φ2). As in the previous proof, we can con-
clude that ν(ψ1) > ν(ψ2) and so by Property 4, w(ψ1) > w(ψ2), i.e.
w(ψ1 → ψ2) = w(ψ2). Moreover, as ν(ψ2) < ν(φ1), w(ψ2) < w(φ1) again
by Property 4. If 1 �= ν(φ1) ≤ ν(φ2) then, by IH, w(φ1) = w(φ1 ∧ φ2).
On the contrary, if ν(φ1) = 1 = ν(φ2) then, by IH, w(φ1 ∧ φ2) ≥ δ + ε >
w(ψ2) = w(ψ1 → ψ2).

Case ψ = ψ1 ∧ ψ2 and φ = φ1 →φ2. Again, without loss of generality, we
can assume that ν(ψ1 ∧ ψ2) = ν(ψ1).

3. Let 1 �= ν(ψ1 ∧ ψ2) ≤ ν(φ1 →φ2). According to our assumption, we know
ν(ψ1 ∧ ψ2) = ν(ψ1) < 1. Then, by IH, we obtain w(ψ1 ∧ ψ2) = w(ψ1) <
δ + ε. If ν(φ1 → φ2) < 1 then ν(φ1) > ν(φ2) ≥ ν(ψ1) and, by IH, we
know w(φ1 →φ2) = w(φ2) ≥ w(ψ1) = w(ψ1 ∧ ψ2). On the contrary,
ν(φ1 → φ2) = 1 implies ν(φ1) ≤ ν(φ2). In this case, if ν(φ1) < 1 then, by
IH w(φ1) ≤ w(φ2) which implies w(φ1 → φ2) = 1. If ν(φ1) = 1 = ν(φ2)
then, by IH, w(φ1 →φ2) ≥ w(φ2) ≥ δ + ε > w(ψ1) = w(ψ1 ∧ ψ2).

4. Let ν(ψ1 ∧ ψ2) < ν(φ1 → φ2). In this case, we can proceed analogously to
the previous proofs. For this reason, we leave to the reader to complete
the details.
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Case ψ = ψ1 → ψ2 and φ = φ1 →φ2.

3. Let 1 �= ν(ψ1 → ψ2) ≤ ν(φ1 → φ2). As ν(ψ1 → ψ2) �= 1, we conclude
ν(ψ1 →ψ2) = ν(ψ2) < 1. In addition, if ν(φ1 → φ2) < 1 then
ν(φ1 → φ2) = ν(φ2). Thus, if the truth values of both implications are
less than one, we have 1 �= ν(ψ2) ≤ ν(φ2). By IH, we know w(ψ2) ≤
w(φ2), w(ψ1) > w(ψ2) and w(φ1) > w(φ2). Therefore, w(ψ1 → ψ2) =
w(ψ2) ≤ w(φ2) = w(φ1 → φ2). On the contrary, if ν(φ1 → φ2) = 1 then
ν(φ1 ≤ ν(φ2). If ν(φ1) < 1 then, by IH, w(φ1 → φ2) = 1. In the opposite
case, if ν(φ1) = 1 = ν(φ2) then, by IH, w(φ1 →φ2) ≥ w(φ2) ≥ δ + ε >
w(ψ2) = w(ψ1 → ψ2).

4. Let ν(ψ1 → ψ2) < ν(φ1 → φ2). If both ν(ψ1 → ψ2) < 1 and ν(φ1 → φ2) <
1 then we can proceed as in the previous proof and we can apply IH
concluding that w(ψ1 →ψ2) = w(ψ2) < w(φ2) = w(φ1 → φ2). On the
contrary, if ν(φ1 → φ2) = 1 then we need to consider two alternatives.
First, 1 �= ν(φ1) ≤ ν(φ2) implies by IH that w(ψ1 →ψ2) = w(ψ2) <
δ + ε < 1 = w(φ1 →φ2). Second, if ν(φ1) = 1 = ν(φ2) then, by IH,
w(φ1 →φ2) ≥ w(φ2) ≥ δ + ε > w(ψ2) = w(ψ1 →ψ2).

This finishes the proof of the claim.

Claim 1 from Lemma 4.2. If u(�ψ) = α < 1, for every ε > 0, there exists
a valuation w ∈ W c such that πc(w) > w(ψ) and w(ψ) < α + ε, and thus
πc(w) ⇒G w(ψ) = w(ψ) < α + ε.

Proof. The proof is achieved in two stages:

• First producing a valuation ν ∈ W satisfying ν(ψ) < 1 and preserving
the relative ordering conditions the values w(θ) must satisfy, conditions
which may be coded by a theory Γψ,u;

• And then moving the values ν(θ), for θ ∈ Sub(ϕ), to the correct valuation
w by composing ν with an increasing function of [0,1], using Lemma 4.1.

Assume u(�ψ) = α < 1, and define the following set of formulas (all formu-
las involved ranging in L�♦(V ar)):

Γψ,u = {χ : χ ∈ X and u(χ) > α}
∪{λ → θ : λ ∈ Δϕ and u(λ) ≤ u(�θ)}
∪{(θ → λ) → λ : λ ∈ Δϕ and u(λ) < u(�θ) < 1}
∪{θ → λ : λ ∈ Δϕ and u(♦θ) ≤ u(λ)}
∪{(λ → θ) → θ : λ ∈ Δϕ and u(♦θ) < u(λ) < 1}
∪{(χ1 → χ2) → χ2 : χ1, χ2 ∈ X and u(χ2) < u(χ1) ≤ α}
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Then we can check that u(�ξ) > α for each ξ ∈ Γψ,u. Indeed, first recall
that, by U� and U♦ of Proposition 3.1, for any λ ∈ X (in particular Δϕ) we
have u(♦λ) ≤ u(λ) ≤ u(�λ) in K45(G). We analyse case by case. For the
first set of formulas, it is clear by construction. For the second set, we have
u(�(λ → θ)) ≥ u(♦λ → �θ) = u(♦λ) ⇒G u(�θ) ≥ u(λ) ⇒G u(�θ) = 1, by
FS2. For the third, by FS2 and P, we have

u(�((θ → λ) → λ)) ≥ u(♦(θ →λ) → �λ) ≥ u((�θ →♦λ) →�λ)

≥ u((�θ →λ) → �λ)

= u(λ) ⇒G u(�λ) = 1,

since u(♦λ) ≤ u(λ) ≤ u(�λ) and u(λ) < u(�θ). The fourth and fifth cases
are very similar to the second and third ones. As for the sixth case, by (T4),
either u(�χ1 → ♦χ2) = 1 or u(�((χ1 → χ2) →χ2)) = 1. According to (U�),
(U♦), (5�) and (5♦), we have that, for any ϕ, ♦�ϕ →�ϕ and ♦ϕ →�♦ϕ
are theorems of K45(G), and thus u(�χ1) ≥ u(χ1) and u(♦χ2) ≤ u(χ2),
from where it follows that

u(�χ1 → ♦χ2) = u(�χ1) ⇒G u(♦χ2) ≤ u(χ1) ⇒G u(χ2) = u(χ2) < 1.

Therefore, it holds that u(�((χ1 →χ2) →χ2)) = 1.
The fact that u(�ξ) > α for each ξ ∈ Γψ,u implies

Γψ,u ��K45(G) ψ,

otherwise there would exist ξ1, . . . , ξk ∈ Γψ,u such that ξ1, . . . , ξk �K45(G)

ψ. In such a case, we would have �ξ1, . . . ,�ξk �K45(G) �ψ by Nec and
K�. Then �ξ1, . . . ,�ξk, ThK45(G) �G �ψ by Lemma 2.1, and thus by
Proposition 2.1 (i), and recalling that u(ThK45(G)) = 1, we would have

α < inf u({�ξ1, . . . ,�ξk} ∪ ThK45(G)) ≤ u(�ψ) = α,

a contradiction. Therefore, by Proposition 2.1 (ii) there exists a valuation
ν : V ar ∪X �→ [0, 1] such that ν(Γψ,u ∪ThK45(G)) = 1 and ν(ψ) < 1. This
implies the following relations between u and ν, that we list for further use.
Given λ, λ1, λ2 ∈ Δϕ, θ ∈ L�♦(V ar) and χ, χ1, χ2 ∈ X, we have:
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#1. If u(χ) > α then χ ∈ Γψ,u, and hence ν(χ) = 1.

#2. If u(λ) ≤ u(�θ) then ν(λ) ≤ ν(θ) (since then λ → θ ∈ Γψ,u). In
particular, if λ1, λ2 ∈ Δϕ and u(λ1) ≤ u(�λ2) then ν(λ1) ≤ ν(λ2).
Furthermore, if �θ ∈ Δϕ then ν(�θ) ≤ ν(θ). That means, taking
θ = ψ, ν(�ψ) ≤ ν(ψ) < 1.

#3. If u(λ) < u(�θ) < 1 then ν(λ) < ν(θ) or ν(λ) = 1 (since then
(θ → λ) → λ) ∈ Γψ,u). In particular, if λ1, λ2 ∈ Δϕ, u(λ1) <
u(λ2) and u(λ2) ≤ u(�ψ) = α then ν(λ1) < ν(ψ) < 1 and thus
ν(λ1) < ν(λ2). This means that ν preserves in a strict sense the
order values by u of the formulas λ ∈ Δϕ such that u(λ) ≤ α.

#4. If u(♦θ) ≤ u(λ) then ν(θ) ≤ ν(λ) (because θ →λ ∈ Γψ,u). In
particular, if ♦θ ∈ Δϕ then ν(θ) ≤ ν(♦θ).

#5. If u(♦θ) < u(λ) < 1 then ν(θ) < ν(λ) or ν(θ) = 1. In particular,
if λ1, λ2 ∈ Δϕ and u(♦λ1) ≤ u(λ1) < u(λ2) ≤ α = u(�ψ) then
ν(λ1) < ν(λ2). Furthermore, if u(λ2) > 0 then ν(λ2) > 0 (taking
λ1 := ♦⊥ since u(⊥) = u(♦⊥) = 0).

#6. If u(χ2) < u(χ1) ≤ α then ν(χ2) < ν(χ1) < 1. Indeed, note that,
by construction, ν(ψ) < 1, that implies, by #2, ν(�ψ) < 1. In
addition, we know �ψ ∈ Δφ and u(�ψ) = α. Therefore, according
to #4, if χ1 ∈ X and u(♦χ1) ≤ u(χ1) ≤ u(�ψ) = u(��ψ), then
ν(χ1) ≤ ν(��ψ) = ν(�ψ) < 1. Finally, since (χ1 → χ2) →χ2 ∈
Γψ,u we have ν(χ2) < ν(χ1) < 1.

#7. If u(λ1) ≤ u(λ2) then ν(λ1) ≤ ν(λ2). Note that this is a particular
case of #2. Certainly, if λ1, λ2 ∈ Δϕ, then by Lemma 3.1 we have
u(λ2) ≤ u(�λ2), and, hence, by #2, ν(λ1) ≤ ν(λ2).

According to the properties #1–#7, it is clear that ν satisfies the condi-
tions a-d of Lemma 4.1. Indeed, from #1 and #2 it follows that

α = max{u(λ) : ν(λ) < 1 and λ ∈ Δϕ},

because, by construction of Γψ,u and by #1, ∀λ ∈ Δϕ, if u(λ) > α then
ν(λ) = 1 and by #2, ν(�ψ) < 1. Therefore α coincides with the value δ
defined in Lemma 4.1.

Consequently, for all ε > 0 such that α + ε < β, where β is defined as in
Lemma 4.1, there exists a valuation w ∈ W v such that w(ψ) < α + ε. Then
in order to finish our proof, it remains to show that:

πc(w) = inf
λ∈sub(ϕ)

min(v(�λ) ⇒G w(λ), w(λ) ⇒G v(♦λ)) > w(ψ) (3)
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To do so, we will prove that, for any λ ∈ sub(ϕ), both implications in (3)
are greater than or equal to α+ε.4 First we prove it for the first implication
by cases:

– If v(�λ) ≤ α < 1 then v(�λ) ⇒G w(λ) = 1. Indeed, first of all, by #2,
from u(�λ) = v(�λ) ≤ α = u(�ψ) it follows ν(�λ) ≤ ν(ψ) < 1. Now, since
u(�λ) ≤ u(�λ), by #2, we have 1 �= ν(�λ) ≤ ν(λ), and by 3 of Lemma 4.1
we have v(�λ) = w(�λ) ≤ w(λ). Then v(�λ) ⇒G w(λ) = 1.

– If v(�λ) > α then by #1 and #2, 1 = ν(�λ) ≤ ν(λ). Therefore, by 1 of
Lemma 4.1, w(λ) ≥ α + ε which implies v(�λ) ⇒G w(λ) > α.

For the second implication we also consider two cases:

– If v(♦λ) = u(♦λ) > α then ν(♦λ) = 1 by #1, so w(λ) ≥ w(♦λ) ≥ α + ε.
it is obvious that w(λ) ⇒G v(♦λ) > α because by Lemma 4.1 we know
w(λ) ≥ α + ε.

– If u(♦λ) ≤ α, then by #4 we obtain ν(λ) ≤ ν(♦λ) < 1. Then by Lemma 4.1
we have w(λ) ≤ w(♦λ) = v(♦λ) and thus w(λ) ⇒G v(♦λ) = 1.

Claim 2 from Lemma 4.2. If u(♦ψ) = α > 0 then, for any small enough ε > 0,
there exists a valuation w′ ∈ W such that min(w′(ψ), πc(w′)) ≥ α − ε.

Proof. Assume u(♦ψ) = α > 05. Then, we take δ = max{u(λ) < α : λ ∈
Δϕ} (note that the last set is not empty because ♦⊥ belongs to it) and
define Γ′

ψ,u in a similar way that it was defined in the proof of Claim 1:

Γ′
ψ,u = {χ : χ ∈ X and u(χ) > δ}

∪{λ → θ : λ ∈ Δϕ and u(λ) ≤ u(�θ)}
∪{(θ → λ) → λ : λ ∈ Δϕ and u(λ) < u(�θ) < 1}
∪{θ → λ : λ ∈ Δϕ and u(♦θ) ≤ u(λ)}
∪{(λ → θ) → θ : λ ∈ Δϕ and u(♦θ) < u(λ) < 1}
∪{(χ1 → χ2) → χ2 : χ1, χ2 ∈ X and u(χ2) < u(χ1) ≤ δ}

4Remember that u ∼ϕ v ∼ϕ w.
5In this context, α plays the role of β in Lemma 4.1.
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If u(♦ψ) = α > 0, then we let Uψ,u = ψ → θ where θ ∈ Δϕ and u(θ) = δ.
We claim that

Γ′
ψ,u ��K45(G) Uψ,u ,

otherwise there would exist θ1, . . . , θn ∈ Γ′
ψ,u such that �K45(G) (θ1 ∧ . . . ∧

θn) →Uψ,u, and then we would have �K45(G) �(θ1 ∧ . . . ∧ θn) →�(ψ → θ),
which would imply �K45(G) (�θ1 ∧ . . . ∧ �θn) →(♦ψ →�θ). In that case,
evaluating with u it would yield 1 = u(�θ1 ∧ . . . ∧ �θn) ⇒G u(♦ψ → θ),
contradiction, since u(�θ1 ∧ . . . ∧ �θn) > δ and u(♦ψ → θ) = δ (because by
definition u(θ) < u(♦ψ)).

Therefore, there is an evaluation ν′ such that ν′(ThK45(G)) = ν′(Γ′
ψ,u)

= 1, ν′(♦ψ) = 1 and ν′(ψ → θ) < 1. Hence, Condition a, in Lemma 4.1 is
satisfied. Condition b is also satisfied because by definition of Γ′

ψ,u we know
that ν′(χ) = 1 for every χ ∈ X such that u(χ) > δ. In addition, we can
verify Condition c by considering Property #6 of Claim 1 with δ instead of
α.

Therefore, for any ε > 0 with δ + ε < α there exists a valuation w′ ∈ W
such that w′(ψ) ≥ δ + ε. Note that in this case δ < α = 1. That means
we are always able to find an appropriate valuation w′ such that w′(ψ) is
arbitrarily close to α.

It remains to show that πc(w′) ≥ α. Indeed, by construction, it holds
that ∀θ ∈ Δϕ and u(�θ) ≤ δ : u(�θ) ≤ w′(θ) ≤ u(♦θ), and hence
min(u(�θ) ⇒G w′(θ), w′(θ) ⇒G u(♦θ)) ≥ α. This finishes the proof.
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94(2):189–214, 2010.



Simplified Kripke Semantics for K45-Like Gödel Modal Logics... 1113
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