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Possibilistic Defeasible Logic Programming (P-DeLP) is a logic programming framework which com-
bines features from argumentation theory and logic programming, in which defeasible rules are attached
with weights expressing their relative belief or preference strength. In P-DeLP a conclusion succeeds if
there exists an argument that entails the conclusion and this argument is found to be undefeated by a war-
rant procedure that systematically explores the universe of arguments in order to present an exhaustive
synthesis of the relevant chains of pros and cons for the given conclusion. Recently, we have proposed a
new warrant recursive semantics for P-DeLLP, called Recursive P-DelLP (RP-DeLP for short), based on
the claim that the acceptance of an argument should imply also the acceptance of all its subarguments
which reflect the different premises on which the argument is based. This paper explores the relation-
ship between the exhaustive dialectical analysis based semantics of P-DeLP and the recursive based
semantics of RP-DeLP, and analyzes a non-monotonic inference operator for RP-DeL.P which models
the expansion of a given program by adding new weighted facts associated with warranted conclusions.
Given the recursive based semantics of RP-DeLLP, we have also implemented an argumentation frame-
work for RP-DeLP that is able to compute not only the output of warranted and blocked conclusions,
but also explain the reasons behind the status of each conclusion. We have developed this framework as
a stand-alone application with a simple text-based input/output interface to be able to use it as part of
other Al systems.

1. Introduction and motivations

Defeasible argumentation is a natural way of identifying relevant assumptions and conclusions
for a given problem which often involves identifying conflicting information, resulting in the
need to look for pros and cons for a particular conclusion (55)). This process may involve chains
of reasoning, where conclusions are used in the assumptions for deriving further conclusions and
the task of finding pros and cons may be decomposed recursively. Logic-based formalizations
of argumentation that take pros and cons for some conclusion into account assume a set of
formulas and then lay out arguments and counterarguments that can be obtained from these
assumed formulas (22).

Defeasible Logic Programming (DeL.P) (42)) is a formalism that combines techniques of both
logic programming and defeasible argumentation. As in logic programming, knowledge is rep-
resented in DeLLP using facts and rules; however, DeLLP also provides the possibility of repre-
senting defeasible knowledge under the form of weak (defeasible) rules, expressing reasons to
believe in a given conclusion.

In DeLP, a conclusion succeeds if it is warranted, i.e., if there exists an argument (a consistent
sets of defeasible rules) that, together with the non-defeasible rules and facts, entails the con-
clusion, and moreover, this argument is found to be undefeated by a warrant procedure which
builds a dialectical tree containing all arguments that challenge this argument, and all coun-
terarguments that challenge those arguments, and so on, recursively. Actually, dialectical trees
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systematically explore the universe of arguments in order to present an exhaustive synthesis of
the relevant chains of pros and cons for a given conclusion. In fact, the interpreter for DeLLP (41J)
(http://lidia.cs.uns.edu.ar/DeLP) takes a knowledge base (program) P and a conclusion (query)
@ as input, and it then returns one of the following four possible answers: YES, if () is warranted
from P; NO, if the complement of () is warranted from P; UNDECIDED, if neither ) nor its
complement are warranted from P; or UNKNOWN, if () is not in the language of the program P.

Possibilistic Defeasible Logic Programming (P-DeLP) (4)) is an extension of DeLP in which
defeasible facts and rules are attached with weights (belonging to the real unit interval [0, 1])
expressing their relative belief or preference strength. As many other argumentation frame-
works (285 155), P-DeLLP can be used as a vehicle for facilitating rationally justifiable decision
making when handling incomplete and potentially inconsistent information. Actually, given a
P-DeLP program, justifiable decisions correspond to warranted conclusions (to some necessity
degree), that is, those which remain undefeated after an exhaustive dialectical analysis of all
possible arguments for and against.

Recently in (2), we have proposed a new semantics for P-DeLLP based on a general notion
of collective (non-binary) conflict among arguments and on the claim that the acceptance of
an argument should imply also the acceptance of all its subarguments which reflect the dif-
ferent premises on which the argument is based. In this framework, called Recursive P-DeL.P
(RP-DeLP for short), an output (extension) of a program is now a pair of sets, a set of war-
ranted and a set of blocked conclusions, with maximum necessity degrees. Arguments for both
warranted and blocked conclusions are recursively based on warranted conclusions but, while
warranted conclusions do not generate any conflict with the set of already warranted conclusions
and the strict part of program (information we take for granted they hold true), blocked conclu-
sions do. Conclusions that are neither warranted nor blocked correspond to rejected conclusions.

The key feature that our warrant recursive semantics addresses corresponds with the closure
under subarguments postulate recently proposed by Amgoud (5), claiming that if an argument
is excluded from an output, then all the arguments built on top of it should also be excluded
from that output. As stated in (53)), this recursive definition of acceptance among arguments can
lead to different outputs (extensions) for warranted conclusions. For RP-DeLLP programs with
multiple outputs we have also considered in (2) the problem of deciding the set of conclusions
that could be ultimately warranted. We have called this output (extension) maximal ideal output
of an RP-DeL.P program.

Our final aim is to be able to develop an argumentation framework that is useful for different
application domains. For example, recently argumentation tools have been proposed to analyze
and understand the information obtained from different Social Web applications, like Twitter or
Debatepedia (255 145)), but also specific web applications to allow users to develop debates about
specific issues (like policy proposal by governments), and then finally allow to policy makers to
understand the relevant opinions on the ongoing debates. A relevant example of this last kind of
tools is Parmenides (14), that follows an structured approach to propose arguments in a debate
and uses valued abstract argumentation frameworks (15) for analyzing the results of the debate.
However, as a first step, it is important to understand the characteristics of our argumentation
framework when compared with other existing ones.

In this paper we explore the relationship between the exhaustive dialectical analysis based se-
mantics of P-DelLP and the maximal ideal output of RP-DeLLP, and we analyze a non-monotonic
inference operator for RP-DeLP which models the expansion of a given program by adding new
weighed facts associated with warranted conclusions. Finally, considering our final aim of using
RP-DeLP in argumentation applications like the ones related to the Social Web, we briefly ex-
plain the characteristics of an implementation of an argumentation framework for RP-DeLLP we
have recently developed as a command-line application that can be easily used by third-party
final applications or services.
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2. The language of P-DeLP and RP-DeLLP

In order to make this paper self-contained, we will present next the main definitions that charac-
terize P-DeLP and RP-DeLP frameworks. For details the reader is referred to (2;4).

The language of P-DeLLP and RP-DeLP, denoted L, is inherited from the language of logic
programming, including the notions of atom, literal, rule and fact. Formulas are built over a
finite set of propositional variables p, g, ... which is extended with a new (negated) atom “~p”
for each original atom p. Atoms of the form p or ~p will be referred as literals, and if P is a
literal, we will use ~ P to denote ~p if P is an atom p, and will denote p if P is a negated atom
~p. Formulas of L consist of rules of the form ) < P; A ... A\ Py, where Q, Py, ..., P are
literals. A fact will be a rule with no premises. We will also use the name clause to denote a rule
or a fact.

P-DeLP and RP-DeLP frameworks are based on the propositional logic (£,F) where the
inference operator | is defined by instances of the modus ponens rule of the form: {Q «
Py AN...ANPy, Pr,..., P} E Q. A set of clauses I" will be deemed as contradictory, denoted
'+ 1,if, for some atom ¢, ' - gand "' - ~q.

In both frameworks a program P is a tuple P = (II, A, <) over the logic (£,}), where
IILA C £L,and IT t/ L. Il is a finite set of clauses representing strict knowledge (information
we take for granted they hold true), A is another finite set of clauses representing the defeasible
knowledge (formulas for which we have reasons to believe they are true). Finally, < is a total
pre-order on IT U A representing levels of defeasibility: ¢ < 1) means that ¢ is more defeasible
than 1. Actually, since formulas in II are not defeasible, < is such that all formulas in II are
at the top of the ordering. For the sake of a simpler notation we will often refer in the paper to
numerical levels for defeasible clauses and arguments rather than to the pre-ordering =<, so we
will assume a mapping N : [IUA — [0, 1] such that N(¢) = 1 forall ¢ € Il and N(¢) < N ()
iff o < .[]

The notion of argument is the usual one inherited from similar definitions in the argumentation
literature (28} 155 157). Given a program P, an argument for a literal (conclusion) ) of L is a
pair A = (A, Q), with A C A such that TU At/ 1, and A is minimal (w.r.t. set inclusion) such
that TU A F Q. If A = (), then we will call A a s-argument (s for strict), otherwise it will be a
d-argument (d for defeasible). We define the strength of an argument (A, Q), written s((A4, Q)),
as follows: s((A,Q)) = 1if A =0, and s((4, Q)) = min{N(¢) | ©» € A}, otherwise.

The notion of subargument is referred to d-arguments and expresses an incremental proof
relationship between arguments which is defined as follows. Let (B, Q) and (A, P) be two d-
arguments such that the minimal sets (w.r.t. set inclusion) IIg C II and IIp C II such that
IIoUBF QandIIp UAF P verify that Il C IIp. Then, (B, Q) is a subargument of (A, P),
written (B, Q) T (A, P), when either B C A (strict inclusion for defeasible knowledge), or
B = AandIlg C II4 (strict inclusion for strict knowledge). A literal @) of £ is called justifiable
conclusion w.r.t. P if there exists an argument for @), i.e. there exists A C A such that (A, Q) is
an argument.

As in most argumentation formalisms (see e.g. (28555)), in P-DeLLP and RP-DeLP frameworks
it can be the case that there exist arguments supporting contradictory literals, and thus, there
exist sets of conflicting arguments. Since arguments can rely on defeasible information, conflicts
among arguments may be resolved in both frameworks by comparing their strength. In this
sense the aim of both frameworks is to provide a useful warrant procedure in order to determine
which conclusions are ultimately accepted (or warranted) on the basis of a given program. The
difference between the two frameworks lies in the way in which this procedure is defined and
the type of conflicts are handled.

! Actually, a same pre-order =< can be represented by many mappings, but we can take any of them to since only the relative ordering
is what actually matters.
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In P-DeLLP warranted conclusions are justifiable conclusions which remain undefeated after
an exhaustive dialectical analysis of all possible arguments for an against and only binary attacks
or defeat relations are considered. In RP-DeLLP semantics for warranted conclusions is based on
a collective (non-binary) notion of conflict between arguments and if an argument is excluded
from an output, then all the arguments built on top of it are excluded from that output. In the
following sections we describe both mechanisms.

3. Dialectical analysis based semantics of P-DeLP

Let P be a P-DeLP program, and let (A1, Q1) and (A2, Q2) be two arguments w.r.t. P. (A1, Q1)
defeats <A2, Q2>H iff Q1 = ~ @9 and S(<A1, Q1>) > S(<A2, QQ)), or <A, Q> C <A2, Q2> and
Q1 =~ Q and s((A1,Q1)) > s({A,Q)). Moreover, if (A, Q1) defeats (Az, Q2) with strict
relation > we say that (A1, Q1) is a proper defeater for (As, (Q2), otherwise we say that (A1, Q1)
is a blocking defeater for (A, Q2).

In P-DeLLP warranted conclusions are formalized in terms of an exhaustive dialectical analysis
of all possible argumentation lines rooted in a given argument. An argumentation line starting in
an argument (Ao, Qo) is a sequence of arguments A\ = [(Ag, Qo), (A1, Q1) ..., (An, Qn), .. .]
such that each (A;, Q;) defeats the previous argument (A;_1,Q;_1) in the sequence, 7 > 0. In
order to avoid fallacious reasoning additional constraints are imposed, namely:

(1) Non-contradiction: given an argumentation line A, the set of arguments of the proponent
(respectively opponent) should be non-contradictory w.r.t. P.H

(2) Progressive argumentation: (i) every blocking defeater (A4;, Q;) in A with i > 0 is de-
feated by a proper defeatetﬁ (Ai+1,Qi+1) in A; and (ii) each argument (4;, Q;) in A, with
i > 2, 1is such that Q; # ~Q;_1.

The non-contradiction condition disallows the use of contradictory information on either side
(proponent or opponent). The first condition of progressive argumentation enforces the use of
a proper defeater to defeat an argument which acts as a blocking defeater, while the second
condition avoids non optimal arguments in the presence of a conflict. An argumentation line
satisfying the above restrictions is called acceptable, and can be proven to be finite. The set of
all possible acceptable argumentation lines results in a structure called dialectical tree. Given a
program P and a goal Q, Q) is warranted w.r.t. P with maximum strength « iff there exists an
argument (A, Q) with s({A, Q)) = « such that: i) every acceptable argumentation line starting
with (A, Q) has an odd number of arguments; and ii) there is no other argument of the form
(B,Q), with s((B,Q)) > «, satisfying the above condition. In the rest of the paper we will
write P |~ (A, @, ) to denote this fact and we will write C%.(P) to denote the set of warranted
conclusions of P based on dialectical trees, i.e. C%.(P) = {Q | P |~" (4,Q, a)}.

In (26) Caminada and Amgoud proposed three rationality postulates which every rule-based
argumentation system should satisfy. One of such postulates (called Indirect Consistency) re-
quires that the set of warranted conclusions must be consistent (w.r.t. the underlying logic) with
the set of strict clauses. This means that the warrant semantics of P-DeLP satisfies the indi-
rect consistency postulate iff given a program P = (II, A, <) its set of warranted conclusions
C¥.(P) is such that ITU CY (P) t/ L.

The defeat relation in P-DeLP, as occurs in most rule-based argumentation systems, is binary
and, in some cases, the conflict relation among arguments is hardly representable as a binary
relation when we compare them with the strict part of a program. For instance, consider the

2In what follows, for a given goal Q, we will write ~ Q as an abbreviation to denote “~¢", if Q = ¢, and “¢", if Q = ~q.

3 Non-contradiction for a set of arguments is defined as follows: aset S = JI_; {(A;, Qi) } is contradictory w.r.t. P iff IUJ]_; A;
is contradictory.

41t must be noted that the last argument in an argumentation line is allowed to be a blocking defeater for the previous one.
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following program P = (I, A, <) with IT = {p, =p < a A b A ¢}, A = {a, b, c} and a single
defeasibility level o for A. Clearly, A; = ({a},a), A2 = ({b},b) and A3 = ({c},c) are
arguments that justify conclusions a, b and ¢ respectively, and A1, 42 and A3 have no defeaters,
and thus, {a, b, c} are warranted w.r.t. the P-DeLP program P. Indeed, conclusions a, b and ¢ do
not pair-wisely generate a conflict since IT U {a,b} ¥ L, ITU {a,c} I/ L and ITU {b,c} I/ L.
However, these conclusions are collectively conflicting w.r.t. the strict part of program II since
ITU{a,b,c} F L, and thus, the warrant semantics of P-DeLP does not satisfy the indirect
consistency postulate.

In order to characterize such situations we proposed in (2) the RP-DeLLP framework, a new
warrant semantics for P-DeLLP based on a general notion of collective (non-binary) conflict
among arguments ensuring the three rationality postulates defined by Caminada and Amgoud.

4. Recursive warrant semantics of RP-DeLLP

The warrant recursive semantics of RP-DeLP is based on the following general notion of col-
lective conflict in a set of arguments which captures the idea of an inconsistency arising from
a consistent set of justifiable conclusions W together with the strict part of a program and the
set of conclusions of those arguments. Let P = (I, A, <) be a program and let W C L be a
set of conclusions. We say that a set of arguments {(A41, Q1), ..., (Ak, Q) } minimally conflicts
with respect to W iff the two following conditions hold: (i) the set of argument conclusions
{Q1, ..., Qx} is contradictory with respect to W, i.e. it holds that TUW U{Q1,...,Qr} F L;
and (ii) the set {(A1,Q1), ..., (Ar, Qk)} is minimal with respect to set inclusion satisfying (i),
ie. if S C{Q1,...,Qr}, then IUW US I/ L.

This general notion of conflict is used to define an output of an RP-DeLP program
P = (I, A, =) as a pair (Warr, Block) of subsets of £ of warranted and blocked conclu-
sions respectively. Since we are considering several levels of strength among arguments, the
intended construction of the sets of conclusions Warr and Block is done level-wise, start-
ing from the highest level and iteratively going down from one level to next level below.
If 1 > a1 > ... > a, > 0 are the strengths of d-arguments that can be built within
P, we define: Warr = Warr(1) U {Uj—1 ,Warr(e;)} and Block = U1 pBlock(c;), where
Warr(l) = {Q | I + @}, and Warr(c;) and Block(cy;) are respectively the sets of the war-
ranted and blocked justifiable conclusions of strength ;. Intuitively, an argument (A, Q) of
strength «; is valid whenever (i) it is based on warranted conclusions; (ii) there does not exist
a valid argument for () with strength > «;; and (iii) @) is consistent with both blocked conclu-
sions of strength > «; and the strict knowledge extended with warranted conclusions of strength
> . Then, a valid argument (A, QQ) becomes blocked as soon as it leads to some conflict among
valid arguments of same strength and the set of already warranted conclusions, otherwise, it is
warranted.

In (2) we show that, in case of some circular dependences among arguments, the output of
an RP-DeLP program may be not unique, that is, there may exist several pairs (Warr, Block)
satisfying the above conditions for a given RP-DeLLP program. The following example shows a
circular relation among arguments involving strict knowledge. Consider the RP-DeLLP program
P =(ILAX)withll = {y,~y — pAr,~y — qAs}, A ={p,qr — q,s — p}anda
single defeasibility level a for A. Then, Warr(1) = {y} and A; = ({p},p) and As = ({q},q)
are valid arguments for conclusions p and g, respectively, and thus, conclusions p and ¢ may be
warranted or blocked but not rejected. Moreover, since arguments B; = ({¢,r < ¢},r) and
Ba = ({p, s < p}, s) are valid whenever ¢ and p are warranted, respectively, and II U {p,r} +-
1 and IT U {q,s} F L, we get that p can be warranted iff ¢ is blocked and that ¢ can be
warranted iff p is blocked. Hence, in that case we have two possible outputs: (Warry, Blocky)
and (Warra, Blocks), where Warry = {y, p}, Block1 = {q, s} and Warry = {y, ¢}, Blocks =
{p,r}. Figure |1| shows the circular dependences among {A;, A2} and {81, B2}. Conflict and
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support dependencies among arguments are represented as dashed and solid arrows, respectively.
The cycle of the graph expresses that (1) the warranty of p depends on a (possible) conflict with
r; (2) the support of r depends on ¢ (i.e., r is valid whenever ¢ is warranted); (3) the warranty of
q depends on a (possible) conflict with s; and (4) the support of s depends on p (i.e., s is valid
whenever p is warranted).

Figure 1. Circular dependences between arguments.

In (2) we analyze the problem of deciding the set of conclusions that can be ultimately war-
ranted in RP-DeLLP programs with multiple outputs. The usual skeptical approach would be to
adopt the intersection of all possible outputs. However, in addition to the computational limita-
tion, as stated in (53)), adopting the intersection of all outputs may lead to an inconsistent output
in the sense of violating the base of the underlying recursive warrant semantics, claiming that
if an argument is excluded from an output, then all the arguments built on top of it should also
be excluded from that output. Intuitively, for a conclusion, to be in the intersection does not
guarantee the existence of an argument for it that is recursively based on ultimately warranted
conclusions. Instead, the set of ultimately warranted conclusions we are interested in for RP-
DeLP programs is characterized by means of a recursive level-wise definition considering at
each level the maximum set of conclusions based on warranted information and not involved in
neither a conflict nor a circular definition of warranty. We refer to this output as maximal ideal
output of an RP-DeLP program.

Intuitively, a valid argument (A, Q)) becomes blocked in the maximal ideal output, as soon
as (i) it leads to some conflict among valid arguments of same strength and the set of already
warranted conclusions or (ii) the warranty of (A, Q) depends on some circular definition of
conflict between arguments of same strength; otherwise, it is warranted. Consider again the
previous program P. According to Figure[T] valid arguments for conclusions p and ¢ are involved
in a circular circular definition of conflict, and thus, conclusions p and ¢ must be blocked in the
maximal ideal output of P and arguments for conclusions r and s are rejected. Hence, in that
case, we have the following maximal ideal output of P: (Warrmax, Blockmay ), Where Warrmp,x =
{y} and Blockmax = {p, q}.

S. Dialectical analysis and recursive warrant semantics

In (2) we prove that the maximal ideal output of an RP-DeLLP program is unique and satisfies
the indirect consistency property defined by Caminada and Amgoud with respect to the strict
knowledge.

Next we show that given a program P and its set C%.(P) of warranted conclusions based on
dialectical trees, C}f;(P) contains each warranted conclusion in the maximal ideal output of P.

Proposition 5.1: Let P = (11, A, <) be a program with levels of defeasibility 1 > a1 > ... >
ap > 0. If (Warr, Block) is the maximal ideal output of P, for each level «; it holds that
Warr(a;) C{Q | P |~ (A,Q, ) }. Obviously, Warr(1) = {Q | P |~ (4,Q, 1)},

Proof. 1f Q € Warr(cy), there exits an argument (A, Q) of strength «; such that (i) it is based
on warranted conclusions; (ii) there does not exist an argument for ) of strength > «; based
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on warranted conclusions; (iii) @) is consistent with both blocked conclusions of strength > «;
and the strict knowledge extended with warranted conclusions of strength > «;; (iv) it does not
lead to any conflict among arguments of strength «; and; (v) it is not involved in any circular
definition of conflict between arguments of strength «;. Hence, every acceptable argumentation
line w.r.t. P starting in (A, @) has an odd number of arguments and there is no other argument
of the form (B, Q) w.rt. P, with s((B,(Q)) > «, satisfying the above condition, and thus,
P ’Nw (A,Q,az). ]

Notice that the inverse of Prop.[5.1]does not hold since the dialectical analysis based semantics
of P-DeLP does not satisfy the indirect consistency property defined by Caminada and Amgoud
with respect to the strict knowledge. Because we are interested in exploring the relationship
between the dialectical analysis based semantics of P-DelLP and the maximal ideal recursive se-
mantics of RP-DeLLP, we have to extend the P-DeLLP framework with some mechanism ensuring
this property.

In (26) Caminada and Amgoud propose as a solution the definition of a special transposition
operator Cly, for computing the closure of strict rules. This accounts for taking every strict rule
r=¢1,02,...,0, — 1 as a material implication in propositional logic which is equivalent to
the disjunction —¢; V =2 V ...V —¢,, V 1. From that disjunction different rules of the form
D1y Gic1, Y, Gig1, ..., On — —¢; can be obtained (transpositions of r). If S is a set of
strict rules, Cly), is the minimal set such that (i) S C Cl,(S) and (ii) If s € Cl;,(S) and t is a
transposition of s, then t € Cl,(S).

Computing the closure under transposition of strict rules allows the indirect consistency prop-
erty to be satisfied in the case of rule-based argumentation systems like DeLP or P-DeLP as
it was proved in (26)). In fact, in some sense, it allows to perform forward reasoning from
warranted conclusions, and thus, to evaluate collective conflicts among arguments. However,
P-DeLlP is a Horn-based system, so that strict rules should be read as inference rules rather
than as material implications. In this respect, the use of transposed rules might lead to unin-
tuitive situations in a logic programming context. Consider e.g. the program P = (II, A, <)
withII = {q <« pAr,s «— ~r,p,~q,~s}, A = (). In P-DeLP, p, ~q and ~s would be
warranted conclusions, i.e. Ci(P) = {p, ~q, ~s}. However, the closure under transposition
Clyy(IT) would include the rule ~7 « p A ~ g, resulting in inconsistency since both s and ~ s
can be derived, so that the whole program would be deemed as invalid.

Apart from the above limitation, when extending a P-DeLLP program with all possible trans-
positions of every strict rule, the system can possibly establish as warranted goals conclu-
sions which are not explicitly expressed in the original program. Consider e.g. the program
P = (ILA,X) withII = {~y <« aAb,y}, A = {a,b} and two levels of defeasibility
for A as follows: {b} < {a}. Assume «; is the level of {a} and «z is the level of {b}, with
1 > a1 > ag > 0. Transpositions of the strict rule ~y «— a A b are ~a «— y A b and
~b «— y A a. Then, the argument A = ({~b < a A y, a}, ~b) with strength «; justifies con-
clusion ~b. Moreover, as there is neither a proper nor a blocking defeater of A, we conclude
that ~b is warranted w.r.t. P* = (I U Cl,,(II), A, <), although no explicit information is given
for literal ~b in P. Moreover, notice that Ci5(P) = {y, a, b} and Ci5(P*) = {y, a, ~b}.

Next we show that if (Warr, Block) is the maximal ideal output of a program P = (II, A, <)
such that IT U Cly,(IT) I/ L, the set Warr of warranted conclusions contains indeed each literal
@ satisfying that P* [~ (A, @, o) whenever IIU A = @, with P* = (ITU Cly,(I1), A, <).

Proposition 5.2: Let P = (11, A, <) be a program with levels of defeasibility 1 > a1 > ... >
ap > 0 and such that 11U Cly,(IT) t# L. If (Warr, Block) is the maximal ideal output of P and
P* = (ITU Cly,y(I1), A, <), for each level o it holds that {Q | P* |~ (A, Q, o;) and ITU A -
Q} C Warr(ay). Obviously, {Q | P* |~ (A,Q,1)andTUAF Q} ={Q | I+ Q} =
Warr(1).
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Proof. We distinguish between two cases:

(i) P*|~" (A, Q, ;) and there is no defeater for (A, Q) w.r.t. P*;i.e. [(A, Q)] is the only ac-
ceptable argumentation line starting in (A, ), and thus, there does not exist any argument
(D, ~Q) w.r.t. P* such that s((D, ~Q)) > «;. Moreover, if (B, P) C (A, Q), there is no
defeater of (B, P) w.r.t. P*, and thus, there does not exist any argument (C, ~ P) w.r.t. P*
such that s((C, ~P)) > s((B, P)). Since P* contains the closure of strict rules Cly,(II),
if TU A F @ we have that (A, Q) of strength «; is valid w.r.t. the recursive warrant se-
mantics for P. Moreover, (A, @) is not involved in a conflict nor in a cycle among valid
arguments of strength «; and the set of warranted conclusions of strength greater than o,
and thus, argument (A, Q) of strength «; is warranted in the maximal ideal output of P.
Hence, if TU A F Q, Q € Warr(«a;).

(i) P* | ~* (A,Q,q;) and (A,Q) has at least one defeater w.r.t. P*; i.e. every ac-

ceptable argumentation line starting in an argument (A,Q) is of the form \ =
[(A,Q),..., Asap_1, Az, with n > 1. Again we distinguish between two cases:
(a) Argument A,, is a blocking defeater for argument A5, 1. In this case, conclusions
of arguments Ay, and Ao, 1 are not warranted w.r.t. P* and the argumentation line
[(A,Q),...,Asp_1,.Az,] can be omitted in the sense that it is subsumed by the rest of ac-
ceptable argumentation lines starting in argument (A, @) and containing argument A, 1.
(b) Argument As, is a proper defeater for argument Ay, 1. In this case, A3, has no de-
featers w.r.t. P*. Then, if Ao, = (B, P) and [IUB + P, P € Warr(s({B, P))). Moreover,
if Aop—1 = (C,R), R & Warr(() for all 5 > s((C, R)). Since the above reasoning can
be applied recursively for every argument Ay(,_;) in A withi = 0...n, if TU A - Q,
Q € Warr(a;).

O]

6. Logical properties of the maximal ideal recursive semantics of RP-DeLP

Following the approach we made in (4) for dialectical semantics, next we study the behavior
of the maximal ideal output of an RP-DeLP program in the context of non-monotonic inference
relationships. In order to do this, we define an inference operator £} that computes the expansion
of a program including all new facts which correspond to warranted conclusions in the maximal
ideal output.

Formally: Let P = (II, A, <) be an RP-DeLP program with levels of defeasibility 1 > a1 >
... > ap > 0 and let (Warr, Block) be the maximal ideal output of . We define the operator
EY associated with P as follows: E&(P) = (ITUWarr(1), AU (Uj=1.. ,Warr(e;)), <’) and such
that N'(¢) = N(yp) forall p € ITU A, N'(p) = 1 forall ¢ € Warr(1), and N(p) = «; for all
© € Warr(ay),i=1...p.

Notice that by definition operator £} is well-defined (i.e., given an RP-DeLP program as input,
the associated output is also an RP-DeLP program). Moreover, £ satisfies inclusion: given an
RP-DeLP program P = (II, A, <) with levels of defeasibility 1 > o; > ... > o, > 0 and
maximal ideal output (Warr, Block), II C IT U Warr(1), A C A U (Uj=1.. pWarr(ea;)) and <’
preserves the total pre-order < on IT U A.

In what follows, given an RP-DeLP program P = (II, A, <), a clause ¢ and a set of clauses
I', we will write ¢ € P and I' C P to denote that p € TTU A and I' C TTU A, respectively.
Moreover, given a different RP-DeLP program P’, if ¢ € P in defeasibility level «, we will
write P’ U {¢} to denote that program P’ is extended with the clause ¢ in defeasibility level a.

Besides, monotonicity does not hold for £}, as expected. It is satisfied if all warranted con-
clusions from a given program are preserved when the program is augmented with new clauses.
As a counterexample consider the program P = (I, A, <) with II = {¢}, A = {p < ¢} and
a single level of defeasibility @ for A. Then, Warr(1) = {¢} and Warr(or) = {p}, and thus,
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{¢,p} C EL(P). However, if we extend program P with the strict fact ~p, we get the following
program P’ = (I, A, <’) with I" = {q, ~p} and N'(~p) = 1. Then, Warr(1) = {q,~p} and
Warr(a)) = () in the maximal ideal output of P’. Hence, p € EX(P’) butp € EL(P) .

Semi-monotonicity is an interesting property for analyzing non-monotonic consequence re-
lationships. It is satisfied if all defeasible warranted conclusions are preserved when the pro-
gram is augmented with new defeasible clauses. Semi-monotonicity does not hold for £33, as
adding new defeasible clauses cannot invalidate already valid arguments, but it can enable new
ones that were not present before, thus introducing new conflicts or new circular dependences
among arguments. Arguments that were warranted may therefore no longer keep that status.
Consider a variant of the previous counterexample: we consider the fact ~p as defeasible in-
formation, i.e. we define the following program P’ = (I, A’, <) with A" = {p « ¢,~p}
N'(~p) = N'(p < q). Now, Warr(1) = {q}, Warr(a®) = 0 and Block(«) = {p, ~p} for the
maximal ideal output of P’. Hence, p € EX(P’) but p € EL(P).

Next we define some relevant logical properties that operator £g5satisfies.

Proposition 6.1 (Idempotence, cuammulativity and supraclassicality): Let P = (II, A, <) be an
RP-DeLP program.

o The operator Esatisfies idempotence: E%(P) = EL(ES(P)).

o The operator Esatisfies cummulativity: if Q € E&(P), thenif R € E5(PU{Q}) implies
R € EL(P).

o The operator EXsatisfies (Horn) supraclassicality: II. C EX(P), where Il = {Q | IT +
Q}.

Proof. If 1 > a1 > ... > «, > 0 are the defeasibility levels of P and (Warr, Block) is the
maximal ideal output of P, by definition £ (P) = (ILU Warr(1), A U (Uj=1. pWarr(cy)), =),
where N'(¢) = N(p) forall o € TIUA, N'(¢) = 1 forall p € Warr(1), and N(¢) = «; for all
¢ € Warr(ay;), i = 1...p. Hence, by definition E%(P) C EL(EY(P)). Then, if (Warr’, Block)
is the maximal ideal output of P’ = EX(P), we have to show that Warr’ C Warr. Suppose
that Warr’ € Warr, then there should exist an argument involved in some conflict or some cycle
w.r.t. P and not involved in any conflict and any cycle w.r.t. P’, and thus, there should exist at
least an argument A valid w.r.t. P but not valid w.r.t. P’ and such that all subarguments of .4
are warranted w.r.t. both P and P’. Therefore, it must be the case that A is inconsistent with
either blocked conclusions of strength greater than A or the strict knowledge extended with
warranted conclusions of strength greater than .A. However, as the sets of blocked and warranted
conclusions of strength greater than 4 are the same in both cases, we have that every valid
argument w.r.t. P is also valid w.r.t. P’, and thus, Warr’ C Warr.

Cummulativity property follows directly from idempotence. Finally, as {Q | II - Q} =
Warr(1) C £X(P), (Horn) supraclassicality holds for RP-DeLP programs. O

Finally, the operator £}satisfies (somewhat softened) right weakening with respect to the
set of strict rules. Indeed, it is satisfied in the full sense for RP-DeLLP programs with a single
defeasibility level: let P = (II, A, <) be an RP-DeLP program with a single defeasibility level
for A,if @ — P; A...ANP€lland {Py,..., P} C EL(P), then Q € EL(P).

The key point here is how warranted and blocked conclusions at higher levels of the maximal
ideal output are taken into account in lower levels. In particular blocked conclusions play a key
role in the propagation mechanism between defeasibility levels. In the RP-DeLLP approach if a
conclusion ¢ is blocked at level «, then for any lower level than «, not only the conclusion ¢ is
rejected but also every conclusion ¢ such that {p, ¥} F L.

The following example shows the propagation mechanism between defeasibility levels for the
maximal ideal recursive semantics. Consider the RP-DeLP program P = (II, A, <) with

M={~s«q~r«—h}and A ={q—r,h—s,rsab,q—a,h— b},
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and two defeasibility levels for A: «; and ag with 1 > a1 > ag > 0. Consider that A is
stratified as follows:

level ay: {q < r,h «— s,r,s,a,b} level ag: {q < a,h — b}.
Obviously, Warr(1) = ). Then, at level a;, we have four valid arguments:

Hi=({r},r), Ha=({s},s),
Hs = ({a},a), Ha= ({b},)).

and four almost valid arguments: [ﬂ

]—“1:<{7“,q<—7“},q>, f2:<{8,h<—8},h>,
Fs={{r,q—r}r~s), Fi={{s,h— s} ~r).

Figure 2] shows a graphical representation of support and conflict dependences between
{H1, Ha, H3, Hs} and {Fi, Fa, F3, Fs}. Obviously, a and b can be warranted since they are
not involved in any conflict nor in any cycle. The cycles express that either r or s can be war-
ranted, but not both. Since valid arguments and almost valid arguments involved in cycles must
be blocked and rejected, respectively, the maximal ideal output at level o is:

Warr(an) = {a,b}, Block(ay) = {r,s}.

Then, at level cvo we have that arguments
({g < a,a},q) and ({h < b,b}, h)

are valid and they are not involved in any cycle nor in any conflict, and thus, ¢ and h are war-
ranted conclusions at level o (i.e. {g,h} C Warr(az)). Finally, although arguments

({q < a,a},~s)and ({h < b,b},~7r)

are recursively based on warranted conclusions, both are inconsistent with blocked conclusions
at level o, and thus, s and r are rejected for the maximal ideal output:

Warr(az) = {q,h}, Block(az) = 0.

Hence, the maximal ideal output for P is:
Warr = {a,b,q,h}, Block = {r,s}.

Therefore, due to the fact that the set of conclusions that are warranted and blocked at each
level determines which arguments are valid at lower levels, we get that II U Warr - ~s and
ITU Warr b ~7r,but ~s, ~r & Warr since s, € Block(ay).

Figure 2. Support and conflict dependences between valid and almost valid arguments.

5Intuitively, an almost valid argument is an argument based on valid arguments and which status is warranted (not rejected) whenever
these subarguments are warranted, and rejected, otherwise.

10
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Then, for the general case we have the following right weakening logical property for operator

w
Exs-

Proposition 6.2 (Right weakening): Let P = (II, A, =) be an RP-DeLP program with defea-
sibility levels 1 > oy > ... > «ap > 0, and let (Warr, Block) be the maximal ideal output
of P.If Q — Py N...ANP, € Il and {Py,...,P,} C EX(P), then either Q € EY(P)
and N'(Q) > min{N'(P;) | P, € {P1,...,Px}}, or Q, or ~Q € Block((3) for some
8> min{N'(P) | P, € {Py,..., P}

Proof. We prove that if II U Warr(> «;) F @ and IT U Warr(> «;) t# Q, then either Q €
Warr(c;), or Q € Block(> a;), or ~Q € Block(> o).

Suppose that for some o, ITU Warr(> «;) F Q, TTU Warr(> «;) V Q, Q & Warr(a;), and
Q,~Q & Block(> «;). Then, since I U Warr t/ L, IT U Warr(> ;) U{Q} t/ L, there exists
a valid argument (A, Q) for @ of strength «;. Now, since @ & Warr(a;) we get two possible
cases:

Case 1 There exists a conflict between (A, ()) and a set of valid arguments G, with (4, Q) 7
G, wrt. W = Warr(> o;) U{P | (B,P) C GU{(A,Q)}}. Thus TUW U {Q} U {P |
(B,P) e G} F LandITUW U St/ L, forall S C {Q}U{P | (B,P) € G}. Consider now
W' ={R|(B,R)C (A,Q)}. Then,as W/ C Wand TUW' F Q,if TIUW U{Q} U{P |
(B,Py e G} + L, thenITUW U{P | (B,P) € G} I L, and thus, either ) is warranted at
level o; or @ is rejected at level «; because ) or ~( are blocked at a level 3 with § > «;. In
other words, either ) € Warr(«;) , or QQ € Block(> «;), or ~(Q) € Block(> o).

Case 2 There is a cycle in a warrant dependency graph at level «; and either (A, Q) is a vertex
of the cycle or there exists a path from some vertex of the cycle to (A, Q). If H is the set of valid
arguments of the cycle and I the set of almost valid arguments w.r.t. H U {(A, @)}, there is an
almost valid argument for conclusion ~ () in F or an strict rule ~@) < Ly A ... A Ly, € Il such
that {L1,..., Ly} € Warr(> ;) U{H | (E,H) € H} U{F | (J,F) € F}. Hence, there is an
almost valid argument (D, ~ @) for conclusion ~@ in [F, and an edge from the vertex of ~(@ to
the vertex of (). Now, since IT U Warr(> «;) - Q and Q & Warr(> «;), there exists a strict rule
Q «— Ly A... ALy, € Il with all the L’s in Warr(> ;). Moreover, as ITU Warr(> o) I/ Q,
there is at least one literal L' € {L}, ..., L},} such that L' € Warr(c;), and thus, there is a valid
argument (J, L') for L' of strength «v; and (A, Q) Z (J, L’). Then, there is a cycle in the warrant
dependency graph for HU {(A, @)} U {(J, L)} and F and an edge from the vertex of ~(Q to
the vertex of L', and thus, L' ¢ Warr(«;). Hence, either Q € Warr(a;) , or Q € Block(> «;),
or ~Q € Block(> ). O

Let us briefly discuss the most relevant results provided by the properties presented before.
When analyzing warranted conclusions under the operator &%, idempotence shows us that
adding warranted conclusions as new facts to a given program does not add any new warrant
capabilities. Cummulativity shows us that any warranted conclusion obtained from a program P
can be considered as a strict warranted conclusion since in some sense it is an intermediate proof
(lemma) to be used in building more complex warranties. (Horn) supraclassicality indicates that
every conclusion that follows via traditional SLD inference (involving only certain clauses) can
be considered as a special form of argument (namely, an empty argument), whereas right weak-
ening tells us that RP-DeLLP preserves the usual semantics for Horn rules: the existence of an
strict rule X < Y causes that the warranty of Y is also a warranty for X.

SWe will write Warr(> ;) and Warr(> o) to denote Ug>q, Warr(3) and Ugs. o, Warr(f3), respectively, and analogously for
Block(> «;), assuming Block(> 1) = 0.

11
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7. Implementation of the RP-DeLP framework

As we have said at the introduction, our final aim is to investigate the use of an argumentation
framework based on RP-DeLP in application domains such that debates in social networks. As
a first step, we have implemented the algorithm for computation of the maximal ideal output (2)
and also the algorithm for computation of the multiple outputs semantics (1)). Both algorithms
are based on solving a sequence of queries, with complexity within NP, related to the discovery
of valid arguments and conflicts between sets of arguments. We have made available both algo-
rithms in a single system, and the implementation of the main code of both algorithms has been
done with the programming language python. However, in order to have a good scaling behav-
ior when solving RP-DeL.P programs of big size, the NP queries are solved trough reductions to
SAT encodings or ASP encodings. Our system is freely available as a command-line application
at the GitHub repository E] and can be installed on Linux and Mac OSX systems, but we have
also available a web based version in our web server http://arinf.udl.cat/rp-delpl In order to in-
stall and use the command-line version in your our system, apart of having python 2.7 installed,
one needs to have also installed the SAT solver minisat (34) ﬁand the ASP solver clingo (43) ﬂ
The web version can be used trough the html interface provided, but final applications can also
use it trough the http POST method.

One important feature of our system is that due to the recursive nature of our semantics, the
computation of the maximal ideal output allows not only to provide warranted and blocked con-
clusions, but also easily explain the reasons for a warranted or blocked conclusion. Remember
that for the recursive semantics from Section 4|the main notion for characterizing warranted and
blocked conclusions is the one of valid argument. The recursive definition for valid argument
indicates that an argument is valid if it is based on warranted subarguments and it does not have
conflicts with warranted conclusions and blocked conclusions of greater strength.

In practical terms, a valid argument for a conclusion () is simply explained in our system
by arule Q «— W; A... A\ Wy, where each W, is a warranted conclusion, and the strength
« with which ) has been found valid. To fully understand the argument for (), the user has
simply to recursively follow the arguments provided for each W;. Then, if our system finds
a conflict between () and other valid conclusions of the same strength, it blocks ) and gives
that set of conflicting valid conclusions as the explanation for blocking (). More complex is the
situation of blocked conclusion due to a circular definition of conflict between valid arguments.
In (2)) this situation was characterized through the definition of dependency graphs, like the
ones shown in figures [I] and [2] However, for obtaining a more efficient implementation we
have followed an approach that avoids the explicit computation of dependency graphs. Instead,
we follow an alternative characterization of circular conflicts based on the detection of sets of
valid arguments that after two iterations of the main loop of our algorithm cannot be decided
to be either warranted or blocked because of dependencies that cannot be resolved. In that case,
our system identifies such valid conclusions also as blocked, but due to a circular conflict, and
inform of such set of valid conclusions as being part of a circular conflict. The problem of
choosing this, more indirect, way of detecting circular conflicts is that the information provided
to the user is not as clear as in the case of the information for valid and warranted conclusions.
But we believe that it is a good trade-off between the computation cost and the quality of the
information provided to the user to understand the output of the argumentation system.

Consider the following example of application of RP-DeL.P to obtain the arguments that are
consistently supported by all the participants in a political debate. The debate is about possible
policies to increase the gross domestic product (represented by literal G). There are different
policies being discussed: increase the public infrastructures expenditure (A1), reduce the public

7 At the URL https://github.com/f-guitart/RP-DeLP_solver/
8We have tested the correct use of minisat version 2.2, available at http://minisat.se/MiniSat.html
90ur system needs clingo version 3.0.5. Available at http://sourceforge.net/projects/potassco/files/clingo/
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debt (Asz), increase the taxes on the richer (A3) and increase the education expenditure (Ay4). All
the participants agree that, no matter what policies are chosen, the public debt should be in any
case decreased and that if we have increase in infrastructures and education expenditure then the
public debt will not decrease. We represent these two arguments as the strict knowledge, because
all the participants agree that this should hold in any possible scenario:

II = {NAQ — Ay /\1447 AQ}

For the rest of arguments, not all the participants agree with the same strength, so we turn out
to have two defeasible levels. At the stronger one (more participants support this opinion), we
have the belief that increase the education expenditure should be performed, so we have:

Ay = {Ag}

At the next defeasible level, we have other opinions that have less support from the partici-
pants. Participants believe that increase the public infrastructures expenditure and increase the
taxes on the richer should be performed. Also, they believe that the GDP would be increased if
there is reduction in public debt and taxes on the richer are not increased, but another equally
strong opinion is that the GDP would be increased if there is increase of taxes on the richer
and increase on the public infrastructures expenditure. Finally, another opinion is that if the re-
duction of the public debt is going to happen, then necessarily this cannot be done without not
increasing the taxes on the richer. So, at the second defeasible level we have this knowledge:

Ay ={Ay, A3, G~ Ag N~As, G~ AgNA;, ~Asz — Ap}

Our argumentation system will give the following output for this program:

e Warranted conclusions: [ (A2, [A2], strict), (A4, [A4], 1)]. Meaning
that Ao is warranted at the strict level with the fact A, and that A4 is warranted at the
first defeasible level with the fact A4.

e Blocked conclusions: [ (A3, conflict, [A3, ~ A3], [A3], 2), (~ A3,
conflict, [A3, ~ A3], [A2], 2)].Meaning that the valid argument for As
given by the fact As, has a conflict with a valid argument for ~ A3 and that the valid ar-
gument for ~ A3 given by the rule ~ A3 <+ Az and the warranted fact As, has a conflict
with a valid argument for Ag, at the second defeasible level.

This information is discovered in an iterative process, starting from simpler arguments and
moving towards more complex ones. First, A and A4 are found to be warranted (no conflicts
with IT up to level Ay. Then, at level Ay A; is found to be not valid, as it produces a conflict
with IT and the current set of warrants. Finally, valid arguments for A3 and ~ Ag are found, but
with the same strength, so they are blocked because they generate a conflict.

The command-line version of our argumentation system gives this output formatted in a JSON
object EUL so that web based and similar applications can easily process the output. Regarding
the input format for programs, it is a simple ASCII file format that follows a syntax similar to
the one used by standard Prolog interpreters, but with labels that distinguish the strict and the
different defeasible parts of the program.

8. Related work

RP-DeLP, as well as its predecessor P-DeLLP (3} 4), builds on top of Defeasible Logic Pro-
gramming argumentative system (DeLP) (42), and extends it by introducing different levels of
preference or priority at the object language level by means of weights. In this approach, argu-
ments are sets of weighted formulas that support a goal, and weights are used to compute the
strength of an argument and then, to resolve conflicts among contradictory conclusions.
Actually, introducing preferences in argumentation frameworks goes back to Simari and

10A popular data-interchange format used nowadays by many web applications.

13



February 3, 2015

Journal of Experimental & Theoretical Artificial Intelligence JETAI_Alsinet_Bejar_Godo_Guitart

Liou (57). In that work the authors defined an argumentation framework in which arguments
are built from a propositional knowledge base. The arguments grounded on specific information
are considered stronger than the ones built from more general information. This preference re-
lation is used then to solve conflicts between a pair of conflicting arguments. Nonetheless, the
way RP-DeLP (and P-DeLP) makes use of preferences, to define the strength of arguments by
stratifying the formulas in a program (or knowledge base), directly stems from Brewka’s pre-
ferred subtheories based approach (23) to nonmonotonic reasoning, where the different levels
in which default theories are stratified represent different degrees of reliability. This idea has
been used in many other approaches to reasoning with inconsistent information, mainly in those
related to possibilistic logic (17518 (195 [20). In particular, the notion of argumentative inference
introduced in (18)) is based on a measure of strength of arguments that is in fact the one used in
RP-DeLP. On the other hand, Prakken and Sartor (54)) formalized the role of preferences in the
underlying logical formalisms that instantiate Dung’s seminal theory of argumentation (29).

Other approaches have formalized the role of preferences at an abstract level. In Amgoud
and Cayrol’s preference-based argumentation frameworks (PAFs) (8; 9)), Dung’s framework is
augmented with a preference ordering on the set of arguments, so that an attack by an argument
X on an argument Y is successful only if Y is not preferred to X. In Bench-Capon’s value-
based Argumentation Frameworks (16), Dung’s framework is augmented with values and value
orderings, so that an attack by X on Y is successful only if the value promoted by Y is not
ranked higher than the value promoted by X according to a given ordering on values. Recently,
Kaci (48) and Amgoud and Vesic (105 [11; [12} [13)) have addressed the issue of how consistency
postulates (26) can be ensured for instantiations of PAFs. They all argue that instantiations of
standard PAFs have problems with unsuccessful asymmetric binary attacks. Kaci (48)) argues
that all attacks should therefore be symmetric. However, Amgoud and Besnard (6; [7) show that
for logic-based argumentation systems this would still lead to inconsistency problems, and they
show that in order to satisfy the consistency postulates an attack relation should be valid, in the
sense that when two arguments have jointly inconsistent premises, they should attack each other.

The output for an RP-DeLLP program is a rank-ordered set of warranted and blocked conclu-
sions which satisfy the consistency postulates (26). In contrast to DeLLP and other argument-
based approaches, the RP-DeLP semantics is based on a (not necessarily binary) general notion
of collective conflict among arguments and on the fact that if an argument is warranted it must
be that all its subarguments also are warranted.

Collective conflicts has also been considered in several papers, e.g. in (49), while in (6; [7)
discuss to some extent the problems binary attacks can cause. On the other hand, the idea of
defining a warrant semantics on the basis of conflicting sets of arguments was proposed in (59)
and (49). The difference between these approaches and our notion of collective conflict is that
in (59) the notion of conflict is not relative to a set of already warranted conclusions and (49)
defines a generalization of Dung’s abstract framework with sets of attacking arguments not rel-
ative to the strict part of the knowledge base. Although the RP-DelLP semantics for warranted
conclusions is skeptical, circular definitions of conflict between sets of arguments can lead to
situations in which multiple evaluation orders exist, giving rise to different outputs of warranted
and blocked conclusions. Following Pollock’s recursive semantics for defeasible argumenta-
tion (53), circular definitions of conflict between sets of arguments have been characterized by
means of dependency graphs representing support and collective conflict relations between the
conclusions of arguments and the strict part of the knowledge base.

RP-DeLP recursive semantics draws from the so-called “ideal semantics” promoted by Dung,
Mancarella and Toni (305 /31) as an alternative basis for skeptical reasoning within abstract argu-
mentation settings. Informally, ideal acceptance not only requires an argument to be skeptically
accepted in the traditional sense but further insists that the argument is in an admissible set all
of whose arguments are also skeptically accepted. While the original proposal was couched in
terms of the so-called preferred semantics for abstract argumentation, in (33) the notion of “ideal
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acceptability” has been extended to arbitrary semantics, showing that standard properties of clas-
sical ideal semantics, e.g. unique status, continue to hold in some extension-based semantics (see
also (32) for an analysis of the computational complexity of the ideal semantics within abstract
argumentation frameworks and assumption-based argumentation frameworks). In RP-DeLP, the
maximal ideal output for an RP-DeLLP program is defined in terms of the maximum rank-ordered
set of warranted and blocked conclusions recursively based on warranted information and not
involved in neither a conflict nor a circular definition of conflict. The idea is that if a conclusion
is warranted at a given level 3, so it could also be at any higher level. A different approach could
have been to consider that blocked conclusions at one level are not propagated to lower levels.
In such a case, an alternative semantics for our system could therefore be defined following a
similar line to the one in (44).

Research in logical properties for defeasible argumentation can be traced back to Benferhat
et al. (18; [21) and Vreeswijk (595 160). In the context of his abstract argumentation systems,
Vreeswijk showed that many logical properties for non-monotonic inference relationships turned
out to be counter-intuitive for argument-based systems. Benferhat et al. (18)) were the first who
studied argumentative inference in uncertain and inconsistent knowledge bases. They defined an
argumentative consequence relationship taking into account the existence of arguments favoring
a given conclusion against the absence of arguments in favor of its contrary. In (4) we defined a
non-monotonic expansion operator for P-DeLP which modeled the expansion of a program by
adding new weighed facts associated with warranted literals according with the dialectic analysis
based semantics of P-DeLLP and we showed that right-weakening do not hold for P-DeLP.

Challenges in the field of argumentation has been recently addressed towards the implemen-
tation of argumentation frameworks. The system ASPARTIX (355 [36)) is a tool for computing
acceptable extensions for some formalizations of Dung’s abstract argumentation framework and
relies on a fixed disjunctive datalog program which takes an instance of an argumentation frame-
work as input, and uses an ASP solver for computing the extension specified by the user. The
work of Nieves et al. (50) also suggest to use ASP for computing extensions of argumentation
frameworks. Dungine (58) is a Java reasoner capable of reasoning with grounded and preferred
extensions. CASAPI (39) is a Prolog implementation that combines abstract and assumption-
based argumentation. ArguLab (52) is a library of components that provide basic functionalities
for agent-related argumentation tasks and DIAMOND (37) uses ASP encodings to compute
interpretations of Brewka and Woltran’s abstract dialectical frameworks (24).

In our case, we have implemented the algorithm for computation of the maximal ideal out-
put (2) and also the algorithm for computation of the multiple outputs semantics (1). We have
made available both algorithms in a single system and the implementation is based on reductions
to SAT encodings and ASP encodings.

9. Conclusions and future work

In this paper we have analyzed the relationship between the exhaustive dialectical analysis based
semantics of P-DeLLP and the recursive based semantics of RP-DeLLP and we have shown that the
maximal ideal semantics of RP-DeLLP provides a useful framework for making a formal analysis
of logical properties of warrant in defeasible argumentation. In this sense we have defined a
non-monotonic expansion operator for RP-DelLP which modeled the expansion of a program by
adding new weighed facts associated with warranted literals and we showed that idempotence,
cummulativity and right-weakening properties hold for RP-DeLLP. We have also developed an
argumentation framework for RP-DeLP that is able to compute not only the output of warranted
and blocked conclusions, but also explain the reasons behind the status of each conclusion. Our
system is freely available as a command-line application and as a web based service in order to
use it as part of other Al systems. Argumentation web services can also be used as part of bigger
systems, like in the BDI system described in (56) where they use an available argumentation
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web system (40) for the DeLP argumentation framework (42)).

Our current research work in RP-DelLP will follow two main directions: on the one hand,
we are concerned with characterizing a lower bound on complexity for computing the warranty
status of arguments according to the maximal ideal recursive semantics. For this goal, we plan
to study reductions from ideal semantics for abstract argumentation frameworks, given that its
complexity is well understood (32), or also reductions from the more recent framework of prob-
abilistic abstract frameworks (38)). Studying reductions from these systems to ours is not only
useful for obtaining lower bound on complexity, but also to understand the relationship between
the semantics of these argumentation systems with the maximal ideal semantics of RP-DeLP.
On the other hand, we are concerned with developing a graphical representation framework of
the maximal ideal recursive semantics. This representation could be used as a mechanism for
refinement of strict and defeasible information. As more concrete application domains, we have
already started to consider the use of our system to encourage users to domains such that debates
in social networks (47)) and discuss political actions (61)), through the use of argumentation struc-
tures, following the line of an existing tool for that purpose that is based also on argumentation
structures: the Parmenides system for deliberative democracy (145 27)). For using our system in
other application domains like in legal reasoning, another interesting line of work would be the
study of relationships between RP-DelLP and deontic logics, considering recent approaches to
characterize deontic logics beyond classic deontic logic, like for example the alternative seman-
tics (46)) or the input/output logic (51).
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