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Abstract. In this paper we consider the probability logic over  Lukasiewicz
logic with rational truth-constants, denoted FP(RPL), and we explore
a possible approach to reason from inconsistent FP(RPL) theories in a
non-trivial way. It basically consists of suitably weakening the formulas
in an inconsistent theory T , depending on the degree of inconsistency
of T . We show that such a logical approach is in accordance with other
proposals in the literature based on distance-based and violation-based
inconsistency measures.

1 Introduction

Nowadays, there are huge amounts of available data and information and it is
likely to encounter inconsistencies among different pieces of information. Thus,
finding a suitable way of handling inconsistent information has become a chal-
lenge for both logicians and computer scientists working on knowledge represen-
tation techniques and reasoning models, see e.g. [2, 5, 14] among many others.

From a logical point of view, inconsistency is ubiquitous in many contexts
in which, regardless of the given information being contradictory, one is still
expected to extract inferences in a sensible way. In this work we aim at exploring
a fuzzy logic-based approach to the handling of conflicts when the information is
of probabilistic nature. Reasoning with inconsistent probabilistic information is
indeed a research topic that has received growing attention in the last years, in
particular with respect to inconsistency measurement of probabilistic knowledge
bases, and to how inconsistency measures can be used to devise paraconsistent
inference methods, see e.g. the survey [10].

The approach we follow here is based on a logical formalization of probabilis-
tic reasoning on classical propositions as a modal theory over  Lukasiewicz fuzzy
logic, called FP( L), as developed by Hájek et al. [16, 15]. The idea is to under-
stand the probability of a classical proposition ϕ as the truth-degree of a fuzzy
modal proposition Pϕ, standing for the statement “ϕ is probable”, in such a way
that the higher (resp. lower) is the probability of ϕ, the more (resp. less) true is
Pϕ. Then, the r0, 1s-based semantics of  Lukasiewicz connectives, heavily relying
on the usual addition and subtraction operations, make it possible to capture
the postulates of probability measures (in particular the additivity property)



with formulas in the language of FP( L). By expanding  Lukasiewicz logic with
rational truth-constants, yielding the logic called Rational Pavelka logic (RPL),
it is possible to encode purely quantitative expressions like “the probability of
ϕ is at least 0.4” as the modal formula 0.4 Ñ Pϕ in the language of FP(RPL),
the probability logic obtained by replacing  L by RPL in FP( L).

In this paper we explore a possible approach to reason from inconsistent
FP(RPL) theories in a non-trivial way by suitably weakening formulas of an
inconsistent theory T depending on a logical degree of inconsistency of T . The
paper is then structured as follows. After this introduction, in the next section we
recall main definitions and properties of  Lukasiewicz logic  L, as well as Rational
Pavelka logic (RPL), its expansion with rational truth-constants, while n Section
3 we recap the probability logics based on  L and on RPL. Section 4 is devoted
to our proposal to deal with inconsistent probability theories over FP(RPL),
and in Section 5 we relate our approach based on measuring the consistency of
theories to those in the literature based on distance-based and violation-based
inconsistency measures. We end with some conclusions and ideas for future work.

2  Lukasiewicz logic and Rational Pavelka logic

 Lukasiewicz infinite-valued logic is one of the most prominent systems falling
under the umbrella of Mathematical Fuzzy Logic (see e.g. [7]) although it was
defined much before fuzzy logic was born. The interested reader is referred to
the monographs [15, 6, 20] for full details.

The language of  Lukasiewicz logic is built in the usual way from a set of
propositional variables, one binary connective Ñ (that is,  Lukasiewicz implica-
tion) and the truth constant 0̄, that we will also denote as K. An evaluation e
maps every propositional variable to a real number from the unit interval r0, 1s
and extends to all formulas in the following way:

ep0̄q = 0, epϕÑ ψq = minp1´ epϕq ` epψq, 1q.

Other interesting connectives can be defined from them,

1̄ is ϕÑ ϕ,  ϕ is ϕÑ 0̄, ϕ‘ ψ is  ϕÑ ψ,
ϕ&ψ is  p ϕ‘ ψq, ϕa ψ is ϕ& ψ, ϕ ” ψ is pϕÑ ψq&pψ Ñ ϕq,
ϕ^ ψ is ϕ&pϕÑ ψq, ϕ_ ψ is  p ϕ^ ψq,

and they have the following interpretations:

ep ϕq = 1´ epϕq, epϕ‘ ψq = minp1, epϕq ` epψqq,
epϕ&ψq = maxp0, epϕq ` epψq ´ 1q, epϕa ψq = maxp0, epϕq ´ epψqq,
epϕ ” ψq = 1´ |epϕq ´ epψq|, epϕ^ ψq = minpepϕq, epψqq,
epϕ_ ψq = maxpepϕq, epψqq.

An evaluation e is called a model of a set of formulas T whenever epϕq “ 1
for each formula ϕ P T . Axioms and rules of  Lukasiewicz Logic are the following
[6, 15]:



( L1) ϕÑ pψ Ñ ϕq
( L2) pϕÑ ψq Ñ ppψ Ñ χq Ñ pϕÑ χqq
( L3) p ϕÑ  ψq Ñ pψ Ñ ϕq
( L4) ppϕÑ ψq Ñ ψq Ñ ppψ Ñ ϕq Ñ ϕq
(MP) Modus ponens: from ϕ and ϕÑ ψ derive ψ

From this axiomatic system, the notion of proof from a theory (a set of
formulas), denoted $ L, is defined as usual.

The above axioms are tautologies or valid (i.e., they are evaluated to 1 by
any evaluation), and the rule of modus ponens preserves validity. Moreover, the
following completeness result holds.

Theorem 1. The logic  L is complete for deductions from finite theories. That is,
if T is a finite theory, then T $ L ϕ iff epϕq “ 1 for each  Lukasiewicz evaluation
e model of T .

In the rest of this section we briefly recall the expansion of  Lukasiewicz logic
with rational truth-constants that will be used later on. Following Hájek [15], the
language of Rational Pavelka logic, denoted RPL, is the language of  Lukasiewicz
logic expanded with countably-many truth-constants r, one for each rational
r P r0, 1s. The evaluation of RPL formulas is as in  Lukasiewicz logic, with the
proviso that evaluations evaluate truth-constants to their intended value, that
is, for any rational r P r0, 1s and any evaluation e, eprq “ r. Note that, for any
evaluation e, epr Ñ ϕq “ 1 iff epϕq ě r, and epr ” ϕq “ 1 iff epϕq “ r.

Axioms and rules of RPL are those of  L plus the following countable set of
bookkeeping axioms for truth-constants:

(BK) r Ñ s ” minp1, 1´ r ` sq, for any rationals r, s P r0, 1s.

The notion of proof is defined as in  Lukasiewicz logic, and the deducibility re-
lation will be denoted by $RPL. Moreover, completeness of  Lukasiewicz logic
smoothly extends to RPL as follows: if T is finite theory over RPL, then T $RPL

ϕ iff epϕq “ 1 for any RPL-evaluation e model of T .
It is customary in RPL to introduce the following notions: for any set of RPL

formulas T Y tϕu, define:

- the truth degree of ϕ in T : }ϕ}T “ inftepϕq : e is a RPL-evaluation model of T u,
- the provability degree of ϕ from T : | ϕ |T “ suptr P r0, 1sQ | T $RPL r Ñ ϕu.

Then, the so-called Pavelka-style completeness for RPL refers to the result
that

| ϕ |T “ }ϕ}T

holds for any arbitrary (non necessarily finite) theory T [15]. However, if T is
finite, we can restrict ourselves to rational-valued  Lukasiewicz evaluations and
get the following result, proved in [15].

Proposition 1. If T is a finite theory over RPL, then:



– }ϕ}T “ 1 iff T $RPL ϕ.
– }ϕ}T is rational, hence }ϕ}T “ r iff T $RPL r Ñ ϕ.

3 FP(RPL): a logic to reason about probability as modal
theories over RPL

In this section we first describe the fuzzy modal logic FP(RPL) to reason qual-
itatively about probability, built upon  Lukasiewicz logic RPL described in the
previous section. We basically follow [15]. The language of FP(RPL) is defined
in two layers:

Non-modal formulas: built from a set V of propositional variables, that will
be assumed here to be finite, using the classical binary connectives ^ and  .
Other connectives like _, Ñ and Ø are defined from them in the usual way.1

Non-modal formulas, or Boolean propositions, will be denoted by lower case
Greek letters ϕ, ψ, etc. The set of non-modal formulas will be denoted by L.

Modal formulas: built from elementary modal formulas of the form Pϕ, where
ϕ is a non-modal formula, using the connectives and truth constants of Rational
Pavelka logic. We shall denote them by upper case Greek letters Φ, Ψ , etc. Notice
that we do not allow nested modalities of the form P pP pψq ‘ P pϕqq, nor mixed
formulas of the kind ψ Ñ Pϕ.

Definition 1. The axioms of the logic FP(RPL) are the following:

(i) Axioms of classical propositional logic for non-modal formulas
(ii) Axioms of RPL for modal formulas

(iii) Probabilistic modal axioms:2

(FP0) Pϕ, for ϕ being a theorem of CPL
(FP1) P pϕÑ ψq Ñ pPϕÑ Pψq
(FP2) P p ϕq ”  Pϕ
(FP3) P pϕ_ ψq ” pPϕÑ P pϕ^ ψqq Ñ Pψ

The only deduction rule of FP(RPL) is that of  L (i.e. modus ponens)

The notion of proof for modal formulas is defined as usual from the above axioms
and rule. We will denote by the expression T $FP Φ that in FP(RPL) a modal
formula Φ follows from a theory (set of modal formulas) T . Note that FP(RPL)
preserves (classical) logical equivalence. Indeed, due to axioms (FP0) and (FP1),
FP(RPL) proves the formula Pϕ ” Pψ whenever ϕ and ψ are (classically)
logically equivalent.

The semantics for FP(RPL) is basically given by probability functions on
classical (i.e. non-modal) formulas of L, or equivalently, assuming L is built up

1 Although we are using the same symbols ^, ,_,Ñ as in  Lukasiewicz logic to de-
note the conjunction, negation, disjunction and implication, the context will help
in avoiding any confusion. In particular classical logic connectives will appear only
under the scope of the operator P , see below.

2 An equivalent formulation of (FP3) is P pϕ_ ψq ” Pϕ‘ pPψ a P pϕ^ ψqq.



from a finite set of variables V , by probability functions on the set Ω of classical
interpretations of L. If µ : 2Ω Ñ r0, 1s is a probability, we will simply write µpϕq
to denote µptw P Ω | wpϕq “ 1uq. We will denote by PpLq the set of probabilities
on L. Then every probability µ P PpLq determines an evaluation eµ of modal
formulas as follows: for a basic modal Pϕ,

eµpPϕq “ µpϕq,

and it is extended to arbitrary modal formulas according to the semantics of
Rational Pavelka logic: eµprq “ r, eµpΦ ÑL Ψq “ minp1 ´ eµpΦq ` eµpΨq, 1q.
Then we say that a probability µ P PpLq is a model of a theory T of modal
formulas if eµpΦq “ 1 for every Φ P T .

FP(RPL) can be used to reason in a purely qualitative way about compar-
ative probability statements by exploiting the fact a FP(RPL)-formula of the
form Pψ Ñ Pϕ is 1-true in a model defined by a probability µ iff µpψq ď µpϕq.
However, FP(RPL) also allows one to explicitly reason about numerical state-
ments, like “the probability of ϕ is 0.8”, “the probability of ϕ is at least 0.8”, or
“the probability of ϕ is at most 0.8”. Indeed, the above statements can be easily
expressed in FP(RPL):

- “the probability of ϕ is 0.8” as Pϕ ” 0.8,
- “the probability of ϕ is at least 0.8” as 0.8 Ñ Pϕ, and
- “the probability of ϕ is at most 0.8” as PϕÑ 0.8.

The following general Pavelka-style completeness result for FP(RPL) was
presented in [16, 15].

Theorem 2. (Probabilistic completeness of FP(RPL)) Let T be a modal
theory over FP( L) and Φ a modal formula. Then,

| Φ |T “ }Φ}T ,

where now | Φ |T“ suptr P r0, 1sQ | T $FP r Ñ Φu and }ϕ}T “ infteµpΦq : µ P
PpLq is a model of T u.

As in the case of RPL, if the modal theory T is finite, we can get a standard
completeness result, that follows from [15, Th. 8.4.14].

Theorem 3 (Probabilistic completeness of FP(RPL)). Let T be a finite
modal theory over FP(RPL) and Φ a modal formula. Then T $FP pRPLq Φ iff
eµpΦq “ 1 for each probability µ P PpLq model of T .

Similarly to RPL, for deductions from finite theories FP(RPL) is still com-
plete for rational-valued probabilities.

Corollary 1. Let T be a finite modal theory over FP(RPL) and Φ a modal
formula. Then T $FP pRPLq Φ iff eµpΦq “ 1 for each rational-valued probability
µ P PpLq model of T .

Moreover, since deductions in FP(RPL) from a finite theory can be encoded
as deductions from a (larger) finite theory in RPL, as a direct corollary of Propo-
sition 1, we get the following.

Corollary 2. If T is finite, for any FP(RPL)-formula Φ, }Φ}T is rational.



4 Reasoning with inconsistent probabilistic information
in FP(RPL)

If we want to reason in a non-trivial way from inconsistent probabilistic theories
over FP(RPL), we need to devise possible ways to define paraconsistent reasoning
inference relations in a meaningful form. The way we approach this issue is to
compute what we will call the “degree of inconsistency” of a modal theory T ,
and use that value to suitably weaken the formulas in T so that the obtained
weaker theory is consistent.

Let us recall from Section 3 that, from a semantical point of view, the logic
FP(RPL) is defined as follows: for any set of FP(RPL)-formulas T Y tΦu,

T |ùFP Φ if, for every probability µ P PpLq on Boolean formulas,
if µ is a model of T then eµpΦq “ 1.

We will denote by JT K the set probabilities that are models of T . In other words,
JT K “ tprobability µ P PpLq | for all Ψ P T, eµpΨq “ 1u.

Of course, the above definition trivializes in the case T is inconsistent, i.e.
when JT K “ H. However, in FP(RPL) one can take advantage of its fuzzy
component and consider the notion of (in)consistency as being fuzzy as well.
Indeed, if a probabilistic theory T has no models, it makes sense to distinguish,
for instance, cases where: (1) for every probability µ there is a formula Φ P T
such that eµpΦq “ 0; and (2) there exists a probability µ such that, for all Φ P T ,
eµpΦq is close to 1. In the former case T is clearly inconsistent, while in the latter
case one could say that T is close to being consistent.

This observation justifies to introduce, for a given threshold α P r0, 1s, the
set of α-generalised models (or just α-models) of a theory T defined as follows:

JT Kα “ tµ P PpLq | for all Ψ P T, eµpΨq ě αu.

Note that the set JT K1 coincides with the set JT K of usual models of T , while
JT K0 “ PpLq. Moreover, for any α, JT Kα is a convex set of probabilities.

This in turn allows us to define the degree of consistency of a theory as the
highest value α for which T has at least one α-generalised model.

Definition 2. Let T be a theory of FP(RPL). The consistency degree of T is
defined as

ConpT q “ suptβ P r0, 1s | JT Kβ ‰ Hu.

Dually, the inconsistency degree of T is defined as

InconpT q “ 1´ ConpT q “ inft1´ β P r0, 1s | JT Kβ ‰ Hu.

For every finite modal theory T , by completeness of FP(RPL) with respect
to probability models (Theorem 3), we can also express ConpT q and InconpT q
as follows:

ConpT q “ suptβ P r0, 1s | Tβ & Ku and InconpT q “ inft1´β P r0, 1s | Tβ & Ku,



where Tβ “ tβ Ñ Φ | Φ P T u. A somewhat different, yet equivalent, formulation
for the degrees of consistency and inconsistency is as follows:

ConpT q “ supt
ľ

ΦPT

eµpΦq | µ P PpLqu, InconpT q “ inft
ł

ΦPT

eµp Φq | µ P PpLqu.

It can be shown that, if T is finite, the suprema and the infima in the above
definition and expressions of ConpT q and InconpT q, are in fact maxima and
minima. And not only this, in fact, ConpT q and InconpT q are always rational
numbers.

Lemma 1. Let T be a finite theory of FP(RPL). Then:

ConpT q “ maxt
ľ

ΦPT

eµpΦq | µ probabilityu “ maxtβ P r0, 1s | Tβ & Ku,

InconpT q “ mint
ł

ΦPT

eµp Φq | µ probabilityu “ mint1´ β P r0, 1s | Tβ & Ku.

Moreover, ConpT q and InconpT q are rational.

In particular, from the previous lemma it follows that for a finite theory T ,
if ConpT q “ α, then JT Kα ‰ H. Moreover:

(i) If ConpT q “ 1 then T has a model, while if ConpT q “ 0 then, for any
probability µ there is a formula Ψ P T such that eµpΨq “ 0.

(ii) If T 1 Ď T then ConpT 1q ě ConpT q.

Let us clarify what the degree of consistency represents in the case of some
very simple examples.

Example 1. Let us consider the following theory of precise probability assign-
ments T “ tri ” Pϕiui“1,...,n to a set of events E “ tϕ1, . . . , ϕnu. If µ is a
probability, then eµpri ” Pϕiq “ 1´ |µpϕiq ´ ri|. Then,

ConpT q “ sup
µ

ľ

i“1,...,n

1´ |µpϕiq ´ ri|, InconpT q “ inf
µ

ł

i“1,...,n

|µpϕiq ´ ri|.

That is to say, InconpT q is nothing but the Chebyshev distance of the point
pr1, . . . , rnq P r0, 1s

n to the convex set of consistent probability assignments CE
on the events E , i.e., the set of values that probabilities assign to the events in
E .

For instance, consider the theory Tb “ tP ppq ” 1{2, P p pq ” 1{3u given by
the inconsistent assignment b : p ÞÑ 1{2; p ÞÑ 1{3. The set of all consistent
assignments on events p and  p is the set Ctp, pu “ tpx, 1 ´ xq | x P r0, 1su,
i.e. the segment in r0, 1s2 with endpoints p1, 0q and p0, 1q (see Figure 1), and
the inconsistent assignment b is displayed as the point p1{2, 1{3q R Ctp, pu. As

mentioned above, ConpTbq can be computed as 1 minus the Chebyshev distance
between p1{2, 1{3q and Ctp, pu. This value is attained at the point of coordinates
p7{12, 5{12q and then we have:

1´ |bppq ´ 7{12| “ 1´ |bp pq ´ 5{12| “ 1´ 1{12 “ 11{12 “ ConpTbq.



Fig. 1. ConpTb
q is computed as 1 minus the Chebyshev distance between the point b

that represents the partial assignment on p and  p, and the set of consistent assign-
ments on p and  p.

Example 2. Let us now consider a theory representing an imprecise probability
assignment to the set of events E “ tϕ1, . . . , ϕnu:

T “ tpri ´ εi Ñ Pϕiq ^ pPϕi Ñ ri ` εiqui“1,...,n

where, for each i, ri´ εi ě 0 and ri` εi ď 1, that is εi ď ri ď 1´ εi. Then, using
that minppx´ yq Ñ z, z Ñ px` yqq “ y Ñ px ” zq, if y ď x ď 1´ y (where here
and below we also use Ñ and ” to denote the truth-functions for Lukasiewicz
implication and equivalence connectives), the degree of inconsistency of T can
be computed as follows:

InconpT q “ 1´ConpT q “ 1´ sup
µ

ľ

i“1,...,n

eµppri ´ εi Ñ Pϕiq^ pPϕi Ñ ri ` εiqq

“ 1´ sup
µ

ľ

i“1,...,n

pp1´ εiq Ñ |ri ´ µpϕiq| “ inf
µ

ł

i“1,...,n

p1´ εiq b |ri ´ µpϕiq|.

As for paraconsistently reasoning from an inconsistent theory in FP(RPL),
the idea we explore here is to use α-generalised models instead of usual mod-
els to define a context-dependent inconsistent-tolerant notion of probabilistic
entailment.

Definition 3. Let T be a theory such that ConpT q “ α ą 0. We define:

T |«˚ Φ if eµpΦq “ 1 for all probabilities µ P JT Kα.

Note that for a finite theory T , T |ff˚ K, hence |«˚ does not trivialize even
if T is inconsistent (ConpT q ă 1). Moreover, observe that if ConpT q “ 0, then
T |«˚ Φ iff Φ is a theorem of FP(RPL). The following are some further interesting
properties of the consequence relation |«˚:



– Clearly, |«˚ does not satisfy monotonicity. For instance, if T 1 “ tPϕ ”

0.4, Pϕ Ñ Pψu, then ConpT 1q “ 1 and trivially T 1 |«˚ 0.4 ” Pϕ, but
T |ff˚ 0.4 ” Pϕ, where T “ T 1 Y t0.3 ” Pϕu.

– |«˚ is idempotent, that is, if S |«˚Φ and T |«˚Ψ for all Ψ P S, then T |«˚Φ.

The next proposition shows that paraconsistent reasoning from an inconsis-
tent theory T by means of the inference relation |«˚ can be reduced to usual
reasoning in FP(RPL) by suitably weakening the formulas in the initial theory
T .

Proposition 2. Given a finite theory T , with ConpT q “ α, let Tα “ tα Ñ Ψ |
Ψ P T u. Then the following condition holds:

T |«˚ Φ iff Tα $FP Φ.

Proof. If µ is a probability such that eµpα Ñ Ψq “ 1, i.e. such that eµpΨq ě α,
for all Ψ P T , then µ P JT Kα. But if we assume T |«˚ Φ, then it follows that
eµpΦq “ 1. Hence Tα $FP Φ.

Conversely, assume Tα $FP Φ with ConpT q “ α and that µ P }T }α. The
latter means that eµpΨq ě α for all Ψ P T , i.e. eµpαÑ Ψq “ 1 for all Ψ P T . But
then, since Tα $FP Φ, it follows that eµpΦq “ 1, that is, T |«˚ Φ.

The weakened theory Tα, that is consistent, can be seen as a repair of T .
In the case the theory represents a precise probability assignment of the form
T “ tri ” Pϕiui“1,...,n, then Tα “ tpαb ri Ñ Pϕiq ^ pPϕi Ñ αñ riqui“1,...,n,
that is, it becomes a theory of an imprecise assignment. On the other hand, in
the case the theory already represents an imprecise probability assignment of
the form T “ tpri Ñ Pϕiq ^ pPϕi Ñ siqui“1,...,n, then Tα “ tpαb ri Ñ Pϕiq ^
pPϕi Ñ αñ siqui“1,...,n, that is, it represents a more imprecise assignment.

The consequence relation |«˚ introduced above has some nice features, but
it may also have a counter-intuitive behaviour in some cases. For instance, let
T “ t0.3 ” Pϕ, 0.4 ” Pϕ, 0.6 ” Pψu, where ϕ and ψ are assumed to be
propositional variables. Then it is easy to check that ConpT q “ 0.95, and hence
T |«˚ 0.35 ” Pϕ. But strangely enough, T |ff˚ 0.6 ” Pψ, since we can only
derive T |«˚ 0.95 Ñ p0.6 ” Pψq, even though the formula 0.6 ” Pψ is not
involved in the conflict in T . The reason is that ConpT q is a global measure that
does not take into account individual formulas. Actually, if T 1 “ TYt0.7 ” Pψu,
we still have ConpT q “ ConpT 1q “ 0.95.

The above example motivates the following iterative procedure to come up
with a more suitable repair of an inconsistent theory T . The idea is to first
identify minimal inconsistent subtheories S of T that are responsible for the
degree of consistency of T , i.e. such that ConpSq “ ConpT q “ α. Then we only
repair the formulas of these subtheories by using the degree α. In a next step, one
proceeds with the rest of the initial theory T by repeating the same process. This
procedure stops when all the formulas have been dealt with in some previous
step.

Step 1: Let ConpT q “ α1. Then we know that the set of probabilities JT Kα1
is non-

empty. Hence, we can partition T in the following two disjoint subtheories:



‚ T“ “
Ť

tS Ď T | S minimal such that ConpSq “ α1u

‚ Tą “ T zT“

Note that T“ ‰ H and if Tą ‰ H then ConpTąq ą α1. By definition
T“ X Tą “ H and T “ T“ Y Tą.
Then we proceed to weaken only those formulas in T“, so we define:

T p1q “ tα1 Ñ Φ | Φ P T“u.

If Tą “ H, then we stop and we define the repaired theory as Tw “ T p1q.
Otherwise we follow to the next step to repair Tą.

Step 2: Restrict the set of possible probability models to those of JT Kα1
to compute

the consistency degree of Tą.
Let ConT pT

ąq “ maxtβ | there exists µ P JT Kα1
, eµpΦq ě β for all Φ P

Tąu “ α2.
By definition, α2 ą α1. And we proceed similarly as above, but restricting
the set of models to those in JT Kα1 , and we partition Tą into the following
two subtheories:

‚ pTąq“ “
Ť

tS Ď Tą | S minimal such that ConT pSq “ α2u

‚ pTąqą “ TązpTąq“

Again note that pTąq“ ‰ H, and if pTąqą ‰ H then ConppTąqąq ą α2.
We proceed to the weakening of the subtheory pTąq“ and define:

T p2q “ tα2 Ñ Φ | Φ P pTąq“u.

If pTąqą “ H, then we stop and we define the repaired theory as Tw “
T p1q Y T p2q. Otherwise we follow to the next step to repair pTąqą.

Step 3: Restrict the set of possible probabilistic models to those of JT Kα1
X JTąKα2

to compute the consistency degree of pTąqą:
Let ConT,TąppTąqąq “ maxtβ | there exists µ P JT Kα1

X JTąKα2
, eµpΦq ě

β for all Φ P pTąqąu “ α3.
By definition, α3 ą α2 ą α1. we then follow the same procedure as above,
but restricting the set of models to those in JT Kα1XJTąKα2 , and we partition
pTąqą into the following two subtheories:

‚ ppTąqąq“ “ YtS Ď pTąqą | S minimal such that ConT,TąpSq “ α3u

‚ ppTąqąqą “ pTąqązppTąqąq“

Now we proceed to weaken the subtheory ppTąqąq“ and define:

T p3q “ tα3 Ñ Φ | Φ P ppTąqąq“u.

If ppTąqąqą “ H, then we stop and we define the repaired theory as
Tw “ T p1q Y T p2q Y T p3q. Otherwise we follow to the next step to repair
ppTąqąqą.

. . . . . .



This procedure goes on until, for a first m, p...pTąq m...qąq “ H. Then
the procedure stops and as a result we get a (finite) sequence of subtheories
T p1q, T p2q, . . . , T pmq, with associated consistency values α1 ă . . . ă αm. By con-
struction, the theory

Tw “ T p1q Y . . .Y T pmq

is consistent.
This allows us to define a refined variant of the |«˚ consequence relation.

Definition 4. Let T be a theory over FP(RPL). Then we define a refinement
|«˝ of the consequence relation |«˚ as follows:

T |«˝ Φ if Tw $FP Φ.

Compare this definition with the characterisation of |«˚ in Prop. 2. It is clear
that |«˝ is stronger than |«˚ while still paraconsistent.

Example 3. Let T “ t0.3 ” Pϕ, 0.4 ” Pϕ, 0.6 ” Pψ, 0.8 ” Pψ, 0.7 ” Pχu,
where ϕ,ψ, χ are propositional variables. Since ConpT q “ 0.9, we have

T0.9 “ t0.9 Ñ p0.3 ” Pϕq, 0.9 Ñ p0.4 ” Pϕq, 0.9 Ñ p0.6 ” Pψq,
0.9 Ñ p0.8 ” Pψq, 0.9 Ñ p0.7 ” Pχqu

Models of T0.9 are probabilities µ such that µpϕq P r0.2, 0.4s X r0.3, 0.5s “
r0.3, 0.4s, µpψq P r0.5, 0.7s X r0.7, 0.9s “ t0.7u and µpχq P r0.6, 0.8s. However,
using the refinement procedure, we get

Tw “ t0.9 Ñ p0.6 ” Pψq, 0.9 Ñ p0.8 ” Pψq, 0.95 Ñ p0.3 ” Pϕq,
0.95 Ñ p0.4 ” Pϕq, 0.7 ” Pχu,

that is equivalent to the theory

T 1w “ t0.5 Ñ Pψ, Pψ Ñ 0.7, 0.7 Ñ Pψ, Pψ Ñ 0.9, 0.25 Ñ Pϕ,
PϕÑ 0.35, 0.35 Ñ Pϕ, PϕÑ 0.45, 0.7 ” Pχu.

In this case, models of Tw are probabilities µ such that µpϕq “ 0.35, µpψq “ 0.7
and µpχq “ 0.7, and hence the refined consequence relation |«˝ is such that:

T |«˝ 0.7 ” Pψ, 0.35 ” Pϕ, 0.7 ” Pχ.

5 Related approaches

In the literature there has been quite a lot of interest on measuring the incon-
sistency of probabilistic knowledge bases, see for instance [26, 19, 27, 22, 23, 9,
24, 25]. In particular, there is a nice overview by de Bona, Finger, Potyka and
Thimm in [10] on which we will base the comparison with our approach.

First of all, by a probabilistic knowledge base it is usually understood a finite
set of (conditional) probability constraints on classical propositional formulas
(from a given finitely generated language L), of the form KB “ tpϕi | ψiqrqi, qis |
i “ 1, . . . nu, where q

i
and qi are rational values from the unit interval r0, 1s. Such



an expression pϕi | ψiqrqi, qis intuitively expresses the constraint (or belief) that
the conditional probability of ϕi given ψi lies in the interval rq

i
, qis.

Then, a probability on formulas µ satisfies a conditional expression pϕi |
ψiqrqi, qis, written µ |ù pϕi | ψiqrqi, qis, whenever µpϕi ^ ψiq ě q

i
¨ µpψiq and

µpϕi ^ ψiq ď qi ¨ µpψiq. Such a probability is called a model of the formula. Of
course, if µpψiq ą 0, these conditions amount to state that µ |ù pϕi | ψiqrqi, qis
when the conditional probability µpϕi | ψiq belongs to the interval rq

i
, qis.

In the case a probabilistic knowledge base KB is inconsistent, a number of in-
consistency measures have been proposed in the literature to measure how much
inconsistent KB is, some of them generalising to the probabilistic case inconsis-
tency measures already proposed for the propositional case, and some of them
specifically tailored to deal with probabilistic expressions. Among these, there
are the so-called distance-based measures and violation-based measures. Very
roughly speaking, the former look for consistent knowledge bases that minimize
the distance (for some suitable notion of distance) to the original inconsistent
KB, while the latter look for probabilities that minimize the violation (for some
suitable notion of violation) of the knowledge base [27, 22].

According to [10], when it comes to reasoning with an inconsistent proba-
bilistic KB, there are two sensible ways to proceed: either repair the inconsistent
knowledge base and then apply classical probabilistic reasoning, or apply para-
consistent reasoning models that can deal with inconsistent knowledge bases.
For the first approach, distance-based measures are well-suited while for the
second approach violation-based measures (together with so-called fuzzy-based
measures) seem to be the most suitable ones.

We can show here that our approach to reason with inconsistent probabilistic
theories over FP(RPL), when restricted to theories of the form T “ tri ”
Pϕiui“1,...,n, can be seen both as a distance-based approach and as violation-
based approach. Note that here we do not deal with conditional probability
expressions as most of the approaches in the literature, thus our case is simpler.

Indeed, in the distance-based approach, given a distance d on Rn, and two
theories T “ tri ” Pϕiui“1,...,n and T 1 “ tr1i ” Pϕiui“1,...,n, one can define the
distance between T and T 1 as the distance between their corresponding vectors
of truth-constants:

dpT, T 1q “ dppr1, . . . , rnq, pr
1
1, . . . , r

1
nqq

Then, if T “ tri ” Pϕiui“1,...,n is an inconsistent theory, the aim is to look for
a consistent theory (a repair), by minimally modifying the truth-constants ri’s
such that the resulting new theory is at a minimum distance from T . Note that
all possible repairs of T that are precise-assignments theories are of the form

Tµ “ tµpϕiq ” Pϕiui“1,...,n

for µ being a rational-valued probability on formulas. In our approach, the degree
of inconsistency of T can be seen as providing the minimum Chebyshev distance
from T to the set of all its repairs, indeed we have:



InconpT q “ infµ
Ž

i“1,...,n |µpϕiq ´ ri| “
“ infµ dcppµpϕ1q, . . . , µpϕnqq, pr1, . . . , rnqq “ infµ dcpT, T

µq,

where dc is the well-known Chebyshev distance in Rn.
Suppose now that T represents an imprecise probability assignment

T “ tpri ´ εi Ñ Pϕiq ^ pPϕi Ñ ri ` εiqui“1,...,n

where, for each i, ri ´ εi ě 0 and ri ` εi ď 1, that is εi ď ri ď 1 ´ εi. Then, as
shown in Example 2, the degree of inconsistency of T is:

InconpT q “ inf
µ

ł

i“1,...,n

p1´ εiq b |ri ´ µpϕiq|.

Therefore, by defining d˚c pT, T
µq “

Ž

i“1,...,np1´ εiq b |ri´ µpϕiq|, we can write

InconpT q “ inf
µ
d˚c pT, T

µq.

Note that the definition of d˚c pT, T
µq is similar to the one of dcpT, T

µq that takes
into account the width of the probability intervals assigned to the events in T .
However, d˚c is not symmetric in its arguments since T is in general an imprecise
assignment theory, while Tµ is a precise assignment theory. The question is then
whether d˚c can still be considered as a kind of distance. What we can say in this
respect is that: i) in the particular case T is a precise assignment theory, then
all the εi’s are zero, and thus d˚c pT, T

µq “ dcpT, T
µq; and ii) it is not hard to

check that the following restricted form of the triangle inequality holds for any
µ, σ P PpLq: d˚c pT, Tµq ď d˚c pT, T

σq ` d˚c pT
σ, Tµq. From all the above, we could

claim that Inconp¨q belongs (to a high degree) to the family of distance-based
inconsistency measures.

On the other hand, in our setting, for a given inconsistent theory T over
FP(RPL), a violation-based inconsistency measure should aim at, first, estimat-
ing how far every interpretation (i.e. every probability) is from satisfying every
formula in T (violation degrees), and then, minimising a suitable aggregation
of those degrees. We can show that Inconp¨q can be seen as well as a violation-
based measure in this sense. Indeed, given a probability µ, we define the violation
degree of a formula Φ P T by µ as the satisfaction degree of its negation, i.e.

vdµpΦq “ eµp Φq “ 1´ eµpΦq,

and then we define the global violation degree of T as vdµpT q “ maxΦPT vdµpΦq.
Finally, according to Lemma 1, it is straightforward to check that

InconpT q “ inf
µ
dvµpT q,

that is, InconpT q is nothing but the infimum of the violation degrees of T by all
possible probabilities, and the set of generalised models of T are those probabil-
ities yielding a minimum violation degree:

GModpT q “ tµ P PpLq | dvµpT q “ InconpT qu “ }T }ConpT q.



Finally, we can show that, in our particular case, the set of consequences entailed
by the set of generalised models in fact coincides with the common consequences
of all theories in RepairspT q. Namely, for a precise-assignment theory T , we
have:

GModpT q Ď JΦK iff for all Tµ P RepairspT q, Tµ $RPL Φ.

6 Conclusions and future work

We have presented some initial steps towards an approach to reason with in-
consistent probabilistic theories in the setting of a probabilistic logic defined
on top of the r0, 1s-valued  Lukasiewicz fuzzy logic enriched with rational truth-
constants, and have put it into relation with other approaches in the literature
based on distance-based and violation-based inconsistency measures.

There is a lot of future work to be done, in particular to generalise the ap-
proach to deal with inconsistent theories about conditional probabilities. This
would need to replace the underlying  Lukasiewicz logic by a more powerful one
like the  LΠ 1

2 logic, which combines connectives from  Lukasiewicz logic and Prod-
uct fuzzy logics, as it was done in e.g. [13] to define a logic of conditional proba-
bility. Another venue to explore is to replace classical logic as a logic of events by
a paraconsistent logic and then define probability on top of that paraconsistent
logic, in the line of [4].

Acknowledgments

The authors are grateful to the anonymous reviewers for their helpful comments.
They acknowledge partial support by the MOSAIC project (EU H2020- MSCA-
RISE-2020 Project 101007627). Flaminio and Godo also acknowledge support
by the Spanish project ISINC (PID2019-111544GB-C21) funded by
MCIN/AEI/10.13039/501100011033, while Ugolini also acknowledges the Marie
Sklodowska-Curie grant agreement No. 890616 (H2020-MSCA-IF-2019).

References

1. P. Baldi, P. Cintula, C. Noguera. Classical and Fuzzy Two-Layered Modal Logics
for Uncertainty: Translations and Proof-Theory. Int. J. Comput. Intell. Syst. 13(1):
988-1001, 2020.

2. L. Bertossi, A. Hunter, T. Schaub (eds.) Inconsistency Tolerance. Lecture Notes
in Computer Science, vol 3300. Springer, Berlin, Heidelberg, 2005.

3. P. Besnard and A. Hunter. Introduction to actual and potential contradictions. In
P. Besnard and A. Hunter (Eds.), Handbook of Defeasible Resoning and Uncertainty
Management Systems, Volume 2, pp. 1-9, Kluwer, 1998.

4. J. Bueno-Soler, and W. Carnielli. Paraconsistent Probabilities: Consistency, Con-
tradictions and Bayes’ Theorem. Entropy Entropy 18(9): 325, 2016.

5. W. Carnielli, M.E. Coniglio, J. Marcos. Logics of formal inconsistency. In Hand-
book of Philosophical Logic, 2nd ed.; Gabbay, D.M., Guenthner, F., Eds.; Springer:
Amsterdam, The Netherlands, 2007; Volume 14, pp. 1-93.



6. R. Cignoli, I.M.L. D’Ottaviano, and D. Mundici. Algebraic Foundations of Many-
valued Reasoning. Kluwer, Dordrecht, 2000.
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