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Abstract In this paper we address the issue of providing a geometrical char-
acterization for the decision problem of asking whether a partial assignment
β : fi 7→ αi mapping fuzzy events fi into real numbers αi (i = 1, . . . , n)
extends to a generalized belief function on fuzzy sets, according to a suitable
definition. We will characterize this problem in a way that allows to treat it
as the membership problem of a point to a specific convex set.

1 Introduction

The problem of deciding whether a partial assignment υ : fi 7→ αi mapping
each event fi into a real number αi (for i = 1, . . . , s) extends to a probabil-
ity measure, is well known in the literature, and it is closely related with de
Finetti’s no-Dutch Book coherence criterion [3]. This criterion can be gener-
alized in mainly two ways: by moving from classical to non-classical events
(cf. [14, 16] for instance), or framing the problem out of the probabilistic
setting, by taking into account alternative theories of uncertainty.

In [14, 16] the authors extend de Finetti’s criterion for finitely-additive
measures on non-classical events, and in particular in the case of those fuzzy
events being representable as formulas of  Lukasiewicz calculus. Following
the proof of de Finetti’s no-Dutch Book theorem (cf. [16, Theorem 2]), in
[14, 16] extendible (i.e. coherent in de Finetti’s terminology) assignments were
characterized as Euclidean convex subsets of the finite dimensional space Rs,
s being the number of events the assignment is defined over.

A similar approach to extendible assignments, but framed into an idem-
potent, rather than additive, setting has been developed in [8], where it is
presented a geometrical characterization for the extendability problem for
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events being represented as normalized fuzzy sets over a finite domain in the
context of possibility theory. It is worth recalling that in the frame of possi-
bility theory, extendible assignments are again characterized as convex sets,
but the Euclidean geometry has to be replaced by the min-plus geometry (see
for instance [4]).

Belief functions are the measures used within Dempster-Shafer evidence
theory [17] to quantify the amount of uncertainty associated to events. Among
all the classical theories of uncertainty, Dempster-Shafer plays a pivotal role
since both probability theory, and possibility theory can be obtained as
particular cases. Belief functions have been recently extended to the MV-
algebraic setting to cope with spaces of events that can be organized as
MV-algebras of fuzzy subsets of a finite domain X = {x1, . . . , xn} [7, 11].

In this paper we will provide a geometrical characterization for the extend-
ability problem for events being (not necessarily normalized) fuzzy sets over a
finite domain in a generalized framework of belief function theory. In partic-
ular, we will show how a mixture of min-plus convex geometry and Euclidean
convex geometry can be applied to translate the extendability problem for
belief functions, into the membership problem of a point to a convex set.

2 Preliminaries

In this section we will introduce the necessary preliminaries about the min-
plus convex geometry and MV-algebras. We will assume the reader to be
familiar with Euclidean convex geometry, reminding that in what follows,
given any subset S of Rs, co(S), and co(S) will respectively stand for the
convex hull of S and its topological closure (with respect to the Euclidean
metric). We invite the reader to consult [4] and [5] for all the unexplained
notions.

2.1 Preliminaries on min-plus convexity

Let x1, . . . ,xn ∈ Rs, and for every i = 1, . . . , n and for every t = 1, . . . , s,
let us denote by xi(t) the t-th projection of xi. We then define the min-plus
convex hull generated by x1, . . . ,xn as the set

mp-co(x1, . . . ,xn) = {y ∈ Rs : ∃λ1, . . . , λn ∈ R,y(t) = min
i≤n

(λi + xi(t))}.

In the particular case of x1, . . . ,xn ∈ [0, 1]s, and λ1, . . . , λn ∈ [0, 1], we call
bounded the combination mini≤n(λi⊕xi). Notice that in the combination we
replaced the usual sum with the bounded sum x⊕ y = min{1, x+ y} to keep
the combination in [0, 1]s as well. More precisely, for x1, . . . ,xn ∈ [0, 1]s, we
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define the bounded min-plus convex hull generated by x1, . . . ,xn as the set

bmp-co(x1, . . . ,xn) = {y ∈ [0, 1]s : ∃λ1, . . . , λn ∈ [0, 1],y(t) = min
i≤n

(λi⊕xi(t))}.

A bounded min-plus convex combination mini≤n(λi ⊕ xi) is said to be nor-
malized, if the parameters λ1, . . . , λn satisfy maxi≤n λi = 1, and therefore a
bounded min-plus convex hull is said to be normalized accordingly. We will
denote by nmp-co(S) the normalized bounded min-plus convex hull generated
by a set S.

2.2 MV-algebras of fuzzy sets

An MV-algebra [1, 15] is an algebra (A,⊕,¬,⊥,>) of type (2, 1, 0, 0) such
that its reduct (A,⊕,⊥) is an abelian monoid, and the following equations
hold for every a, b ∈ A: ¬¬a = a, a⊕> = >, and ¬(¬a⊕b)⊕b = ¬(¬b⊕a)⊕a.

Let A and B be MV-algebras. A MV-homomorphism is a map h : A→ B
sending ⊥ and > of A in ⊥ and > of B respectively, and such that, for every
a, a′ ∈ A, h(a ⊕ a′) = h(a) ⊕ h(a′), and h(¬a) = ¬h(a). We will denote by
H(A,B) the class of homomorphisms between A and B.

Let X = {x1, . . . , xn} be a finite set of cardinality n, and consider the
class [0, 1]X of all fuzzy subsets of X, i.e. all functions from X into the real
unit interval [0, 1]. This set can obviously be identified with the direct product
[0, 1]n. 1 The algebra obtained endowing [0, 1]n with the point-wise operations
x ⊕ y = min{1, x + y}, ¬x = 1 − x, and the two functions constantly equal
to 0 and 1, also denoted ⊥ and > respectively, is the typical example of MV-
algebra that we will consider in this paper as usual domain for uncertainty
measures.

We will henceforth denote by [0, 1]n both the domain, and the MV-algebra
above defined without danger of confusion, moreover, we will always assume
X to be finite. Notice that, whenever X consists of just one element, [0, 1]1

is the (linearly ordered) MV-algebra over the real unit interval. This algebra,
that is usually named the standard MV-algebra, will be denoted by [0, 1]MV .

For every f = 〈f(1), . . . , f(n)〉 ∈ [0, 1]n, we will henceforth consider the
function ρf : [0, 1]n → [0, 1] mapping every b ∈ [0, 1]n into

ρf (b) = min
i≤n

(¬b(i)⊕ f(i)), (1)

Those mappings ρf can be regarded as generalized inclusion operators be-
tween fuzzy sets (cf. [7] for further details). For every f ∈ {0, 1}n (i.e.

1 The set X = {x1, . . . , xn} can be equivalently identified with the set of its in-
dices {1, . . . , n}. This allows in turn to identify each function f ∈ [0, 1]X as a point

〈f(1), . . . , f(n)〉 ∈ [0, 1]n and vice-versa. In what follows we will equivalently use the no-

tation [0, 1]n or [0, 1]X for the MV-algebra of [0, 1]-valued functions over X.
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whenever f is identified with a vector in [0, 1]n with integer components),
the map ρf : [0, 1]n → [0, 1] is a pointwise minimum of finitely many lin-
ear functions with integer coefficients, and hence ρf is a non-increasing Mc-
Naughton function [1, 15]. Letting R to be the MV-algebra generated by the
set {ρf : f ∈ [0, 1]n}, [1, Theorem 3.4.3] and [13, Theorem 2.5], allow to prove
the following result.

Theorem 1. There exists a one-to-one correspondence between the points of
[0, 1]n and the class H(R, [0, 1]MV ) of homomorphisms of R into the standard
MV-algebra [0, 1]MV .

Thanks to the above Theorem 1 we will henceforth identify points in [0, 1]n

(hence fuzzy subsets of X) with homomorphisms of R in the MV-algebra
[0, 1]MV without loss of generality. Moreover, the following holds:

Corollary 1. Let {τ1, . . . , τs} be a finite subset of R. Then {〈h(τ1), . . . , h(τs)〉 ∈
[0, 1]s : h ∈ H(R, [0, 1]MV )} = {〈τ1(a), . . . , τs(a)〉 : a ∈ [0, 1]n}.

3 Uncertainty measures on MV-algebras of fuzzy sets

In this section we are going to recall how states [13] and necessity measures
[6], can be defined on MV-algebras (of fuzzy sets). In particular we will also
recall and prove how the problem of extending a partial assessment can be
geometrically characterized in these frameworks.

A state on an MV-algebra A is a map s : A→ [0, 1] satisfying: (1) s(>) = 1;
(2) for every a, b ∈ A such that ¬(¬a ⊕ ¬b) = ⊥, s(a ⊕ b) = s(a) + s(b). A
state s is said to be faithful provided that s(a) = 0, implies a = ⊥.

States play the same role on MV-algebras as probability measures do on
Boolean algebras. In particular the well known de Finetti’s extension theorem
was generalized to the case of states and MV-algebras by Mundici [14]. Below
we recall it in the particular case of the MV-algebra being [0, 1]X .

Theorem 2. Let f1, . . . , fs be elements in [0, 1]X . Then a map σ : fi 7→ αi ∈
[0, 1] extends to a state on [0, 1]X iff 〈α1, . . . , αs〉 ∈ co{〈h(f1), . . . , h(fs)〉 :
h ∈ H([0, 1]X , [0, 1]MV )}.

As in Theorem 1, the class H([0, 1]X , [0, 1]MV ) is in one-to-one correspondence
with the set X = {x1, . . . , xn} and hence from Theorem 2 an assignment σ :
fi 7→ αi extends to a state on [0, 1]X iff 〈α1, . . . , αs〉 ∈ co{〈f1(x), . . . , fs(x)〉 :
x ∈ X〉}2. The result is shown in Fig. 1.

Necessity measures on MV-algebras like [0, 1]X have been introduced in
[6]: a map N : [0, 1]X → [0, 1] is a necessity measure, provided that N(>) = 1,

2 Notice that since X is finite, so is F = {〈f1(x), . . . , fs(x) : x ∈ X〉}, and hence its convex

hull is the polytope generated by F which is already closed. In other words, co(F ) = co(F ).
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Fig. 1 Let X = {1, 2, 3}, consider two el-

ements f1, f2 ∈ [0, 1]3, and the assignment

σ(f1) = α1, and σ(f2) = α2. The two func-
tions f1, f2 : X → [0, 1] defines three points

in the unit square [0, 1]2, namely:

p1 = (f1(1), f2(1));
p2 = (f1(2), f2(2));

p3 = (f1(3), f2(3)).

Therefore the assignment σ extends to a
state on [0, 1]3 iff the point 〈α1, α2〉 belongs

to the triangle with vertices p1, p2, and p3.

for every f, f ′ ∈ [0, 1]X , N(f ∧ f ′) = min{N(f), N(f ′)}, and for every f, r ∈
[0, 1]X , if r is the function constantly equal to r, then N(r⊕ f) = r⊕N(f).3

Actually necessity measures on [0, 1]X can be equivalently defined as fol-
lows: if π : X → [0, 1] is a map called a possibility distribution, then we define
Nπ : f ∈ [0, 1]X 7→ minx∈X{(1 − π(x)) ⊕ f(x)} ∈ [0, 1], and in this case we
say that Nπ is defined by π. Conversely in [6, Theorem 3.3] it is shown that
for every necessity measure N on [0, 1]X , there exists a (unique) possibility
distribution π defining N .

A necessity measure N is said to be normalized provided that the possi-
bility distribution π defining N satisfies maxx∈X π(x) = 1, and is called non-
normalized otherwise. Notice that, if N is not normalized, then N(⊥) > 0.
On the other hand, normalized necessities always satisfy N(⊥) = 0. We will
denote by N ([0, 1]X) the class of necessity measures on [0, 1]X . Normalization
will always be clear by the context.

The following can be proved going through the lines of [8, Theorem 4].

Theorem 3. Let f1, . . . , fs ∈ [0, 1]X , and let η : fi 7→ αi be an assessment.
Then the following hold:

1. η extends to a non-normalized necessity measure iff

〈α1, . . . , αs〉 ∈ bmp-co({〈f1(xi), . . . , fs(xi)〉 : 1 ≤ i ≤ n}).

2. η extends to a normalized necessity measure iff

〈α1, . . . , αs〉 ∈ nmp-co({〈f1(xi), . . . , fs(xi)〉 : 1 ≤ i ≤ n}).

Example 1. Let X = {1, 2, 3}, consider two elements f1, f2 ∈ [0, 1]3, and an
assessment σ(f1) = α1, and σ(f2) = α2. The two functions f1, f2 : X → [0, 1]
define three points in the unit square [0, 1]2, namely: p1 = (f1(1), f2(1)); p2 =

3 In [6, 8] necessity measures also satisfying the last condition on constant functions were
called homogeneous necessity measures. In this paper, since we will not distinguish between

homogeneous and non-homogeneous mappings, we will use to call them necessity measures

without danger of confusion.
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Fig. 2 Three points in the unit square [0, 1]2, p1, p2 and p3, and their normalized (left)

and non-normalized (right) min-plus convex hull.

(f1(2), f2(2)); p3 = (f1(3), f2(3)). Therefore the assignment σ respectively
extends to a normalized (resp. non-normalized) necessity measure on [0, 1]3

iff the point 〈α1, α2〉 belongs to the normalized (resp. non-normalized) min-
plus convex polygon of vertices p1, p2, and p3, depicted respectively in Figure
2 on the left and on the right.

Next result shows that the inclusion operators ρ(·)(b), with varying b ∈
[0, 1]X , generate the whole class of necessity measures on [0, 1]X , and will be
useful in the next section.

Lemma 1. (1) The class of all necessity measures on [0, 1]X coincides with
the class {ρ(·)(b) : f ∈ [0, 1]X 7→ ρf (b) | b ∈ [0, 1]X}.

(2) The class of all normalized necessity measures on [0, 1]X coincides with
the class {ρ(·)(b) : f ∈ [0, 1]X 7→ ρf (b) | b ∈ [0, 1]X ,maxx∈X b(x) = 1}.

Corollary 2. Let f1, . . . , fs ∈ [0, 1]X , and let η : fi 7→ αi be an assessment.
Then:

1. η extends to a non-normalized necessity in N ([0, 1]X) iff

〈α1, . . . , αs〉 ∈ {〈ρf1(b), . . . , ρfs(b)〉 : b ∈ [0, 1]X}.

2. η extends to a normalized necessity in N ([0, 1]X) iff

〈α1, . . . , αs〉 ∈ {〈ρf1(b), . . . , ρfs(b)〉 : b ∈ [0, 1]X ,maxx∈X b(x) = 1}.

4 Belief functions and the extendability problem

Let us recall from Subsection 2.2 that, for every MV-algebra [0, 1]X , the
algebra R is defined as the MV-algebra generated by all functions ρf defined
as in (1). Then belief functions on [0, 1]X can be defined along the proposals
in [7, 11, 12].
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Definition 1. A map Bel : [0, 1]X → [0, 1] is a belief function if there exists
a state s : R → [0, 1] such that for every a ∈ [0, 1]X , Bel(a) = s(ρa).

Notice that, in general, belief functions on [0, 1]X fail to satisfy Bel(⊥) = 0. In
fact, for every b ∈ [0, 1]X such that maxx∈X b(x) < 1, ρ⊥(b) > 0, and hence ρ⊥
does not coincide with the function constantly equal to 0. Therefore, whenever
s is faithful, Bel(⊥) = s(ρ⊥) > 0. We will henceforth call normalized any
belief function satisfying Bel(⊥) = 0.

The following result provides a geometrical characterization for the ex-
tendability problem for belief functions on MV-algebras.

Theorem 4. Let f1, . . . , fs ∈ [0, 1]X , and let β : fi 7→ αi be a [0, 1]-valued
mapping. Then the following hold:

1. β extends to a belief function Bel on [0, 1]X iff

〈α1, . . . , αs〉 ∈ co(bmp-co({〈f1(xi), . . . , fs(xi)〉 : i ≤ n})).

2. β extends to a normalized belief function Bel on [0, 1]n iff

〈α1, . . . , αs〉 ∈ co(nmp-co({〈f1(xi), . . . , fs(xi)〉 : i ≤ n})).

Proof. 1. The assignment β extends to a belief function Bel : [0, 1]X →
[0, 1] iff there exists a state s : R → [0, 1] such that, for every t = 1, . . . , s,
αt = s(ρft) = Bel(ft). From Theorem 2, this means that 〈α1, . . . , αs〉 ∈
co{〈h(ρf1), . . . , h(ρfs)〉 ∈ [0, 1]s : h ∈ H(R, [0, 1]MV )}. From Corollary 1,
(??) is equivalent to: 〈α1, . . . , αs〉 ∈ co{〈ρf1(b), . . . , ρfs(b)〉 ∈ [0, 1]s : b ∈
[0, 1]X}. From (1) of Corollary 2, the set {〈ρf1(b), . . . , ρfs(b)〉 ∈ [0, 1]s : b ∈
[0, 1]X} coincides with the set of all the coherent necessity assignments over
{f1, . . . , fs}, in other words y ∈ {〈ρf1(b), . . . , ρfs(b)〉 ∈ [0, 1]s : b ∈ [0, 1]X}
iff there exists a necessity measure N such that for every t, N(ft) = y(t).
Finally Theorem 3 implies that the set of all coherent necessity assessments
over f1, . . . , fs coincides with bmp-co({〈f1(xi), . . . , fs(xi)〉 : i ≤ n}), and
hence our the claim is settled.

2. The proof runs completely parallel to the previous one and is omitted.

Example 2. (Example 1 continued) Let X = {1, 2, 3}, consider two elements
f1, f2 ∈ [0, 1]3, and an assessment σ(f1) = α1, and σ(f2) = α2. Therefore the
assignment σ extends either to a normalized belief function, or to a belief
function in general, on [0, 1]3 iff the point 〈α1, α2〉 belongs respectively to the
convex polytope on the left in Figure 3, or to the convex polytope on the
right of the same Figure 3.
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Fig. 3 Two convex polytopes in the unit square [0, 1]2 defined by vertices p1, p2 and p3.
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Appendix

Theorem 1

Proof. For every n the product space [0, 1]n is compact and Hausdorff, and
hence R a MV-subalgebra of the MV-algebra of continuous function defined
over a compact Hausdorff space. Moreover R is a separating, that is for
every x 6= y in [0, 1]n, there exists a function f ∈ R, such that f(x) 6= f(y).
Therefore, from [1, Theorem 3.4.3] there exists a one-to-one correspondence
between [0, 1]n and the class M(R) of its maximal ideals.

Now, from [13, Theorem 2.5] (see also [9, Theorem 12.18, Corollary 12.20],
and [10, Lemma 23]), the class H(R, [0, 1]MV ) is in one-to-one correspondence
with M(R), and hence the claim follows.

Corollary 1

Proof. For every x ∈ [0, 1]n the map hx : R → [0, 1]MV such that for every
f ∈ R, hx(f) = f(x) is a homomorphism ofR in [0, 1]MV . From [10, Theorem
25] the map x 7→ hx is one-to-one. Then the claim easily follows.

Lemma 1

Proof. In [7, Proposition 1] it is shown that for every a, b ∈ [0, 1]n, ρa∧b(f) =
ρa(f) ∧ ρb(f). Moreover, for every a, b, f, r ∈ [0, 1]n, it is easy to check that
ρ>(f) = 1, and ρr⊕a(f) = r⊕ ρa(f) whenever r is constant. Hence, for every
f ∈ [0, 1]n, ρ(·)(f) ∈ N ([0, 1]n).

As for the other inclusion let us identify every (normalized) possibility
distribution π : {1, . . . , n} → [0, 1], with a point in fπ ∈ [0, 1]n. Then, for
every a ∈ [0, 1]n,

Nπ(a) = min
i≤n
¬π(i)⊕ a(i) = min

i≤n
¬fπ(i)⊕ a(i) = ρa(xπ). (2)

Therefore Nπ ∈ {ρ(·)(b) : f ∈ [0, 1]X 7→ ρf (b) | b ∈ [0, 1]X} (Nπ ∈ {ρ(·)(b) :
f ∈ [0, 1]X 7→ ρf (b) | b ∈ [0, 1]X ,maxx∈X b(x) = 1} respectively).

Corollary 2

Proof. 1. 〈α1, . . . , αs〉 ∈ {〈ρf1(b), . . . , ρfs(b)〉 : b ∈ [0, 1]n} iff there exists a
b ∈ [0, 1]n such that 〈α1, . . . , αs〉 = 〈ρf1(b), . . . , ρfs(b)〉, iff (from Lemma 1),
〈α1, . . . , αs〉 = 〈Nb(f1), . . . , Nb(fs)〉 for some Nb ∈ N ([0, 1]n). The case 2. is
similar and omitted.


