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ABSTRACT
Social conventions are useful self-sustaining protocols for groups
to coordinate behavior without a centralized entity enforcing co-
ordination. The emergence of such conventions in different multi
agent network topologies has been investigated by several researches.
Although we will perform an exhaustive study of different network
structures, we are concerned that different topologies will affect the
emergence in different ways. Therefore, the main research question
in this work is comparing and studing effects of different topologies
on the emergence of social conventions. While others have inves-
tigated memory for learning algorithms, the effects of memory on
the reward have not been investigated thoroughly. We propose a re-
ward metric that is derived directly from the history of the interact-
ing agents. The reward metric is the majority rule, thus the emerg-
ing convention becomes self propagating in the society. Agents are
proportionally rewarded based upon their conformity to the major-
ity action when interacting with another agent. Another research
question to be answered is what effect does the history based re-
ward function have on convergence time in different topologies.
We also investigate the effects of history size, agent population size
and neighborhood size proving their effects by agent-based experi-
mentation.

1. INTRODUCTION
Social norms such as driving on the left side of the road or not

stepping in front of other people in line are prevalent in human
groups and societies. Such norms are conflict resolution strategies
that develop from the population interactions instead of a central-
ized entity dictating agent protocol. History of interaction is then an
instrumental in norm evolution. Learning algorithms incorporate
history of interaction into their calculations, but reward metrics are
typically static and independent of the agent histories. Norm evolu-
tion is dependent upon the exertion of social pressure by the group
on aberrant individuals. It is through learning via repeated inter-
actions that social pressure is applied to individuals in the group.
However, a static reward metric does not necessarily model the na-
ture of social pressure in human societies. We propose a reward
structure based upon the agent’s interaction history as a more ap-
propriate alternative to the static reward metric normally used. In
our model agents are rewarded based upon the conformity of ac-
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tion between two agents, such that the agent who has the most
of the majority interaction receives higher reward. In our system
both agents’ history is used to calculate the payoff. In addition we
investigate how memory about this history and memory size af-
fects different types of society structure. Societal connections are
represented by different network types in which the network links
constrain interaction between agents. Specifically we investigate a
one-dimensional lattice with variable neighborhood size, and scale
free networks. Agents are then randomly selected via their con-
straints to play a two-player game with the reward for interaction
based on their history of interaction. We believe that the underly-
ing topology of the society is a key factor in determining the pro-
cess of convention emergence. In this work we willexperiment
on different types of topologies in order to observe, compare
and analyze their effects and dynamics of reaching social con-
ventions. Mainly we are interested in two types of topologies: a
one-dimensional lattice, and, a scale free network.

The structure of this article is as follows: we start reviewing the
previous and related work in the area of multi-agent emergence in
social conventions in Section 2; after that, in Section 3 we present
the model that is going to be used in this work and in the experi-
mentation; the experimental results are presented in section 4; after
that some conclusions are presented in Section 5, and finally we
present the future work we plan to perform to continue this research
in section 6.

2. PREVIOUS WORK
In the work of Sen and Airiau [5, 3], the authors explored norm

emergence where interaction rewards were not dependent upon pre-
vious interactions. That work is focused on the problem of coor-
dination of two cars arriving at an intersection. Each agent can
choose to “go” or “yield” to the other agent. The reward metric
is designed so that if each agent chooses the same action, they re-
ceive small payoff but if agents choose opposite actions, they re-
ceive a large payoff. So if the row and the column agents both “go”
they both receive a poor payoff. Each agent in an interaction was
randomly chosen from the population. Agents learned the social
norm from repeated interactions with other agents in the popula-
tion. The history of interaction does not directly affect the reward
agents receive. Reward is only affected by the agents’ action choice
in the current interaction. However, learning takes place via social
pressure from repeated interaction, thus the history of interaction
influences agent’s action choice.

Delgado et al. [1] investigate a similar norm emergence scenario
with several key differences. The agents in their research are re-
stricted in their interactions to their neighbors in a scale free graph.



Furthermore, their agents are playing a coordination game in which
payoff is high if both agents chose the same action and low if both
agents chose different actions. The authors formulate their action
choice in terms of history. Each agent keeps a history of interac-
tions and the corresponding reward. The agents then utilize the
history to select the best payoff action. However, the history does
not determine the reward they receive.

Kittock’s research [2] is very similar to the research done by Del-
gado et al. Kittock also utilizes the same style of payoff metric used
in Delgado’s work as well as using a graph to restrict to interactions
of agents. His agents also utilize memory of interaction payoffs to
select their actions in future interactions. His work is different in
that he investigates several graph topologies and payoff matrices.

3. MODEL
The social learning situation for norm emergence that we are

interested in is that of learning to reach a social convention. We
borrow the definition of a social convention from [6]: A social law
is a restriction on the set of actions available to agents. A social
law that restricts agents’ behavior to one particular action is called
a social convention. In our case, as in the case in [1], a social
convention will be reached if all the N agents are either in state A
or in state B. From now on, it is equivalent for us that an agent
chooses an action to perform or an state to be.

We represent the interaction between two agents as an n-person
m-action game. At each time step, each agent is paired with another
agent and decides in which state it wants to be (A or B).

In this article we restrict agents to be located in two different
types of environments: aone-dimensional latticewith connections
between all neighboring vertex pairs (one example can be seen in
Fig. 1(a)) ; and, ascale-free network, whose node degree distri-
bution asymptotically follows a power law (one example can be
seen in 1(b))1. In both environments, agents are represented by the
nodes in the network and the links represent the possibility of inter-
action between nodes (or agents). Theone-dimensional latticepro-
vides a structure in which agents are connected with theirn closest
neighbors. Different values of the neighborhood size (n) produces
different network structures; for example, whenn = 2 the network
will have a ring structure and agents will only be connected with
their direct neighbors (those at left and right if we imagine a ring
topology). On the other hand, whenn = PopulationSize, the
network will be a fully connected network where all the agents are
connected with all the others. On the other hand, in thescale-free
networkthere are many vertices with small degrees and only few
of vertices with large degrees. This makes the network diameter
(average minimum distance between pairs of nodes) significantly
small with respect to theone-dimensional lattice.

As in [2] agents have a memory of size M (same size for all the
agents). For agentk, the memoryMk will record some information
on the history of its decisions: The value of the positioni of the
memoryMk will be a tuple〈ai

k, ti〉 whereti is the time thei-th
took place, andai

k is the decision taken by agentk at time ti (
1 ≤ i ≤ M ). Thus, the memory of each agent will work as a
history record for the lastmemory sizeactions taken.

Agents do not know before interaction the payoff that they will
get for any of the states they choose. Agents cannot observe the
other agent’s memory, current decision or immediate reward. The
payoff given by the system depends on both agent’s decision and
1In [4] we can find several examples of usage of scale-free net-
works (like citations between scientific articles, a 300 million ver-
tex subset of the World Wide Web, the power grid of the west-
ern United States, or, the interaction network of proteins in the
metabolism of the yeast S. cerevisiae).

their memories. When two agentsy andz interact, the instanta-
neous reward that, for example, agenty gets is calculated based
on the action it selected and the previous history of both agents as
follows: whereAx andBx are the number ofA andB actions in

TotalAActions = Ay + Az;
TotalBActions = By + Bz;
if TotalAActions ≤ TotalBActions then

rewardy =
By

TotalBActions

else
rewardy =

Ay

TotalAActions

end
Algorithm 1: Reward Calculation based on action history.

memory that agentx has taken. Agents use a learning algorithm to
estimate the worth of each action. Agents will choose their state
in each interaction in a semi-deterministic fashion. A certain per-
centage of the decisions will be chosen randomly, representing the
exploration of the agent, and the rest of te decisions will be cho-
sen deterministically corresponding to the action estimated to be of
higher utility. In this article, the exploration rate has been fixed at
25 %. Therefore, one out of four decisions will be taken randomly.

The learning algorithm used here is a simplified version of the
Q-Learning algorithm [7]: The Q-Update function is as follows:

Q
t(a)← (1− α)×Q

t−1(a) + α× reward

Algorithm 2: Q-update function

Therefore, when agents decide not to explore, they will choose
the action with higher Q value.

The protocol of interaction is presented in Algorithm 3

for timestepsdo
forall agentsdo

Select another agent from population;
Ask agents to select an action;
Send the joint action for policy update;
Update;

end
end

Algorithm 3: Interaction Protocol

4. EXPERIMENTS
We present experiments that have been run on societies with dif-

ferent configurations using the following parameters:

• Memory Size: We vary the number of past interaction stored,
so we can contrast the effects of memory sizes.

• Population Size: We want to extract conclusions that are un-
related with the population size, therefore, we need to exper-
iment on different population sizes so we can extrapolate the
results.

• Neighborhood Size: We are interested in observing how dif-
ferent neighborhood sizes in a one dimensional lattice affect
the process of emergence of conventions.



(a) One-dimensional Lattice (b) Scale-Free Network

Figure 1: Underlying Topologies

• Underlying Topology: We observe the dynamics of the pro-
cess of emergence of conventions depending on the underly-
ing topology, scale free or one dimensional lattice.

Some details about how the experiments have been run are the
following: All the experiments performed in this section have been
run 50 times and the results are averaged. All agents are initialized
with uniformly distributed values in their memories, and initially
do not have any preference for any action. We define that a social
convention has been reached when 90% of the population are in the
same state [2].

The hypotheses that we want to test are the following:

1. Different neighborhood sizes affect the convergence time in
one dimensional lattices.

2. Convergence time is proportional to memory size: We have
the intuition that when agents have a bigger memory size, it
will take longer for them to reach a convention.

3. Convergence time is proportional to population size: We be-
lieve that the bigger the population is, the longer it takes the
system to converge.

Though some aspects of results from our simulated agent soci-
ety can be transferred to human situations (with additional mech-
anisms), our results are targeted towards a better understanding of
how to develop self-adaptive agent societies.

4.1 Effect of Neighborhood Size
For the first experiment, we observe the effects of neighborhood

size on the convergence time. The memory size has been fixed to
25, and the underlying topology used is just the one-dimensional
lattice, as scale-free networks predetermine the neighborhood for
each node. The results in Figure 2. show a comparison between 4
different population sizes and the corresponding convergence times
for changing neighborhood sizes.

We can notice from the experimental results that when increas-
ing the neighborhood size, the convergence time is reduced, until
a certain point where it stabilizes. This effect is produced due to
the dynamics of the system. When agents have a small neighbor-
hood size, on average, they need a higher number of interactions
to transmit their decisions from any two randomly chosen agents.
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Figure 2: Convergence rates with different Neighborhood Sizes
(Memory Size = 25)

Consequently, the“interaction paths” between any two agents are
larger. For example, for the knowledge of agent in cell 2 in Fig-
ure 3(a) to reach the agent in cell 12, it would be necessary, on
average, to have 5 interactions between intermediate agents. In a
similar way, when increasing the neighborhood size, we reduce the
average number of interactions for knowledge to be transmitted be-
tween any random pair of agents. However, for the knowledge of
agent in cell 2 in Figure 3(b) to reach the agent in cell 12, it would
be necessary, on average, to have 2 interactions between interac-
tions between intermediate agents.

Moreover, we can observe in Figure 2 that in all the scenarios
tested, the pattern of the system convergence is replicated(apparently
following a geometric distribution). The neighborhood size beyond
which the convergence time does not significantly decrease any-
more is when the neighborhood size is half of the population size.
The knowledge of any agent can reach another agent in just one
interaction, facilitating knowledge dissemination in the system and
reducing the number of conflicting conventions among interacting
agents. For higher values of the neighborhood sizes, the results will
be the same as the same set of agents can be reached with any value
for the neighborhood size abovePopulation

2
.



(a) 20 Agents with Neighborhood Size = 2

(b) 20 Agents with Neighborhood Size = 4

(c) 20 Agents with Neighborhood Size = 6

Figure 3: Different neighborhood sizes in one dimensional lattice produce different average interactions to reach conventions.
(shaded cells indicate agents that overlap two neighborhoods)

4.2 Effect of memory size
In this experiment, we want to observe the effect of different

memory sizes on convention emergence in both underlying topolo-
gies. Therefore, we keep the parameters constant. The popula-
tion size will be fixed at 100 agents, and in the case of the one-
dimensional lattice, the neighborhood size is fixed at 8. We present
the results in Figure 4. The information plotted represent the av-
erage convergence time2 for a society with the previously speci-
fied parameters. The memory size is given on the x-axis and the
convergence time can be observed on the y-axis. The experimental
results confirm that the memory size matters, and with longer mem-
ory convergence time increases. The reason for this phenomenon
is due to the configuration of the reward function and the learning
algorithm. When having a small memory size, the proportional re-
ward that an agent gets is higher due to the design of the reward
function defined in Algorithm 1, therefore, the learning algorithm
receives larger reinforcements for the actions performed. Conse-
quently, if the action is reinforced to a higher degree, convergence
will be reached faster. Convergence is accelerated in this situation
because higher rewards have a larger impact on the Q value up-
dated by the learning algorithm 2. On the other hand, when deal-
ing with higher history windows, the proportional reward is much
smaller, and therefore, the reinforcement will be smaller. Due to
this smaller reinforcement, a higher number of interactions, which
translates into higher number of timesteps, will be needed to rein-
force that action to same degree, and hence, convergence times will
increase.

In Figure 5 we can observe two independent executions per sce-

2We remind the reader than the convergence time is the number of
timesteps needed so 90% of the population are in the same state.It
does not matter which state the agents have converge to as long as
90 % of the agents are in that same state.
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Figure 4: Effect of Memory Size of Convergence Time. (100
Agents)

nario (Figure 5(a) shows the results for the one dimensional lattice
and in Figure 5(b) the results for the Scale-Free Network). One
of the runs shows the evolution of action selection with a memory
size limited to 25, and the other one to 150. These results confirms
the statement that smaller memory sizes lead to faster convergence
(though these results are just from a single execution). We can ob-
serve in Figure 5(a) that the system, when fixed to a higher memory
size (150) initially converges towards action (or state) B, but then
oscilates, finally converging to action A. So initial biases for a con-
vention can be reversed in the long-run.

Furthermore, in Figure 6 we can observe (also for the same two
independent executions for which results are shown in Figure 5) the
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Figure 5: Frequency of different action selection by agents in
different environments and variable memory size.

evolution of coordinated interactions. A coordinated interaction is
one interaction where both agents have chosen the same action and
this action is also the majority action for both agents’ memory. In
case agents do not chose the same action, it will count as an unco-
ordinated interaction. The figures suggest that history size affects
both network topologies equally.

4.3 Effect of Population Size
In this set of experiments we want to observe how the conver-

gence time is affected by the population size. It is intuitive that
the larger the societies are, the harder it should be for the agents to
reach a convention. However, we also want to observe the effects
of different connection topologies, specifically scale free networks
and one dimensional lattices. In these experiments we use a mem-
ory size of 25, and for the one-dimensional lattice we use a neigh-
borhood size of 8. In Figure 7 we can observe how the convergence
time is directly proportional to population size.

However, different effects can be observed depending on the en-
vironment. When the population increases in the one-dimensional
lattice, the convergence time is much higher than in the scale-free
network. This phenomena is due to the structure of the society
and the characteristics of both networks. In the one-dimensional
lattice, when society size increases, the convergence takes longer
to reach because agents will create islands with local conventions
(one example can be seen in Figure 8), and as it was explained be-
fore in Section 4.1, a higher number of interactions will be needed
for knowledge to be transmitted. When these local conventions are
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(a) One dimensional Lattice
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Figure 6: Evolution of Coordinated and Uncoordinated Ac-
tions by agents in different environments and variable memory
size.

 0

 50000

 100000

 150000

 200000

 100  200  300  400  500  600  700  800  900

C
on

ve
rg

en
ce

 T
im

e

Population Size

One-Dimensional Lattice (Size = 8)
Scale-Free Network

Figure 7: Population Size Comparison in different environ-
ments

created it takes time to break out of them and reach a global con-
vention. The amount of time depends on the number of agents that
have reached the same local convention. This is the reason why
when increasing population sizes (without increasing the neighbor-
hood size) in one-dimensional lattices environments, convergence
time also increases.

On the other hand, we can observe how the Scale-Free Network



Figure 8: Example of one-dimensional lattice with local conventions.

reduces the factor of growth convergence time with respect to the
one-dimensional lattice. The explanation for this is due to the in-
herent structure and characteristic of the scale-free network: the
average distance between two vertices in the network is very small
relative to a highly ordered network such as a lattice. In a scale
free network knowledge dissemination is still fast and effective
even with larger populations. This structure helps in the process
of reaching a convention. Although we can observe than when the
population size increases, it also does the convergence time, the
growth factor is much smaller than that observed in the lattice.

5. CONCLUSIONS
We have presented a set of experiments to study the emergence of

social conventions based not only on direct interactions but also on
the memory (and previous history) of each of the agents. This so-
cial learning framework requires each agent to learn from repeated
interaction with anonymous members of the society. Norm emer-
gence in real environments are likely to be influenced by both phys-
ical neighborhood effects imposed by mobility restrictions and bi-
ases as well as diverse learning, memory and reasoning capabilities
of members of the society. Our main goal in this paper was to study
the effects of these features on the rate of norm emergence. Our ini-
tial hypotheses were that different characteristics of the topology in
which agents are located would produce different results in terms of
the convergence time of reaching a social convention. Experimen-
tal results have confirmed our hypotheses. We have shown how
in a one-dimensional lattice (although results can be extrapolated
to any spatial environment), when agents are allowed to interact
with other agents located farther away from them (and therefore not
in their immediate neighborhoods) conventions are reached in less
time. The reason for this acceleration is that agents interact with
a larger percentage of the population, which prevents small local
conventions from forming. Moreover, and affecting both types of
constraint interaction topologies, we have observed that the mem-
ory size does affect the emergence of conventions. Systems where
agents have larger memory sizes take longer to reach conventions.
The reason for this hindrance to convergence is due to the design of
the reward function: the reward that a certain action receives is in-
versely proportional to the size of the memory, and therefore, with
higher memory sizes, the reward actions received will be smaller.
Due to this, we will need a higher number of interactions for the
convention to be reached. Finally, we have experimented with dif-
ferent population sizes. The main conclusion that we can extract is
that for both types of environments, the larger the population, the
longer it takes to reach a convention. However, we could observe
that scale-free network structures are not affected as adversely by
the increasing the population as one-dimensional lattices. The re-
sistance of the scale free network is due to the inherent structure
of the scale-free network, where the hubs facilitate knowledge dis-
semination and the network diameter is relatively small even with
large populations.

6. FUTURE WORK
This experimental framework has served as a proof-of-concept

testbed for our initial hypotheses in emergence of social conven-

tions. In the process, however, issues have arisen. One of the most
immediate experiments that we plan to perform concerns the re-
ward function. Up to now, this reward function assigns a reward
proportional to the number of majority actions that a certain agent
has performed with respect to the sum of the majority action in
history taken by both agents. In the next set of experiments we
want to vary this reward function so it will only assign a reward
to those agents that have performed the majority action, and not to
all agents as it is done now. We surmise that such a change will
produce a speed-up in the convergence times.

Another question that we plan to answer in future versions of
this work is under what circumstances and configuration of param-
eters the one-dimensional lattice behaves similarly to the scale-free
network for large population sizes. We could see in Section 4.3,
when the population size increases, the convergence times in the
one-dimensional lattice increases at a much faster rate compared to
scale-free networks. We believe that a dynamic adjustment of the
neighborhood size on a one-dimensional lattice will produce sim-
ilar dynamics to those obtained in scale-free networks. We also
want to experiment with heterogeneous populations, as it is done
in the work of Mukherjee [3]. So far all the agents are initialized
with the same parameters and with the same distribution of initial
memory. We want to observe the resulting dynamics of different
types of populations, for example: in a scale-free network, initial-
ize the hubs with a specific bias towards a certain state, and observe
the speed of convergence of the rest of the population. Another in-
teresting experiment to be carried out is when agents in the same
population are initialized with different memory sizes.

Furthermore, as a generalization of this work, we are interested
in comparing the results we have presented here with different con-
nection topologies, for example, other type of two dimensional
graphs, random networks and small world networks.

Finally, to make the model more general, we want to extend the
game from the actual 2-action game to a n-action game. This ex-
tension will give us a more generalized game, closer to real life
situations.
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