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Abstract. In previous work, a new approach called Open CSP (OCSP)
was defined as a way of integrate information gathering and problem
solving. Instead of collecting all variable values before CSP resolution
starts, OCSP asks for values dynamically as required by the solving
process, starting from possibly empty domains. This strategy permits
to handle unbounded domains keeping completeness. However, current
OCSP algorithms show a poor performance. For instance, the FO-Search
algorithm uses a Backtracking and needs to solve the new problem from
scratch every time a new value is acquired. In this paper we improve the
original algorithm for the OCSP model. Our contribution is two-fold: we
incorporate local consistency and we avoid solving subproblems already
explored in previous steps. Moreover, these two contributions guarantee
the completeness of the algorithm and they do not increase the number
of values needed for finding a solution. We provide experimental results
than confirm a significant speed-up on the original approach.

1 Problem-solving in Open Environments

The increasing desire to automate problem-solving for scenarios that are dis-
tributed over a network of agents can be addressed with existing tools, first
collecting all the options and constraints in an information gathering phase, and
second solving the resulting problem using a centralized constraint solver. This
conventional approach of collecting values from all servers and then running a
CSP solver has been implemented in many distributed information systems [2,
1, 3]. However, it is very inefficient because it asks for more values than the
strictly needed to find a solution, and it does not work with unbounded number
of values.

In the real world, choices (values) and constraints are collected from different
sources. With the increasing use of the Internet, those classical CSP problems
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could be defined in an open-world environment. Imagine you want to configure a
PC using web data sources. Querying all the possible PC parts in all data sources
on the web is just not feasible. We are interested in querying the minimum
amount of information until finding a solution. Since the classical CSP approach
(querying all values before search starts) is not applicable here, the new Open

CSP approach [6] was proposed. Solving an Open CSP implies obtaining values
for the variables, one by one. If the collected information does not allow to solve
the problem, new values are requested. The process stops when a solution is
found.

Although there are several models which in principle are suitable for open
environments such as the Iterative CSP model [14] and the Dynamic CSP model
[15], our model deals with a different problem. These approaches assume bounded
domains while Open CSP assumes unbounded domains (domains with a possibly
unlimited number of values). The ability to handle unbounded domains poses
an interesting challenge when designing algorithms. For this reason, we do not
include experiments comparing these approaches. See [5] for a detailed relation
among these models.

Several algorithms for solving Open CSPs were proposed in [6]. These algo-
rithms have a poor performance due to the lack of local consistency and that to
the fact they solve from scratch a problem every time new values are acquired.
Local consistency allows CSP algorithms to be very powerful, thus in this paper
we present a new algorithm called FCO-Search that uses local consistency. We
also show how the Factoring Out Failure strategy [4] can be used to avoid solving
a problem from scratch.

This paper is organized as follows: firstly a brief description of the Open CSP

model is given, followed by an explanation of the FO-Search algorithm. In the
next sections we discuss how to improve this algorithm by incorporating local
consistency and by avoiding to solve from scratch every instance of the OCSP.
Then, we describe the FCO-Search algorithm which incorporates the mentioned
improvements and finally the benefits of our approach are shown.

2 Open Constraint Satisfaction Problems

In Figure 1 we show the important elements of an open setting. The problem-
solving process is modeled abstractly as the solution of a CSP. The choices that
make up domains and permitted tuples of the CSP are distributed throughout
an unbounded network of information servers IS1, IS2, ..., and accessed through
a mediator [7]. For the purpose of this paper, we assume that this technology
allows the CSP solver to obtain additional domain values:

– Using the more(xi, . . . , (xi, xj), . . .) message, it can request the mediator to
gather more values for these variables. In this paper we assume that this
method returns just one new value every time it is called.

– Using options(xi, . . . , ) and options((xi, xj), . . .) messages, the mediator in-
forms the CSP solver of additional domain values or constraint tuples found
in the network.



Fig. 1. Elements of an open constraint satisfaction problem.

– When there are no more values to be found, the mediator returns nomore(xi, . . .).

Formally, an Open CSP(OCSP) [6] is a possibly infinite sequence 〈CSP(0),
CSP(1), . . .〉 of CSP instances. An instance CSP(i) is the tuple 〈X, D(i), C(i)〉
where,

– X = {x1, x2, ..., xn} is a set of n variables.
– D(i) = {D1(i), D2(i), ..., Dn(i)} is the set of domains for CSP(i) where vari-

able vk takes values in Dk(i). Initially domains are empty, Dk(0) = ∅, and
they grow monotonically with i, Dk(i) ⊆ Dk(i + 1) for all k.

– C(i) = {c1(i), c2(i), . . . , cr(i)} is a set of r constraints. A constraint c(i)
involves a sequence of variables var(c(i)) = 〈vp, . . . , vq〉 denominated its
scope. The extension of c(i) is the relation rel(c(i)) defined on var(c(i)),
formed by the permitted value tuples on the constraint scope. Initially, rela-
tions are empty, rel(ck(0)) = ∅, and they grow monotonically, rel(ck(i)) ⊆
rel(ck(i + 1)) for all k.

A solution is a set of value assignments involving all variables such that for
some i, each value belongs to the corresponding domain in D(i) and all value
combinations are allowed by the constraints C(i) of CSP (i). Solving an OCSP
requires an integration of search and information gathering. It starts from a state
where all domains are empty, and the first action is to find values that fill the
domains and allow the search to start. As long as the available information does
not include enough values to make the CSP solvable, the problem solver initiates
further information gathering requests to obtain additional values. The process
stops as soon as a solution is found. Thus, with this OCSP model, we are solving
a satisfiability problem, but also we are interested in optimizing the number of
queries needed to find a solution.

The definition of an OCSP assumes that all constraints are binary. For exper-
imentation, we assume that only variable domains change over time. We made
these assumptions for the simplicity of the algorithms. They are not strong re-
strictions because using the hidden variable encoding method explained in
[12, 13], any problem whose constraints are non binary or that are incrementally
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Fig. 2. Hidden variable encoding of a non-binary CSP.

discovered could be turned into a variable which has as values the tuples allowed
by the constraints. These new variables are linked to variables involved in the
original problem by new binary constraints that enforce equality between the
variable values and the corresponding elements of the tuple. Figure 2 shows an
example of the hidden variable encoding for a non binary CSP.

3 The FO-Search algorithm

The idea behind the FO-Search algorithm is that new values have to be gathered
only when the current instance CSP (i) has no solution. In that case, it usually
contains a subproblem that already has no solution, and CSP (i) could be made
solvable only by creating a solution to that subproblem. Information gathering
thus should focus on the variables of this subproblem.

An Unsolvable Subproblem of size k is a set of variables S = {xs1, xs2, . . . , xsk}
such that there is no value assignment xs1 ∈ Ds1, . . . , xsk ∈ Dsk (where Dsi rep-
resents a domain) that satisfies all constraints between these variables. If any
subset S′ ⊂ S is solvable, we call this set of variables Minimal Unsolvable Sub-

problem.
Note that any strategy that does not assure the selection of a variable that

belongs to a Minimal Unsolvable Subproblem may lead us to an incomplete al-
gorithm. Actually, this is the key point of working with unbounded domains.
Think for example about an strategy of selecting the most constrained variable.
This variable is not forced to belong to a Minimal Unsolvable Subproblem, thus,
adding new values to this variable may loop infinitely without solving the un-
solvable subproblems that made inconsistent the instance. Although it seems
difficult to choose a correct variable, the following result provides a method to
identify a variable that belongs to a Minimal Unsolvable Subproblem.
Proposition 1. Let a CSP be explored by a failed backtrack search algorithm
(BT) with static variable ordering (x1, ..., xn), and let xk be the deepest node
reached in the search with inconsistency detected at xk . Then xk, called the failed

variable, is part of every unsolvable subproblem of the CSP involving variables
in the set {x1..xk}.

Using this result (proved in [6]), a failed CSP search allows us to identify the
failed variable, for which an additional value should be collected. When there are



no additional values for this variable, the mediator returns a nomore message,
and other variables are then considered.

The resulting algorithm FO-search (failure-driven open search) is shown in
Algorithm 1. It makes the assumption that variables are ordered by the index

Algorithm 1 The FO-search algorithm.

1: procedure FO-search(X(i),D(i),C(i))
2: i← 1, k ← 1
3: repeat {backtrack search}
4: if exhausted(di) then {backtrack}
5: reset − values(di), i← i − 1
6: else

7: k ← max(k, i), xi ← nextvalue(di)
8: if consistent({x1..xi}) then {extend assignment}
9: i ← i + 1

10: end if

11: if i > n then

12: return {x1, ..., xn} as a solution
13: end if

14: end if

15: until i = 0
16: if ek = CLOSED then

17: if (∀i ∈ 1..k − 1)ek = CLOSED then

18: return failure

19: end if

20: else

21: nv ← more(xk)
22: if nv = nomore(xk) then

23: ek ← CLOSED

24: end if

25: dk ← nv ∪ dk

26: end if

27: reorder variables so that xk becomes x1 (relative order of others remains the same)

28: FO-search(X(i),D(i),C(i)) {search again}

i, and uses the array E = {e1, .., en} to indicate whether the domain for the
corresponding variable is completely known (CLOSED). The algorithm assumes
that no constraint propagation is used, although the chronological backtrack-
ing can be replaced with backjumping techniques (jumping directly to the last
constraint violation) to make it more efficient.

In [6] it is shown that if the current instance CSP (i) contains a minimal
unsolvable subproblem, the FO-Search algorithm (algorithm 1) is complete even
in the presence of unbounded domains. The main drawbacks of the algorithm
are: (i) it does not use local consistency (ii) every instance CSP (i) is solved from
scratch. In next sections we will study how the FO-Search algorithm could be
improved with these suitable properties.

4 Local consistency for OCSPs

Given an unsolvable CSP instance and a static ordering of its variables o =
x1, . . . , xn, the failed variable along the ordering o is the deepest variable in the
search tree developed by BT that detects inconsistency, following the ordering



o . Different variable orderings may identify different failed variables, all being
equally acceptable.

As shown in previous section, the unbounded domains of the OCSP model
could lead us to incomplete algorithms if we do not choose the correct variable.
The interest for finding a failed variable xk of an unsolvable problem in the OCSP
context is clear: xk belongs to a minimal unsolvable subproblem, for which more
values are required in order to make it solvable (otherwise the whole problem
will continue being unsolvable). Variable xk is the natural candidate to get more
values, to extend this minimal unsolvable subproblem.

Local consistency has been shown to be essential in constraint satisfaction to
increase the solving performance. We think that local consistency should plays
a similar role in OCSP. With this aim, we explore how the popular Forward
Checking (FC) algorithm [11] can be used in the OCSP context.

In order to identify a failed variable when having local consistency in OCSPs,
we provide the next proposition.

Proposition 2. Let an unsolvable CSP be explored by a FC algorithm with
static variable ordering o = (x1, ..., xn), and let xk be the deepest variable in
the search tree for which an empty domain was detected. Then there exists an
ordering for which xk is the failed variable in the BT algorithm.
Proof. Let us build the search tree that BT will traverse following the static
ordering o. We know that BT will not visit any branch below xk level (otherwise,
BT will find as consistent an assignment that FC detected as inconsistent). BT
may fail before xk level at some branches, but it will not go below that level in
any branch. It may happen:

1. There is at least one branch for which BT reaches xk level.
2. In all branches, BT fails before reaching xk level.

If 1, xk is the failed variable for o. If 2, however, xk is not the failed variable
for o since BT never reaches it in any branch. Assuming that xj is the deep-
est inconsistent variable found by BT along the ordering o, we construct the
ordering o′ that is equal to o but where xj and xk exchange places. Along this
new ordering o′, BT finds xk as the failed variable. To see this, it is enough to
realize that FC never instantiates more than x1, . . . , xj−1 variables (otherwise
FC would have instantiated an inconsistent assignment, something impossible
[10]) and instantiating these variables is enough to detect inconsistency on xk.
BT following ordering o′ will find xk as the failed variable. Therefore, there is
an ordering for which xk is the failed variable. �

It is important to point that this failed variable could be different from
the failed variable obtained in Proposition 1. Therefore, we cannot assure that
this failed variable is part of every unsolvable subproblem of the CSP involving
variables in the set {x1..xk}.

Using proposition 2, we are able to identify a failed variable even when having
local consistency. This property will be useful to create a complete algorithm
which uses local consistency for solving OCSP.



5 Using Factoring Out Failure in OCSPs

Beside local consistency, we can improve the FO-Search algorithm avoiding to
re-explore the search space already explored. To achieve this, two solutions could
be performed:

– Reuse the no-goods found in the earlier search. This no-good recording
method is explained in [8, 9]. It seems that this is the most obvious solu-
tion, but is not practical because new acquired values may invalidate the
no-goods inferred in previous searches.

– Using the technique of decomposing a CSP into subproblems proposed by
Freuder and Hubbe [4] called Factoring Out Failure.

The decomposition process and the algorithm called Factoring Out Failure

are described in [4]. The algorithm extracts unsolvable subproblems from a CSP,
thus limiting search effort to smaller and possible solvable subproblems. This
idea seems to apply well to OCSP: we can decompose the new instance CSP (i)
obtained after collecting new values, into the old problem just searched CSP (i−
1) (which is known to be unsolvable) and a new one based on the values just
obtained. This extraction method is shown in Algorithm 2. We have to be careful
here, because limiting search to the new found values may cause incompleteness
of the algorithm for solving the OCSP.

Algorithm 2 The Extract procedure
procedure Extract (CSP (i − 1), CSP (i), decomposition)
begin

repeat

Pick a variable, xk ∈ CSP (i) whose domain does not match in CSP (i− 1).
Divide CSP (i) into two subproblems CSP1 and CSP2 that differ only in that the domain of
xk matches the first subproblem CSP1 while the remaining values of xk matches the second
subproblem CSP2.
CSP (i)← CSP1; decomposition← decomposition ∪ CSP2

Apply Extract to the updated problem CSP (i) and decomposition with the same subproblem
CSP (i− 1).

until CSP (i) = CSP (i − 1)
return decomposition;

end Extract

To obtain a complete algorithm, we study the relation between the failed
variables of two consecutive instances CSP (i − 1) and CSP (i).

Let be CSP (i) = CSP (i − 1) ∪ CSPnv where:

CSPnv =< X, D′nv, C(i) >=

{

D′nv(xk) = D(xk) ∪ nv xk failed variable in CSP (i − 1)

D′nv(xi) = D(xi) ∀xi 6= xk

(1)
Let say we have solved instance CSP (i−1) with variable order x0, . . . , xk, . . . , xn.

Assume that it was found unsolvable with xk as failed variable. Thus, following
the FCO-Search algorithm, instance CSP (i) will be solved with variable order



xk, x0, . . . , xj , . . . , xk−1, . . . , xn. Let say that problem CSPnv was solved using
the same variable order xk, x0, . . . , xj , . . . , xk−1, . . . , xn, and it was found un-
solvable with xj as failed variable. Comparing both failed variables, xk and xj ,
we can identify one of these situations:

– The depth level of variable xj in CSPnv is greater than or equal to the
depth level of variable xk in CSP (i− 1). Note that solving instance CSP (i)
with variable order xk, x0, . . . , xj , . . . , xk−1, . . . , xn has as possible candi-
dates for failed variable the set {x0, . . . , xk−1} where xk−1 is the deepest
variable. Also note that the depth level of variable xk−1 in the variable or-
der xk, x0, . . . , xj , . . . , xk−1, . . . , xn is the same as xk in the variable order
x0, . . . , xk , . . . , xn used for solving instance CSP (i − 1). Thus, we can con-
clude that xj is the failed variable of instance CSP (i), because it is deeper
that the deepest possible candidate xk−1 which has the same depth level
that xk in instance CSP (i − 1). Note that in this situation, we just need
to solve CSPnv in order to know the failed variable of instance CSP (i) or
found a possible solution.

– The depth level of variable xj in CSPnv is lower than the depth level of
variable xk in instance CSP (i− 1). As before, solving instance CSP (i) has
as possible candidates for failed variable the set {x0, . . . , xk−1} where xk−1 is
the deepest variable. In this case, the set of failed variables is {x0, . . . , xk−1}
∪ {xj}. Therefore, we have to solve CSP (i) from scratch with the new
variable ordering xk, x0, . . . , xj , . . . , xk−1, . . . , xn to know which is the failed
variable.

CSP(i-1) CSP(i)

Fig. 3. An Open graph coloring example.

Figures 3 and 4 show an example of solving instance CSP (i) using the
Factoring Out Failure algorithm. Figure 3 (left) shows an unsolvable instance
CSP (i−1) of a graph coloring OCSP with variable ordering {x1, x2, x3, x4, x0}.
In the example, x0 is the failed variable, thus following the FO-Search algo-
rithm we collect a new value x0 = b obtaining the instance CSP (i) as shown in
Figure 3(right) with a new variable ordering {x0, x1, x2, x3, x4}. The FO-Search
algorithm will solve again from scratch instance CSP (i) although we know that
instance CSP (i−1) is an unsolvable subset of CSP (i). Before solve CSP (i), we



Fig. 4. An example of instance CSP (i) decomposition .

can use the Algorithm 2 to extract the known unsolvable subproblem CSP (i−1)
and then focusing on solving the decomposition subproblem obtained 1 (for more
details of the Factoring Out Failure method, please refer to [4]). When we extract
the subproblem CSP (i− 1) from problem CSP (i) we obtain a new subproblem
(called DECOMPOSITION in figure 4) which is smaller and probably easy to
solve than instance CSP (i).

6 The FCO-Search algorithm

Based on the previous FO-Search algorithm, we developed a new algorithm with
the same properties (new values have to be gathered only when the current
instance is unsolvable) but including local consistency and using the Factoring
Out Failure decomposition. We call the obtained algorithm FCO-Search.

The FCSearch function, implements the classical FC algorithm. In line 7, it
assigns a new value to variable xi and starts the propagation (lines 8-14). Lines
15-17 check if there is a variable xj which domain was exhausted by the previous
assignment of variable xi, recording the deepest variable with empty domain. It
returns either a solution or a failed variable if instance CSP (i) is unsolvable.

The initial call of the FCO-Search (Algorithm 3) is FCO−Search(CSP (0), x0)
where CSP (0) is the initial instance and x0 is the first variable in the variable
order given by this initial instance. The FCO-Search algorithm has two param-
eters: < X(i), D(i), C(i) > as instance CSP (i) and x′k as the failed variable of
instance CSP (i−1). In line 2 we use the Extract procedure to extract the unsolv-
able instance CSP (i − 1) from instance CSP (i). From this decomposition, we
obtain the subproblem < Xd, Dd, Cd > which is solved by the FCSearch function
in line 3. If there is no solution, then it compares in line 7 if the failed variable
xk of problem CSP (i) is deeper than the previous failed variable x′k of instance
CSP (i− 1). When this condition is true, we know that xk is the failed variable
of instance CSP (i). Otherwise we need to solve CSP (i−1) to calculate the new
failed variable (line 8). Once the new failed variable is calculated, we call the
function more in line 15 and a new value is added. Line 21 reorders variables

1 Problem CSP (i) differs from problem CSP (i − 1) only in the new queried value.



1: function FCSearch(X,D,C)
2: i← 1, k ← 1
3: repeat {main loop}
4: if exhausted(di) then

5: i← i − 1
6: else

7: xi ← nextvalue(di)
8: for all xj ∈ (xi+1, . . . , xn) do

9: for all a ∈ dj do

10: if ¬consistent(x1, . . . , xi, xi+1, . . . , xn) then

11: dj ← dj − a

12: end if

13: end for

14: end for

15: if {∃xj ∈ (xi+1, . . . , xn) | exhausted(dj )} then {backtrack}
16: reset each xj ∈ (xi+1, . . . , xn) to value before xi was set
17: k ← max(k, j), i← i − 1
18: else

19: i ← i + 1
20: end if

21: if i > n then

22: return {x1, ..., xn} as a solution
23: end if

24: end if

25: until i = 0
26: return xk as failed variable

27: end FCSearch

so that xk becomes the first variable and the relative order of other variables
remains the same. Finally line 22 calls recursively algorithm FCO-Search with
instance CSP (i) and with the new failed variable.

Proposition 3. Algorithm FCO-Search is complete.

Proof. We know that the FO-Search algorithm is complete [6], where search is
performed by BT. We will show that the FCO-Search algorithm, where BT is
replaced by FC, is also complete. Let xk be the failed variable found by FC, and
xj the failed variable found by BT, both along the ordering o. Either (i) xj = xk

or (ii) xj appears before xk in o. In (i) the FCO-Search algorithm behaves like
FO-search, so it is obviously complete. Then, let us assume (ii). In this case,
there is an ordering o′ equal to o but with xj and xk exchanging places. Along
o′ BT would have found xk as failed variable. We show that FCO-Search with
ordering o behaves like FO-Search with ordering o′. First, both algorithms ask
for one more value for xk and put it as the first variable, forming the ordering
xk, x1, . . . , xj−1, xj+1, . . . , xj , . . . , xn. We know that the subset xk, x1, . . . , xj−1

formed a unsatisfiable subproblem in the previous iteration, but we do not know
if the new value of xk has made it solvable. If it is solvable, then the algorithm
will continue looking for the next unsatisfiable subproblem (if any). If not, FCO-
Search will find a new failed variable xp in the sequence xk , x1, . . . , xj−1 using
the FC algorithm. Obviously, xp appears before or it is equal to xj−1. Since BT
found a consistent instantiation from x1 until xj−1, in this subset BT cannot find
a constraint that will stop search before reaching xp. So BT would find the same
failed variable as FC. Therefore, FCO-Search will behave exactly as FO-search,
until finding a solution for that unsatisfiable subproblem.



Algorithm 3 The FCO-Search algorithm.

1: procedure FCO-Search(< X(i), D(i), C(i) >, x′

k)
2: < Xd, Dd, Cd >= Extract(< X(i), D(i), C(i) >, < X(i − 1), D(i − 1), C(i− 1) >, ∅)
3: if solution(FCSearch(Xd, Dd, Cd)) then

4: return {x1, ..., xn} as a solution
5: end if

6: xk = returned xk by the FCSearch function
7: if x′

k > xk then

8: xk = FCSearch(X(i− 1), D(i − 1), C(i− 1))
9: end if

10: if ek = CLOSED then

11: if (∀i ∈ 1..k − 1)ek = CLOSED then

12: return failure

13: end if

14: else

15: nv ← more(xk)
16: if nv = nomore(xk) then

17: ek ← CLOSED

18: end if

19: dk ← nv ∪ dk

20: end if

21: reorder variables so that xk becomes x1 (relative order of others remains the same)
22: FCO-Search(X(i), D(i), C(i), xk)

23: end FCO-Search

In both cases (i) and (ii), FCO-search behaves like FO-search with ordering
(i) o, or (ii) o′. Since FO-Search is complete, FCO-Search is complete. �

7 Experiments

We compared the performance of the new FCO-Search algorithm against the
FO-Search algorithm 2 on solvable random OCSPs. We performed several ex-
periments.

As a first experiment, we compared the performance of the algorithms until
a solution is found when density and tightness change. At this point we want
to emphasize that our experimental results are done with finite domain random
classes (following the B random model) in order to allow researches to reproduce
the experiments. For this experiment we generated 1000 random OCSPs with
7 variables and with a domain size of 10 values. Figures 5 (a)(b) compare the
number of checks needed to find a solution for the OCSP when (a) density = 0.2
(b) density = 0.8 and tightness moves from 0.1 to 0.8. In Figure 5 (c) density
= 0.8 but tightness moves from 0.1 to 0.6 due to the difficulty of generating
solvable problems when tightness > 0.6 .

Figure 5 shows an important improvement of the FCO-Search algorithm over
the FO-Search in any case. Combining local consistency and avoid solving from
scratch the same problem reduces dramatically the number of constraint checks
for hard problems producing a substantial improvement in the performance of
the proposed algorithm.

2 The FCO-Search algorithm is compared against the backtracking version of the FO-
Search without backjumping.
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Fig. 5. Comparison of the number of checks when tightness increases. Top: (a)
when density = 0.2, (b) when density = 0.5. Bottom: (c) when density = 0.8

In the second experiment, we compared the algorithms in two aspects: the
number of accesses to information sources and the number of constraint checks
until a solution for the OCSP is found 3. We generated 100000 random OCSPs
with between 5 to 17 variables and a domain size of 10 values, forcing the graph
to be solvable and at least connected and at most complete with random density
and tightness.

Figure 6(a) shows the number of checks against the number of variables,
studying the performance of the algorithms when increasing the number of vari-
ables. The benefits are very important (it is ”likely” to get at least an order of
magnitude for bigger instances) because the FCO-Search algorithm incorporates
local consistency and avoids redoing the same solving process every time a new
value is added (as explained in previous section).

Figure 6(a) compares the number of queries against the number of variables.
In this figure, we include the Classical CSP approach which decouples informa-
tion gathering and problem solving. This approach first queries all values for
all variables and then solves the problem. We decided to include it because it
establishes an upper bound for the performance of the algorithms. As mentioned

3 These constraint checks are not hidden in the FCO-Search algorithm.
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Fig. 6. (a) Comparison of the number of checks vs the number of variables when
domain size = 10 (b) Comparison of the number of values queried vs the number
of variables when domain size = 10.

before, it could be possible that both algorithms FO-Search and FCO-Search do
not select the same failed variable in every instance CSP (i), so the number of
queried values could vary. Empirical results show that the number of queries
is nearly the same for both algorithms, having a slightly better performance
the FO-Search algorithm. As explained before, this is due to the property that
the FO-Search algorithm finds a failed variable xk which participates in all un-
solvable subproblems {x1, . . . , xk}, while the FCO-Search algorithm just finds a
component that may does not have this property. Thus, the selected variable by
the FO-Search algorithm gets a new value that could solve several unsolvable
subproblems at the same time, while the selected variable by the FCO-Search
can not assure this property. Despite this difference, empirical results show that
both algorithms have a similar performance.
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Fig. 8. Number of times instances are solved from scratch when density and
tightness increases.

The benefits of our new approach come from a combination of applying local
consistency and avoid solving instances from scratch. We are interested in the
influence of these improvements separately. Figure 7 compares the number of
checks when the FCO-Search algorithm uses the Factoring out Failure method
and when it does not use it. For this particular experiment, we generated 1000
random OCSPs with 7 variables with domain size 10 and with a density =
0.5. In figure 8, we studied the percentage of instances solved from scratch for
every random OCSP. For these instances, solving the obtained decomposition
subproblem is not enough for finding the next failed variable. As expected, figure
8 shows that when problems become harder, around 60% of instances are solved
from scratch. For these hard problems, if we compare Figure 7 and Figure 8, we
can see that local consistency bring us more benefits, although the contribution
of the Factoring out Failure method is also significant.

8 Conclusions

The performance of algorithms for solving OCSPs is very poor because they
neither use local consistency nor avoid solving subproblems already explored
in previous step. We have studied how we can incorporate local consistency
while keeping the completeness of the algorithm by finding a failed variable. We
also have shown how we can use the idea of the Factoring out Failure method
proposed by Freuder [4] to avoid redoing the previous work. Based on these two
techniques, we have developed a new algorithm called FCO-Search for solving
OCSPs. The results described in last section show a significant speed-up in
the number of checks compared with the previous FO-Search algorithm while
the number of queried values remains nearly the same, even when the problem
becomes hard to solve.

As future work, we are studying how to incorporate dynamic variable or-
dering into our algorithm. This new improvement poses a new challenge when
calculating the failed variable, but we suspect it will provide a promising im-
provement for OCSPs solvers.
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