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Abstract. De Finetti’s conception of events is one of the most distinc-
tive aspects of his theory of probability, yet it appears to be somewhat
elusive. The purpose of this note is to set up a formal framework in which
a rigorous characterisation of this notion, and its cognate modelling as-
sumptions, gives rise to a detailed formalisation of the betting problem
which underlies the celebrated Dutch Book Argument. In particular, we
introduce partially evaluated Kripke frames, relational structures which
put the implicit modal semantics of events on a rigorous footing and
allow us to refine the notion of coherence originally put forward by de
Finetti. As our main result shows, this refinement captures an intuitive
condition which de Finetti imposed on the betting problem, namely that
it is irrational to bet on an event which may be true, but whose truth
will never be ascertained by the players.
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1 The problem

One of the most compelling justifications for the probabilistic representation of
uncertainty builds on the assumption that an agent’s degrees of belief can be
revealed by their disposition to behave in suitably specified betting problems.[2,
12, 3, 7, 8, 13]. The gist of the ensuing Dutch book argument is that, under certain
circumstances, it is clearly irrational to behave in such a way as to lose money
no matter what, a kind of behaviour which the agent avoids just if their degrees
of belief conform to the laws of probability. Mapping the intuitive concept of
“irrationality” to the mathematically definable one of “incurring sure loss” (in
suitably specified choice problems) has been one of the fundamental steps in
the development of Bayesian theory, which has played a fundamental role in the
foundations and applications of Artificial Intelligence and related fields for the
past three decades. The seminal [11] and the recent [5] can be taken as ideal
references to delimit the spectrum of such a development.



Let E1, . . . , En be a set of events of interest. A betting problem is the choice
that an idealised agent called bookmaker must make when publishing a book, i.e.
when making the assignment B = {(Ei, βi) : i = 1, . . . , n} in which each event of
interest Ei is given value βi ∈ [0, 1]. Once a book has been published, a gambler
can place bets on an event Ei by paying αiβi to the bookmaker. In return for
this payment, the gambler will receive the following payoff: αi, if Ei obtains and
nothing otherwise. Note that “betting on an event” effectively amounts, for the
gambler, to choosing a real-valued α which determines the amoung payable to the
bookmaker. In order to avoid potential distorsions arising from the diminishing
value of money, de Finetti makes the “rigidity hypothesis” [3], requiring that α
should be small.

De Finetti constructs the betting problem in such a way as to force the
bookmaker to publish fair betting odds for book B. To this end, two modelling
assumptions are built into the problem, namely that (i) the bookmaker is forced
to accept any number of bets on B and (ii) when betting on Ei, gamblers can
choose the sign of the stakes αi, thereby unilateraly imposing a payoff swap to
the bookmaker. Conditions (i-ii) force the bookmaker to publish books with zero-
expectation, for doing otherwise may offer the gambler the possibility of making
a sure profit, possibily by swapping payoffs. As the game is zero-sum, this is
equivalent to forcing the bookmaker into sure loss. In this context, de Finetti
proves that the axioms of probability are necessary and sufficient to secure the
bookmaker against this possibility.

The crux of the Dutch book argument is therefore the identification of the
agent’s degrees of belief with the price they are willing to pay for an uncertain
reward which depends on the future truth value of some presently unknown
propositions – the events on which the agents are betting. This clearly suggests
that the semantics of events, which bears directly on the definition of probability,
is implicitly endowed with an epistemic structure. The purpose of this paper is
to give this structure an explicit logical characterisation.

2 Events, facts and propositions

De Finetti’s conception of events is one of the most distinctive –and distinctively
puzzling– aspects of his theory of probability. In [4], for instance, he puts forward
the following crucial defining feature of this elusive notion:

[T]he characteristic feature of what I refer to as an “event” is that the
circumstances under which the event will turn out to be “verified” or
“disproved” have been fixed in advance. [4]

The underlying intuition, which is also developed in various points of the
“critical appendix” to [3] can be unravelled as follows. From the logical point
of view, events are propositions, and a such can either be true or false. In this
sense, de Finetti is a firm believer in classical, as opposed to non-classical logics.
Yet from the qualitative epistemic point of view, an event can be either certainly
known to be true (false) or “unknown”. Finally, from the quantitative epistemic



point of view, an agent can expresses their degrees of belief (uncertainty) on a
particular event by assigning it with a real number in [0, 1]. The only constraint
that a rational agent must satisfy in this assignment is that it should not be
incoherent, i.e. it should never lead a bookmaker to be open to the possibility of
being forced into sure loss by a gambler.

Going back to the “characteristic feature” of events, if bookmaker and bettor
knew the (logical) truth value of say event E at the time of betting, coherence
determines that exactly one of the following alternatives must hold: Either they
exchange money for nothing or the bookmaker faces the possibility sure loss
(because any deviation from the logical truth value would result in sure win for
the gambler). In either case, there is no proper “uncertainty” to be measured
about E. This arises precisely when bookmaker and gamblers agree on which
facts will determine the logical truth value of E and agree that those facts do
not hold at the current (that is, to the act of signing the contract) state of the
world.

The remainder of this section is devoted to formalising these notions.

2.1 Formal preliminaries

Let L = {q1, . . . , qn} be a classical propositional language. The set of sentences
SL = {ϕ,ψ, θ, . . .} is inductively built up from L through the propositional
connectives ∧,∨,→, and ¬, as usual. We use ⊥ to denote falsum. Valuations
are mappings ω form L into {0, 1} that naturally extend to SL by the truth-
functionality of the propositional connectives (with the usual stipulation that
ω(⊥) = 0, for all valuations ω). We denote by Ω(L) (or simply Ω when the set
of variables is clear by the context) the class of all valuations over L.

A partial valuation on L is a map ν : X ⊆ L→ {0, 1}. In other words a map
ν is a partial valuation, provided that there is (at least) a valuation ω ∈ Ω such
that for every q ∈ L,

ν(q) =

{
ω(q) if q ∈ X;
undefined otherwise.

The class of all partial valuations over L is denoted by ΩP (L) (or simply ΩP

when L is clear from the context). For ν : X → {0, 1} µ : Y → {0, 1} in ΩP (L)
we say that µ extends ν (and we write ν ⊆ µ) if X ⊆ Y , and for every x ∈ X,
ν(x) = µ(x).

Finally, for every formula ϕ we set [ϕ] = {ψ ∈ SL : `ϕ ↔ ψ}, where as
usual, ` denotes the classical provability relation. We conform to the custom of
referring to the equivalence classes [ϕ] as to the proposition ϕ.

Note that de Finetti’s notion of event is captured by propositions, rather than
sentences. In fact, in the present logical framework, the “circumstances” under
which the propositions turn out to be true or false are nothing but the valuations
in Ω(L). As a consequence, de Finetti’s notion of book is formally defined by
(probability) assignments on a (finite) set of propositions. We will reserve the
expression propositional books to refer to these particular assignments.



Definition 1. Let ϕ ∈ SL, and let ν ∈ ΩP (L). (1) We say that ν realizes ϕ,
written ν  ϕ, if ν(ϕ) is defined.

(2) We say that ν realizes [ϕ], written ν  [ϕ], if there exists at least a ψ ∈ [ϕ]
such that ν  ψ. In this case we assign ν(γ) = ν(ψ) for every γ ∈ [ϕ].

We now introduce a simple relational structure which, unlike the classical
notion of a Kripke structure, admits of partial valuations. Let W be a finite set
of nodes interpreted, as usual, as possible worlds. Let e : W → ΩP (L) such that
for every w ∈W , e(w) = νw : Xw ⊆ L→ {0, 1} is a partial valuation. Note that
to avoid cumbersome notation we will write νw instead of e(w) to denote the
partial valuation associated to w, and similarly, we denote by Xw the subset of
L for which νw is defined. Finally, let R ⊆ W ×W be an accessibility relation.
We call a triplet (W, e,R) a partially evaluated Kripke frame (pekf for short).

Let w ∈ W and let [ϕ] be a proposition. We say that that w decides [ϕ], if
νw  [ϕ].

Remark 1. In every pekf K = (W, e,R), the role of e is to identify every world
w with the partial valuation νw attached to it. Therefore we will henceforth
identify two worlds w and w′ whenever νw = νw′ .

Definition 2 (Events and Facts). Let (W, e,R) be a pekf, w ∈ W and ϕ ∈
SL. Then we say that a proposition [ϕ] is:

– A w-event iff νw 6 [ϕ], and for every ν ∈ ΩP (L) such that ν ⊇ νw and
ν  [ϕ], there exists w′ such that R(w,w′), and νw′ = ν.

– A w-fact iff νw  [ϕ].

For every w ∈ W we denote by E(w) and F(w) the classes of w-events, and
w-facts respectively.

The main point of Definition 2 is that in pekf events (and facts) are rela-
tivised to a specific state of the world. In analogy with the modal consequence
relations [1], facts and events have distinct “local” and “global” properties.

A proposition [ϕ] might be an event with respect to a given world w (i.e. [ϕ]
is a w-event), but not for some other w′.

Example 1. Let L = {q1, . . . , q6}, and set ψ1 = q1 ∧ q2, ψ2 = q1 ∨ q2, and
ϕ = q1∨ (q2 → q4). Suppose (W,R) is as illustrated in Fig. 1 where at each node
the following partial valuations are defined:

(w1) νw1
(q1) = 0, νw1

(q3) = 1, with νw1
otherwise undefined on L (o.u);

(w2) νw2(q5) = 0, νw2(q6) = 1, with νw2 o.u;
(w3) νw3

⊇ νw1
, νw3

(q2) = 0, νw3
(q4) = 1, with νw3

o.u;
(w4) νw4

⊇ νw1
, νw4

(q2) = 1, νw4
(q4) = 1, with νw4

o.u;
(w5) νw5

⊇ νw1
, νw5

(q2) = 0, νw5
(q5) = 0, with νw5

o.u;
(w6) νw6

⊇ νw1
, νw6

(q2) = 1, νw6
(q4) = 1, νw6

(q6) = 0, with νw6
(q5) undefined;

(w7) νw7(q2) = 1, νw7(q3) = 0 with νw7 o.u.;
(w8) νw8

(q) = 1 for all q ∈ L;
(w9) νw9 = νw6
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Fig. 1. The partially evaluated Kripke frame of Example 1.

To see that propositions [ψ1] and [ψ2] are w1-events note that for every ν ∈ ΩP

such that ν ⊇ νw1 and ν  [ϕi] (for i = 1, 2), there exists w ∈ W such that
ν = νw. In addition, say the partial valuation ν such that ν(p1) = 0 and ν(p2) = 0
and is o.u, coincides with νw3

the partial valuation ν′ such that ν′(q1) = 0, and
ν′(q2) = 1 and is o.u, is, say νw4

, and so forth. On the other hand, [ϕ] is not a
w1-event. To see this note that there is no ν′′ which, for every w ∈W , is defined
over q1, q2, q3 only and o.u.

Note that [ψ1] in Example 1 is a w1-event whose truth value is determined by the
partial valuation νw1

. Indeed, every ν which extends νw1
(namely νw3

, νw4
, νw5

and νw6) assigns 0 to ψ1. This motivates the following definition:

Definition 3. Let (W, e,R) be a pekf let w ∈ W , and let [ψ] be a w-event.
Then we say that [ψ] is surely true (resp. false) if for every ν ∈ ΩP (L) such that
νw ⊆ ν and ν  [ψ], ν(ψ) = 1 (resp. ν(ψ) = 0).

In Example 1 above, [ψ1] is a surely false w1-event, and [q2 ∨ q3] is a surely
true w4-event.

Notice in a pekf, two worlds may be identical but unrelated by R, as w6

and w9 in Example 1 (i.e. R is not reflexive). This is certainly incompatible with
the underlying epistemic interpetation of the concept of events that we intend
to formalise. Thus, in the remainder of this paper we will be concerned with
adding suitable structure to pekfs.

3 Models with memory, and complete worlds

A partially evaluated Kripke frame K = (W, e,R) is said to be monotonic if
satisfies the following property:

(M) for every w,w′ ∈W , if R(w,w′), then νw ⊆ νw′ .

In the frame K = (W, e,R) of Example 1, not all the information contained in
a world w would necessarily be preserved when reaching an accessible w′:



– at w2 and w3, the partial valuations are defined on subsets Xw2
, Xw3

⊆ L
with Xw2

6⊆ Xw3
. As a consequence some variables are evaluated by νw2

and
not by νw3 .

– moreover, q3 is inconsistently evaluated at w4 and at w7

This sort of dynamical inconsistency across accessible worlds is clearly un-
suitable to model the highly idealised bookmaker and gamblers of de Finetti’s
betting problem. Recall that in de Finetti’s intuitive characterisation, at the
time (i.e. world in W ) at which the contract is signed, bookmaker and gambler
agree on which conditions will realise the events in the book. This clearly pre-
supposes some form of monotonic persistence of the underlying structure, which
Property (M) guarantees. In particular, in every monotonic pekf, w-facts are
w′-facts in each w′ which is accessible from w. In addition their truth value once
determined, is fixed throughout the frame.

Definition 4. Let (W, e,R) be any monotonic pekf, and let w ∈ W . A w-book
is a propositional book B = {[ϕi] = βi : i = 1, . . . , n} where the propositions [ϕi]
are w-events.

Finally, we say that a pekf (W, e,R) is complete if the following property is
satisfied:

(C) for every ϕ ∈ SL and for every ν ∈ ΩP such that ν  [ϕ], there exists a
w[ϕ] ∈W such that ν = νw[ϕ]

 [ϕ], i.e. [ϕ] is a w[ϕ]-fact.

4 No bets on inaccessible propositions

Suppose w ∈W is such that the proposition [ϕ] is not realised in w, nor in any
w′ accessible from w. According to Definition 2 [ϕ] is not a w-event. The main
result of this note is that rational agents cannot bet on such propositions.

Definition 5 (Inaccessible propositions). Let (W, e,R) be a pekf and w ∈
W . A proposition [ϕ] is said to be w-inaccessible if νw 6 [ϕ] and for every w′

such that νw′  [ϕ], ¬R(w,w′).

Inaccessible propositions relativise the betting problem to the specific infor-
mation available to the gambler and the bookmaker, thus being faithful to de
Finetti’s strict subjectivist perspective. According to this perspective all that
matters is that the agents agree on which events are realised. Everything else is
irrelevant to the determination of the payoff of the bet. 1

The following example of w-inaccessible proposition also illustrates the ex-
pressive power of monotonic and complete pekf.

1 Inaccessible propositions are, in this sense like Stephen Hawkins’ dice, which God
throws where we can’t see them.



Example 2 ([6]). Consider an electron ε, and a world w. We are interested the
position and the energy of ε at w. Let [ϕ] and [ψ] be the propositions expressing
those measurements, respectively. Moreover let us assume that both [ϕ] and [ψ]
are w-events. Indeed if at w we are uncertain about the position and the energy
of ε, we can certainly perform experiments to determine them. But, what about
[ϕ] ∧ [ψ]? Position and energy are represented by non-commuting operators in
quantum theory, and we can assign an electron a definite position and a definite
energy, but not both. This fact can be easily modelled in complete and monotonic
pekf K, by forcing [ϕ] ∧ [ψ] = [ϕ ∧ ψ] to be w-inaccessible .

The above example points out two important properties of w-events which are
defined in a complete and monotonic pekf. The first, is that the class E(w)
of w-events is not, in general, closed under the propositional connectives for
every w. We will come back to this in next Section. The second interesting
observation about Example 2 is that it implicitly defines an example of a coherent
propositional book, which nonetheless is not a w-book for every w. To see this,
let ϕ and ψ as above, and consider the propositional book B = {[ϕ] = 1/3, [ψ] =
3/7, [ϕ∧ψ] = 0}. B is clearly coherent. However, this assignment is meaningless
(rather than incoherent) in the context of monotonic and complete pekf because
some of the propositions appearing in it are w-inaccessible, and hence are not
w-events.

As our main result shows, a coherent w-book B can be extended, either by
w-facts or by w-inaccessible propositions to a coherent propositional book B′

only if the newly added propositions are given their actual truth value.

Theorem 1. Let B = {[ϕi] = βi : i = 1, . . . , n} be a coherent w-book, let
[ψ1], . . . , [ψr] be propositions that are not w-events, and let B′ = B∪{[ψj ] = γj :
j = 1, . . . , r} be a propositional book extending B. Then the following hold:

(1) If all propositions [ψj ] are w-facts, then B′ is coherent if and only if for
every j = 1, . . . , r, γj = νw(ψj);

(2) If all propositions [ψj ] are w-inaccessible, then B′ is coherent if and only if
for every j = 1 . . . , r, γj = 0.

Proof. We only prove the direction from left-to-right, the converse being is im-
mediate in both cases.

(1) Suppose, to the contrary, that exists j such that, γj 6= νw(ψj), and in partic-
ular suppose that νw(ψj) = 1, so that γj < 1. Then, the gambler can secure sure
win by betting a positive α on ψj . In this case in fact, since the pekf is mono-
tonic by the definition of w-book, νw′(ϕi) = 1 holds in every world w′ which is
accessible from w. Thus the gambler pays α · γj in order to surely receive α in
any w′ accessible from w. Conversely, if νw(ψj) = 0, then γj > 0 and in that case
it is easy to see that a sure-winning choice for the gambler consists in swapping
payoffs with the bookmaker, i.e. to bet a negative amount of money on [ψj ].

(2) As above suppose to the contrary that γj > 0 for some j, and that the
gambler bets −α on [ψj ]. By contract, this means that the bookmaker must pay



α · γj to the gambler, thus incurring sure loss, since [ψj ] will not be decided in
any world w′ such that R(w,w′).

Remark 2. This result provides a formalisation of the key property identified by
de Finetti in his informal characterisation of events, namely that no monetary
betting is rational unless the conditions under which the relevant events will be
decided are known to the bookmaker and the gambler. This naturally raises the
question of whether a rational betting behaviour can be identified if we drop
the assumption that betting is monetary. Put otherwise, is it possible to define
rational degrees of belief for an event which includes w-inaccessible propositions?
We shall come back to this extremely interesting question in the concluding
section of this paper.

4.1 Fully accessible worlds

A gambler and a bookmaker interpreted on a complete and monotonic pekf are
guaranteed that: (1) as soon as a proposition is realized in w, this information
preserved across the frame to all the accessible worlds from w (memory), and (2)
for every sentence ϕ, there exists a world w that realizes [ϕ] (completeness). In
this Section we focus on the accessibility of [ϕ] for every ϕ ∈ SL. In accordance
with the above informal discussion of the betting problem, not only gamblers
and bookmaker must agree that a world w in which the events of interest are
realized exists. They also must agree on the conditions under which this will
happen, as captured by Theorem 1.

Definition 6. A pekf (W, e,R) is fully accessible if R satisfies:

(A) for all w,w′ ∈W , if νw ⊆ νw′ , then R(w,w′).

The following shows that Example 2 cannot follow in a fully accessible pekf.

Theorem 2. Let K = (W, e,R) be a complete pekf. If K is fully accessible,
then for every w ∈W , E(w) is closed under the classical connectives.

Proof. Let w be any world such that E(w) 6= ∅ and let [ϕ1] and [ϕ2] be w-events.
We want to prove that [ϕ1]?[ϕ2] = [ϕ1?ϕ2] is a w-event for every ? ∈ {∧,∨} (the
case for ¬ is clearly analogous, and omitted). Clearly νw 6 [ϕ1 ? ϕ2], moreover
for every partial valuation ν′ ∈ ΩP such that ν′ ⊇ νw, and ν′  [ϕ1 ? ϕ2], (C)
guarantees the existence of a w[ϕ1?ϕ2] such that

ν′ = νw[ϕ1?ϕ2]
, νw[ϕ1?ϕ2]

 [ϕ1 ? ϕ2], and νw ⊆ νw[ϕ1?ϕ2]
= ν′.

Therefore, since since K is fully accessible, (A) implies R(w,w[ϕ1?ϕ2]).

The coherence of a propositional book B is usually characterized by the possi-
bility of extending the assessment to a (finitely additive) probability measure on
the Boolean algebra spanned by the events in B. Theorem 2 can be interpreted
as identifying the necessary conditions (i.e. completeness and full accessibility)
in order for the algebra generated by the w-events in a w-book B to contain only
w-events.



5 Conclusion and future work

A central modelling assumption which appears only implicitly in de Finetti’s
Dutch book argument is that when betting on a particular event of interest, the
(proposition representing the) event must be unknown to the bookmaker and the
gambler. Yet, it is part of de Finetti’s characterisation of events that at the time
of betting, both parties agree on which facts will be necessary and sufficient to
decide whether the event occurred or not. Building on the definitions of events,
facts and inaccessible propositions, this note introduced a relational framework
in which this modelling assumption can be given a logical formalisation.

The main result which arises in our framework, Theorem 1, captures the in-
tuitive idea that under the assumption – central to de Finetti’s betting problem–
that bookmaker and gamblers are betting real money, no coherent book can be
published if inaccessible propositions are involved. This means that under those
circumstances, no rational degrees of belief can be defined. Note however, that
this kind of incompleteness does not depend on the logical undecidability of the
relevant facts – it only depends on the inaccessibility of the worlds at which
the relevant facts are decided. This naturally suggests that by relaxing the as-
sumption that betting involves archimedean quantities, a fuller formal model of
rational belief may be put forward. With this respect, Theorem 1 suggests defin-
ing a generalised betting problem in which bookmakers and gamblers can make
transactions with possibly “immaterial” assets –like for instance one’s word– to
which an infinitesimal value may be attached. We conjecture that in this ex-
tended betting problem agents might rationally be entitled to assign a positive
value also to inaccessible propositions, thereby remeding to the descriptive in-
completeness of the classical model. Providing a suitable formalisation of this
extended betting problem is the first line of development that we envisage for
the investigation initiated in this paper. This justifies the implicit redundancy
of our notion of pekf (we could have simply let W = ΩP (L), and defined R
accordingly). However the extended betting problem is intrinsically multi-agent.
Hence the generality of pekf (W, e,R) is no longer redundant: To each agent
ai, we attach a map ei associating, to each w ∈ W , the partial valuation ei(w)
whose intended meaning is to express the agent’s ai information about w (i.e.
which propositions [ϕj ] are known by ai in w).

A second, natural development, consists in extending the present framework
to the case of conditional events. It is well known that de Finetti insisted on
all probability being conditional (See, e.g. [4]), a conception which has many
counterparts in Bayesian theory. This extension requires us to construct par-
tially evaluated Kripke frames on top of a three-valued logic which is needed to
account for the fact that conditional bets might be called-off if the conditioning
event fails to become a fact. Indeed, the notion of an event conditioned by a
fact arises naturally in the framework we introduced above. Further research is
needed to flesh out the properties of this notion which must certainly be dis-
tinguished from the usual notion of conditional event, and which may lead to a
fuller understanding of de Finetti’s intuitions on conditional probability.



Finally, the framework introduced by this paper appears to have interesting
connections with the Ents model of [9, 10]. On central idea of the Ents model is
that agents construct their degrees of belief by taking into account increasingly
more detailed “scenarios”, which is crucial towards the computational feasibility
of the resulting model of belief. The framework of pekf certainly includes the
idea that facts are built up by successively filling-in the gaps in a partially
evaluated events, which suggests that our construction might be interpreted as
a model of belief in the sense of Paris-Vencovská.

Acknowledgment

Flaminio acknowledges partial support from the Spanish projects TASSAT (TIN2010-

20967-C04-01), ARINF (TIN2009-14704-C03-03), as well as from the Juan de la Cierva

Program of the Spanish MICINN.

References

1. P. Blackburn, M. de Rijke and Y. Venema Modal Logic. Cambridge University
Press, 2001.

2. B. de Finetti. Sul significato soggettivo della probabilità. Fundamenta Mathemat-
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9. J.B. Paris and A. Vencovská. A model of belief. Artificial Intelligence, 64(2):
197–241, 1993.
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