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Abstract
Distributed constraint optimization problems
(DCOPs) are a model for representing multi-agent
systems in which agents cooperate to optimize
a global objective. The DCOP model has two
main advantages: it can represent a wide range of
problem domains, and it supports the development
of generic algorithms to solve them. Firstly, this
paper presents some advances in both complete
and approximate DCOP algorithms. Secondly, it
explains that the DCOP model makes a number of
unrealistic assumptions that severely limit its range
of application. Finally, it points out hints on how
to tackle such limitations.

1 Distributed constraint optimization
Distributed constraint optimization problems (DCOPs) are a
model for representing multi-agent systems in which agents
cooperate to optimize a global objective. The DCOP model
has two main advantages. Firstly, it can represent a wide
range of problem domains such as wireless sensor net-
works [Zhang et al., 2005], peer-to-peer networks [Faltings
et al., 2006], meeting scheduling [Maheswaran et al., 2004],
and traffic control [Junges and Bazzan, 2008]. Secondly, it
supports the development of generic solving algorithms.

Therefore, researchers have developed several complete al-
gorithms such as ADOPT [Modi et al., 2005], DPOP [Petcu
and Faltings, 2005], and its generalization GDL [Aji and
McEliece, 2000; Vinyals et al., 2010b]. Nevertheless, DCOPs
are shown to be NP-Hard [Modi et al., 2005]. Being com-
plete, the main advantage of these algorithms is that they
guarantee the maximum possible quality: optimality. How-
ever, they scale poorly when the number of agents increases,
regarding both computational and communication require-
ments. Function filtering is a promising technique [Brito and
Meseguer, 2010] to achieve better scalability. Basically, given

∗This work has been funded by projects EVE (TIN2009-
14702-C02-01 and 02), Agreement Technologies (CONSOLIDER
CSD2007-0022), RECEDIT (TIN2009-13591-C02-02) and Gener-
alitat de Catalunya (2009-SGR-1434 and 2009-SGR-362). Marc
Pujol-Gonzalez is supported by the Ministry of Science and Inno-
vation (BES-2010-030466)

a method to compute approximations of cost functions and a
candidate solution, function filtering allows pruning regions
of the solution space that only contain non-optimal solutions.

Notice that some application domains are specially com-
munication constrained, whereas others are mainly compu-
tationally constrained. For instance, data transmission is
severely limited in wireless sensor networks, and bandwidth
is a scarce resource in peer-to-peer networks. Conversely,
meeting scheduling and traffic control are usually com-
putationally constrained because they mainly operate over
high-speed networks. Such distinctions between resource-
constrained settings motivated us to study different function
approximation methods to be employed along with function
filtering, to reduce either communication or computation re-
quirements as much as possible.

First, in [Pujol-Gonzalez et al., 2011] we presented a novel
class of approximation techniques, the so-called top-down
approximations. Combining these new techniques with func-
tion filtering, we managed to reduce communication require-
ments by as much as two orders of magnitude, while keeping
computational requirements at bay. As a consequence, the re-
sulting algorithm appears as a very good candidate to solve
DCOPs optimally in communication-constrained scenarios.

Currently, we are working on improving the effectiveness
of function filtering in computationally-constrained settings.
Since function filtering’s pruning is based on lower and upper
bounds on the optimal solution cost, tightening such bounds
increases the amount of pruning. Because more pruning
means a reduction on the solution space to explore, agents
require less computational resources (both CPU and mem-
ory) to solve the same problem. Likewise, these savings in
computational resources also increase the range of problems
that can be solved optimally by algorithms employing func-
tion filtering. In fact, preliminary results indicate that our
improvements allow agents to solve up to 75% more problem
instances given the same resource constraints.

Another approach to improve the scalability of DCOP al-
gorithms is to drop optimality in favor of lower complexity,
approximate algorithms. Traditionally, these algorithms have
not offered any quality guarantees at all [Zhang et al., 2005],
but recent works have been able to provide offline bounds
for some of them [Farinelli et al., 2009; Kiekintveld et al.,
2010]. The disadvantage of such offline bounds is that they
are generally very weak. Thus, we provided a new class of al-
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gorithms that is able to provide (much better) online bounds
in [Vinyals et al., 2010a], the so-called Divide and Coordi-
nate (DaC) approach. In DaC, agents divide an intractable
DCOP into simpler, tractable, subproblems to individually
solve them. Thereafter, agents try solve the DCOP by search-
ing for an agreement on the optimal assignments of their sub-
problems. The advantages of the DaC approach are two-fold:
(1) It has great scalability because it is based on local interac-
tions; and (2) at any time, it provides an online bound on the
quality of the current solution.

2 Beyond DCOPs
As mentioned above, the DCOP formalism is useful to model
multiple domains. However, it makes a number of unrealistic
assumptions that severely limit its range of application.

Firstly, it assumes that agents operate in a static environ-
ment. Thus, agents’ utilities do not change while the prob-
lem is being solved. Moreover, agents’ actions are only ap-
plied once the problem is solved. Against this background,
we plan to work on developing dynamic algorithms that can
incorporate both changes in the DCOP structure (new agents
joining in and agents’ failing) and new information during
the solving process. The constant inflow of new informa-
tion would disrupt the operation of most DCOP algorithms.
Despite that, both the GDL with function filtering and the
DaC approaches are bound-based algorithms. This is, they
operate by computing a lower and an upper bound that pro-
gressively get closer and closer till they eventually converge
on the optimal solution. Therefore, we plan to extend both
approaches so that they accommodate any new information
by conveniently loosening their bounds, while still operating
correctly and providing good quality guarantees.

Secondly, the DCOP formalism assumes that the envi-
ronment is deterministic and fully-observable, meaning that
agents have complete information about the utility of the out-
comes of their possible decisions. Nonetheless, there are
many domains of an explorative nature, where one of the
agents’ objectives is to acquire knowledge about their envi-
ronment and properly adjust to it. For instance, [Jain et al.,
2009] presents a domain where some mobile sensors have
to coordinate to establish (and maintain) a wireless network
as stable and reliable as possible. Although there are some
preliminary works in this direction [Stranders, 2010], they
mainly focus on handling the uncertainty of a very specific
domain. Hence, we also plan to work on a generalized model
of DCOPs that incorporates unreliable and unknown informa-
tion. Thereafter, we will study whether existing (both com-
plete and approximate) algorithms can be adapted to solve
this new class of problems, paying special attention to the
exploration-exploitation tradeoff inherent to them.
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