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Abstract. Being able to predict the performance of a Case-Based Rea-
soning(CBR) system against a set of future problems would provide in-
valuable information for design and maintenance of the system. Thus,
we could carry out the needed design changes and maintenance tasks to
improve future performance in a proactive fashion. This paper proposes
a novel method for identifying regions in a case base where the system
gives low confidence solutions to possible future problems. Experimenta-
tion is provided for RoboSoccer domain and we argue how encountered
regions of dubiosity help us to analyse our case base and the reasoning
mechanisms of a CBR system.

1 Introduction

When we use Case-Based Reasoning (CBR) [1] for solving problems, we count on
the main assumption underlying this methodology[2], viz. similar problems have
similar solutions. Wouldn’t it be nice if we could anticipate to what extent the
CBR assumption holds for future problems? A positive feedback in this direction
would increase the reliability of the system. Contrariwise, we would be aware of
the need for carrying out the required design and maintenance tasks throughout
our system to improve its future performance in a proactive fashion [3].

Indeed, this preanalysis would give us important clues about the future. For
instance, we could discover deserted regions in our case base (CB) where we do
not have available cases to reason with, or we could encounter overcrowded zones
in which we would have difficulty to classify our problem among cases of diverse
classes.

Furthermore, this analysis would not only yield predictions about the case
base but it could also give us valuable insight about the reasoner itself helping us
to verify the functioning of CBR mechanisms like retrieval and reuse in advance.

The question, of course, is how this preanalysis could be performed. Case-
Base Maintenance (CBM) techniques proved useful for improving the perfor-
mance of CBR systems. Most of the existing CBM techniques focus on removing
redundant or erroneous cases while preserving the system’s competence [4-6].
More recent research introduces a complexity measure for highlighting areas of
uncertainty within the problem space [7]. The common assumption of these tech-
niques is that analysis of the cases provided in the case base is a good approach



for estimating the performance of the system for future cases. This assumption
is known as the representativeness assumption. Nevertheless, new problems are
expected to be slightly different from the existing cases.

Thus, the possibility of systematically assessing the performance of a system
in a set of problems different from the existing cases becomes an interesting issue.
One way for such an assessment is confronting the CBR, system with possible
future problems to detect deficiences beforehand. Though the idea sounds intu-
itive, the task of finding possible future problems that lead to system deficiencies
is far from being trivial for most of the domains where the problem space is too
vast or even infinite depending on the features that characterise a domain.

A common approach to attacking such a vast space is to use heuristics that
guide the search. We believe that confidence measures can be used as effective
heuristics to find system deficiences as they state how sure the system is about
the solution it proposes for a given problem (where a solution with a low con-
fidence indicates an inaccurate solution). The importance of the availability of
such a measure is emphasised in recent research introducing possible confidence
indicators and calculations for a CBR system [8-10].

In preliminary work [11] we have proposed a method inspired on evolutionary
techniques to detect problematic future problems in terms of confidence. We call
these future problems with low confidence solutions Dubious Future Problems
(DFPs). In this paper we extend the previous work for detecting and character-
ising dubious regions in the problem space.

To effectively scan the problem space for finding dubious regions, we propose
a method based on four steps: First, we explore the problem space to find dubious
future problems. Then, we carry out an exploitation phase to better identify
these problems by focusing the search on additional future problems in their
neighborhoods. Next, to help the understanding of the regions where dubious
future problems are located, we associate each DFP with a neighborhood pattern
(e.g. hole, border). Finally, to focus on regions in the case base that suffer from
the same deficiency rather than dealing with individual problems, we group
DFPs according to these patterns.

In Section 2 we summarize our evolutionary approach for scanning the prob-
lem space to find dubious future problems. The definitions of dubiosity patterns
and the grouping algorithm are described in Section 3. In Section 4 we give
an example of how to explore dubious future problems and how to group them
by patterns that they exhibit in a Robosoccer system. We interpret the results
showing how they helped us to analyse our CBR system. We finally conclude
discussing the outcomes of the methodology introduced in this paper and giving
directions for future work in Section 5.

2 Exploring Dubious Future Problems

Given a domain ontology associated with a CBR system, we are interested in
identifying possible future problems that: 1) are similar enough to the current
cases and, 2) that the confidence on their solutions provided by the CBR system



is low. Thus, the exploration of the problem space to find DFPs requires only
three knowledge components in a CBR system: a domain ontology (specifying at
least the features and their data types used for defining cases); a similarity met-
ric; and a confidence measure that attaches a confidence value to each solution
proposed by the CBR system.

In the search for dubious problems, the search space is the space of all prob-
lems that can be generated according to the domain ontology. As indicated above,
this space can be too vast or even infinite depending on the features that charac-
terise the domain. To find DFPs we use Genetic Algorithms (GA) as they have
demonstrated their capabilities for exploring such vast search spaces. They have
the advantage of scanning the search space in a parallel manner using a fitness
function as heuristics and their implementations can be domain independent.

With a diverse initial population of possible future problems and an appro-
priate fitness function, DFPs will evolve as the GA runs, where the less confident
the CBR system is about a problem’s solution the more it will prefer to regard
that problem as a DFP. However, as commonly seen in practice, GAs might
have a tendency to converge towards local optima [12]. In our case, this would
result as getting stuck to a low confidence zone and generating problems only
within that locality instead of scanning a wider region in the problem space. In
many GAs, mutation is the trusted genetic operator to avoid this problem as it
introduces diversity to the population, nevertheless it is usually not a guarantee.

Our approach to effectively search the problem space and to avoid local
minima has been to divide the search into two steps, namely FEzploration and
Ezxploitation of dubious future problems. In the Exploration step, the aim is to
find DFPs which are similar enough to existing cases and which are as dissimilar
as they could be to each other. The similarity to existing cases argument is
to avoid dealing with irrelevant(although possibly not unlikely) problems which
have no neighbour cases in the CB. The confidence for a solution to a generated
problem which has no similar neighbours would probably be very low, but since
this would already be an expected result, it would not be of much interest to bring
these problems to the expert’s inspection. Additionally, the dissimilarity between
DFPs is for the sake of obtaining diversity in the results of Exploration to achieve
a richer set of future problems and their neighbours after the Exploitation step.

Successively, in the Exploitation step our objective is to find future neigh-
bours of the DFPs encountered in the Exploration step for providing a more
precise analysis of the low confidence local regions.

Both, Exploration and Exploitation steps, incorporate two proximity limits
in terms of similarity to an existing case or a future problem. These limits define
the preferred region in the problem space during the search for DFPs and their
neighbours. We will explain both limits in detail for each step in the next sub-
sections. We also added a Diversity Preservation feature to our GAs for both
steps to keep the population’s diversity at a desired level.

The following sub-sections describe the details of the Exploration and Ex-
ploitation steps.



Fig. 1. Graphical representation of the Exploration step. Hollow shapes are existing
cases (where different shapes refer to different classes); filled shapes are the encountered
Dubious Future Problems; I Bec and O Bgc are, respectively, inner and outer bounds.

2.1 Exploration

The goal of the Exploration step is to identify an initial set of dubious problems
similar enough to the cases defined in a case base. A problem is considered
dubious when its confidence is lower than a given threshold. Since the minimum
value for considering a solution as confident may vary in each CBR application,
the decision about the confidence threshold is domain dependent.

For the Exploration step, the proximity limits mentioned above define the
preferred region of the search for dubious problems. The outer limit OBgc
defines the border for the less similar problems, while the inner limit IBgc
defines the border for the most similar ones to an existing case in the CB. We
also use the inner limit to draw a border around the found DFPs since we
are looking for DFPs that are as diverse as possible in this step. A graphical
representation of the Exploration step is provided in Figure 1.

The decision of the proximity limits depends on the answer of how similar a
problem can be to a case to be regarded as a relevant problem for the domain
and application. The similarity among existing cases may give an idea of the
range of possible values for these limits. For example; if these two limits are
chosen so that their sum is closer to the similarity value between two nearest
cases of different classes, then preffered proximities will overlap thus giving us
the possibility to discover borders for the classes in the CB.

Throughout the execution of the GA for Exploration, we maintain a list of
encountered future problems with low confidence solutions LCFP. During the
evaluation of a population, each time we come across a chromosome representing
a dubious problem we add it to the LCFP list.

The concepts used in the GA for the Exploration step are explained below:

Chromosomes: Each chromosome in our population represents a future prob-
lem where each gene is a feature of the problem. The value of a gene is thus one



of the possible values for the associated feature.

Initial Population: The initial population is formed by chromosomes gen-
erated by the Random-Problem-Generator function (RPG). RPG is a function
able to generate a new problem by assigning random values for each problem
feature. Values for problem features can be easily generated using the definitions
of features in the domain ontology (feature definitions explicitly state the data
type and the set of possible values for a feature). It should also be considered
that in the existence of domain constraints, the Random-Problem-Generator
function generates valid problems that conform to those constraints. Otherwise,
generated future problems might be non-valid or irrelevant in the domain. The
size of the population directly depends on the vastness of the problem space of
the CB that is being worked on.

Fitness Function: The fitness of a chromosome is determined by two param-
eters: the confidence value of the solution to the problem represented by the
chromosome and the similarity of the problem to the nearest problem in the
CB. The fitness function has to be adapted in each different domain or CBR
system. However, the following guidelines should be used in Exploration regard-
less of the domain or the application:

— The lower the confidence value is for a chromosome, the better candidate is
that chromosome.

— A chromosome in the preferred proximity of an existing case is a better
candidate than a chromosome which is not in this proximity.

— The confidence factor of the fitness is more significant than the similarity
factor. This is not surprising since we are searching for dubious problems.

Our proposal for the fitness function definition is the following:
Fitness(c) = Con fidence(c)? x SimilarityFactor(c)

where ¢ is the chromosome to be evaluated; C'on fidence returns the confidence
value supplied by the CBR application after solving ¢; and SimilarityFactor
takes into account the similarity to both cases and DFPs. SimilarityFactor is
calculated as follows:

SimilarityFactor(c) = partSimEC (c) + partSimDF P(c)

where partSimEC refers to the similarity of ¢ to existing cases and partSimDF P
refers to the similarity of ¢ to DFPs in LCFP. partSimEC is defined as:

1= (OBye + IBge — Sim(c,CB)) if Sim(c,CB) > I By

partSimEC (c) = { 1 — Sim(c,CB) otherwise

where Sim(c,CB) is the similarity value of ¢ to the most similar case in the
CB (i.e. the highest similarity); I B, and OBy, are, respectively, the inner and
outer bounds of similarity to the existing cases. partSimDF P(c) is defined as:



partSimDF P(c) = Z (similarity(c,p) — I Bgo)
peFP

where F'P C LCFP is the set of future problems to which ¢ is more similar than
the allowed value IBp. and similarity(c,p) is the similarity value of ¢ to the
problem p.

Following the previously defined guidelines, SimilarityFactor penalizes the
chromosomes that are too close to either cases or future problems discovered in
previous iterations (i.e. inside the radius defined by the inner threshold).

It should also be noted that for a desired chromosome (i.e. representing a du-
bious future problem which is in the preferred proximity of an existing case) our
proposed function produces a fitness value which is lower than a non-desired one.

Selection: We defined a fitness-proportionate selection method. Fitness-proporti-
onate selection is a commonly used and well studied selection mechanism where
each chromosome has a chance proportional to its fitness value to be selected as
a survivor and/or parent for the next generations. However, since we are inter-
ested in chromosomes with lower fitness values as explained above, to comply
with our fitness function, selection of a chromosome was inversely proportional
to its fitness value.

Crossover: We use single-point crossover as it is simple enough and widely
used. Depending on the observed convergence of the GA, this method could eas-
ily be replaced by Two-Point or n-Point crossover methods.

Mutation: Generally, one random gene value is altered for a number of off-
spring chromosomes in the population. If a local minima problem is observed,
more genes and/or more chromosomes can be mutated.

Diversity Preservation: We decided to use a diversity threshold that can
be tuned for each application. Specifically, at each generation when the number
of twins exceeds the diversity threshold, they are removed probabilistically us-
ing as probability their fitness value (i.e. twins with higher fitness have a higher
probability to be deleted).

In our approach, the validity of a problem is another important issue. Due
to the application of genetic operators in the evolution cycle, they are likely to
reproduce offspring chromosomes which are non-valid. We may deal with these
chromosomes basically in two ways: we may replace them with new valid chro-
mosomes or we may let some of them survive hoping them to produce nice
offspring in the following generations. In the former option, the replacement can
be done in the Diversity Preservation. In the latter option, either a validity check
can be incorporated into the fitness function reducing the fitness of non-valid
chromosomes or simply non-valid chromosomes can be excluded from the LCFP
after the termination of the Exploration step. In the current implementation we
adopted this last solution.



Fig. 2. Graphical representation of the Exploitation step. Hollow shapes are existing
cases; filled shapes are the encountered and exploited Dubious Future Problems. I Brp
and OByp are, respectively, inner and outer bounds.

Termination: The termination criterion for the GA can be reaching a number
of generations or a number of dubious future problems. We let the population
evolve for a certain number of generations.

Result: As the result of the GA we obtain the list of future problems with
low confidence solutions LCFP.

2.2 Exploitation

The goal of the Exploitation step is to explore the neighbourhood of the low-
confidence problems discovered in the Exploration step. Similarly to the Explo-
ration step, during the execution of the GA for the Exploitation step we maintain
a list of Low Confidence Problem Neighbours LCPN. We initialise this list with
the members of the LCFP. In other words, the members of this list are the
dubious future problems that we want to exploit.

For the Exploitation phase, the proximity limits define the preferred region
of the search for neighbour problems. The outer limit OB, defines the border
for the less similar problems, while the inner limit B, defines the border for
the most similar ones to any member of the LCPAN . A graphical representation
of the Exploitation step is provided in Figure 2. Notice that, comparing with the
Exploration step, the proximity limits for Exploitation step are narrower since
in this step we are looking for neighbours of the DFPs.

All DFPs satisfying the proximity limits are added to the LCPN list. The
confidence threshold for dubiosity is the same value used in the Exploration.

The concepts used in the GA for the Exploitation step are the following;:

Chromosomes, Selection, Crossover, Mutation, Diversity Preserva-
tion: These concepts have the same definitions as the corresponding ones pre-
viously given in the Exploration step.



Initial Population: We partially feed the initial population with the LCFP set
hoping to reproduce similar problems. We use the Random-Problem-Generator
to reach to the desired initial population size when needed.

Fitness Function: The fitness of a chromosome c in the Exploitation step de-
pends only on its neighbourhood to any member of LCPAN . The fitness function
is defined as follows:

Fit (c) = 1= (OBpp + IBpp — Sim(c, LCPN)) if Sim(c, LCPN) > IBpp
PRESSE) =1 = Sim(c, LCPN) otherwise

where Sim(c, LCPN) is the similarity value of ¢ to the most similar problem in

LCPN; IB;, and OB, are, respectively, the inner and outer proximity bounds

of similarity to the previously found future problems.

Termination: We let the population evolve for a certain number of genera-
tions in Exploitation as well.

Result: At the end, the Exploitation step provides the list LCPAN which con-
tains dubious future problems found both in the Exploration and Exploitation
steps.

3 Regions of Dubiosity

Exploration and Exploitation of DFPs give us a foresight of a possible bad
performance of the CBR system. To inspect the underlying reasons of such a
malfunction, the encountered DFPs may be presented directly for the domain
expert’s attention. Experts in turn may use this future map of the case base
to initiate maintenance tasks if needed. However, depending on their number,
analysing DFPs manually may become a difficult task as domain experts would
have to check each DFP together with its neighbours to reveal the system defi-
ciencies.

To be able to assist the domain experts in the endeavour of analysing DFPs,
we have defined six dubiosity patterns. Each DFP is tagged with a dubios-
ity pattern which indicates the possible reason of being classified as dubious.
Furthermore, when we have a numerous list of DFPs, we propose a grouping
algorithm for helping the expert to focus on regions in the case base that suffer
from the same deficiency.

3.1 Dubiosity Patterns

DFPs are good pointers to possible future system weaknesses as their solutions
have low confidence values. But to identify the cause of the low confidence result,
and thus, the needed policies for eliminating these weaknesses, DFPs themselves
alone are not much of a help. This is because confidence measures, in general, do
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Fig. 3. Graphical representation of DFP Patterns. Hollow shapes are cases and the
filled one is a Dubious Future Problem. Each shape represents a different solution
class. ¢ is the similarity threshold delimiting the neighbourhood of a DFP.

not provide detailed explanations of the judgement they make while attaching
a confidence value to a solution. Thus, for analysing why DFPs were considered
as dubious the expert should inspect the indicators of confidence used by the
confidence measure of the CBR system.

On the other hand, since usually the similarity measure plays an important
role in confidence calculus|9, 10], looking at the neighbour cases of a DFP would
give strong clues for analizing DFPs. For this aim, we have defined six dubiosity
patterns according to the solution classes of a DFP and of its neighbour cases.
Given a similarity threshold § defining the neighbourhood, we say that a DFP
exhibits a pattern of type (see Figure 3 for a graphical representation):

— Hole (H) when all of its neighbour cases are of the same class as the DFP;

— Stranger (X) when all of its neighbour cases are of the same class which is
different from the DFP’s;

— Lost (L) when there are at least two different groups of neighbour cases,
according to their solution classes, where none of the groups is of the same
class as the DFP;

— Border (B) when its neighbour cases can be grouped into two groups with
different solution classes and one group shares the same class as the DFP;

— Shaky Terrain (S) when its neighbour cases can be grouped into at least
three groups of different solution classes and one group shares the same class
as the DFP. This pattern indicates regions where adding or removing a case
might redraw borders for multiple classes.

— Outer Limit (O) when it has only one neighbour case sharing the class.
This pattern may indicate outer limits for a particular class or it may point
out isolated cases in the case base.

After the Exploitation step, for each DFP in LCPN we check the solution
classes of its neighbour cases together with its own and we associate a pattern to
each DFP according to the above pattern definitions. The similarity threshold ¢
value should be coherent to the O By value in the Exploration step since we were
looking for similarity between DFPs and existing cases. We propose to choose a
value slightly bigger than the OB, value for the §.



3.2 Grouping Dubious Future Problems

Preliminary experiments for exploring DFPs have shown that depending on the
features that characterise a domain and on the CBR inference mechanism we
may end up with a lengthy list of explored DFPs. In one sense, a high number
of DFPs is attractive since the more DFPs we encounter the more possible
future deficiencies we are discovering. However, using this lengthy list to carry
out maintenance tasks may turn out to be a tedious task in both manual and
automated maintenance of a CBR system. Although the associated dubiosity
patterns help us to analyse DFPs, each DFP still requires special attention to
identify the needed maintenance tasks.

To overcome this overhead when we have too many DFPs to deal with, we
propose to group the DFPs according to their patterns and the similarity of
the DFPs among each other. Grouping DFPs in this way makes it easier to
identify regions in the problem space that suffer from the same deficiency. Thus,
any maintenance task that eliminates a common deficiency in such a region
will probably make the CBR system more confident of its solutions for similar
future problems that will fall into that region. We call these regions Regions of
Dubiosity.

Given the list LCPAN and a similarity threshold ¢’, the grouping algorithm
performs the following two steps:

1. Identification of the Regions of Dubiosity by transitively grouping all DFPs
that are neighbours at similarity ¢’. This step forms different isolated regions.
Each region is a graph where the nodes are the DFPs and edges connect two
nodes when their similarity is, at least, §’.

2. Characterization of the Regions of Dubiosity by grouping all the DFPs
that share the same pattern and are directly connected. Thus, each subregion
is a subgraph highlighting a pattern.

0’ should be coherent(if not equal) with the OB, value in the Exploitation
step since we are looking for similarity between DFPs for grouping them.

At the end, the regions of dubiosity that we obtain from the above algorithm
help us to identify the problematic zones in the CBR system. Moreover, each
subregion of shared patterns serves to detect zones that suffer from the same
deficiency, thus preventing us from having to deal with individual DFPs.

A graphical representation of an example for identifying Regions of Dubiosity
is given in Figure 4. In the figure two different regions have been detected. The
first one on the left only has two DFPs identified as outer limits. The big region
on the right has three border sub-regions, one stranger sub-region, and one
central shaky terrain sub-region. Connecting lines between two DFPs show that
they are neighbours according to a given similarity threshold ¢’. Note that region
surfaces are only painted with the purpose of highlighting the dubiosity regions
in the problem space.



Fig. 4. Regions of Dubiosity. Hollow shapes are cases and filled shapes are DFPs.
Subscripts point out the patterns associated to each DFP.

4 Experimentation

We have performed the analysis of DFPs on a CBR system developed for the
Four-Legged League (RoboCup) soccer competition [13]. In RoboCup two teams
of four Sony AIBO robots compete operating autonomously, i.e. without any
external control. The goal of the CBR system is to determine the actions (called
gameplays) the robots should execute given a state of the game.

The state of the game is mainly represented by the position of the ball and
the positions of the players (both teammates and opponents). The positions are
constrained by the field dimensions (6 m long and 4 m wide). Moreover, since
robots occupy a physical space in the field, a state of the game is considered
valid whenever the distances among the robots are higher than their dimensions
(30 cm long and 10cm wide).

The 68 cases stored in the system can be grouped into three main behaviors:
cooperative behaviors (where at least two teammates participate); individualistic
behaviors (only one player is involved); and back away behaviors (where the
position of the opponents forces a player to move the ball back).

The confidence measure provided by the application took into account not
only the similarity of the problem to the cases but also the actual distance of the
current position of the players to the ball. Therefore, although all similar cases
share the same solution, when the players are away from the ball the confidence
of the solution is low.

The first goal of our experiments was to foresee whether there exist states of
the game where the CBR system has difficulties in determining the best behavior,
i.e. the confidence on the proposed solution is low. The secondary goal was to
detect if there were any bad performing mechanisms of the CBR system.

The experimentation settings were the following: 40% of the population was
selected as survivors to the next generation; 60% of the chromosomes were se-
lected as parents to reproduce offspring; mutation was applied to a randomly



Table 1. Average (Avg) and standard deviation (o) of DFPs discovered in the Ex-
ploration (LCFP) and Exploitation (LCPN) steps in 63 experiments. RD shows the
number of the Regions of Dubiosity created from DFPs. H, X, L, B, S, O are, respec-
tively, the percentage of the number of the experiments in which Hole, Stranger, Lost,
Border, Shaky Terrain, and Outer Limit patterns appeared.

LCFP|LCPN| RD
Avg| 59.26 |183.21(55.95
o | 34.12 |105.78|30.89

H| X |L|B|S|O
95%(100%|50%|85%|15%|85%

chosen 5% of the offspring modifying a gene’s value for each chosen chromosome;
the diversity threshold for the twin chromosomes was 5% (we kept this amount
of twins in the new generation and replaced the rest of them with new ones
created by the RPG).

Taking into account the similarities among existing cases, we chose the test
range [0.93, 0.99] for the proximity limit values and we kept the proximity
for Exploitation narrower than Exploration (see subsections 2.1 and 2.2). The
similarity threshold (¢ in Figure 3) for associating patterns to DFPs was always a
value slightly bigger than the OB, value in the Exploration step. Analogously,
the similarity threshold for grouping DFPs (¢’ in Figure 4) to form Regions
of Dubiosity, was the same as the OB, value in the Exploitation step (see
subsections 3.1 and 3.2). Finally, the test range for confidence threshold was
chosen as [0.3, 0.7].

We ran different experiments for analysing the sensitivity in identifying DFP
regions by changing parameters such as the size of the initial population, the
number of generations, the confidence threshold, and the proximity limits. More-
over, because of the random nature of GAs, for each setting we executed the
Exploration and Exploitation steps several times to get an average value for the
number of identified DFPs and regions of dubiosity.

Throughout experimentation we have seen that we may encounter a higher
number of DFPs when, the initial population is larger in size or GAs evolve
during enough generations or the preferred proximity is wider.

The results show (see Table 1 left) that the number of the DFPs encountered
in the Exploration step is closely related to the number of the Regions of Dubios-
ity. The difference between these two numbers is due to linking of DFPs found
in Exploration with other DFPs found in the Exploitation step. This happens
when we reach a DFP previously found in the Exploration step while we are
exploiting another DFP problem found in the same step. Therefore, when no
linking is achieved between such DFPs, the number of the Regions of Dubiosity
is equal to the number of the DFPs found in the Exploration step.

Another interesting result is the analysis of the DFP patterns discovered in
the experiments (Table 1 on the right summarizes the percentage of experiments
where each pattern is detected). This analysis allows a better understanding
of the regions of the problem space where the CBR system is not performing
confidently:



— Holes in the soccer domain occured when although all the closer cases
shared the same individualistic solution, the players were far from the ball. This
was due to the provided confidence measure explained above. To obtain more
confident solutions the neighbourhood of holes can be populated with new cases.

— Stranger DFPs were problems that proposed cooperative behavior but
whose neighbours were individualistic cases. We saw that this was because of
the design of the system for favouring cooperative behavior. If there is a close
cooperative case to the problem, the application proposes cooperative solution
even if there are more similar cases with different solutions. Stranger DFPs
helped us to discover regions where the influence of the cooperative cases was
excessive. To improve the confidence, we proposed to reduce that influence for
similar regions.

— Lost DFPs were problems that proposed cooperative behavior in a re-
gion where their neighbours were individualistic and back away cases. This was
again due to the excessive influence of a cooperative case nearby. The proposed
maintenance task was the same as in the previous pattern.

— Border DFPs identified the regions where neither individualistic nor coop-
erative behaviors reach a significantly better confidence. The confidence in these
regions could be improved by incorporating new cases into the case base to be
able to mark the borders better between these two classes.

— Shaky terrain DFPs does not seem to be significant in the Robosoccer do-
main due to the distribution of the cases in the CB. There are only three solution
classes and back away behaviors are mainly close to individualistic behaviors.
Hence, in only 15% of the experiments we encountered this pattern when the
proximity limits were chosen to be too wide and the proximity of the cases of
all three classes were overlapping in some regions.

— Finally, the encountered Outer Limit DFPs were either in the proximity
of isolated cases in deserted regions of the CB or they were on the outskirts of
the proximity of cases which were themselves at the border of a class.

In Figure 5 a visualisation of an example of a dubious region in the Soccer
domain is provided. Hollow and filled squares represent respectively cases and
DFPs with cooperative solutions. Analogously, hollow and filled stars represent
respectively cases and DFPs with indivudualistic solutions. The visualisation
of cases and DFPs was built using a force-directed graph-drawing algorithm
where the repulsive force between two cases is proportional to their distance.
The dotted line indicates the border of the dubiosity region. We have drawn
dubiosity groups at two similarity levels by using two different values for ¢’ (dark
and light colors in figure). Neighborhood lines have been omitted for facilitating
the understanding of the figures.

5 Conclusions and Future Work

In this paper we have presented a novel method for identifying future low confi-
dence regions given an existing case base. The method was based on four steps.
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Fig. 5. Visualizing a dubious region in the Soccer problem. DFPs with individualistic
solutions are represented as stars. Squares represent DFPs with cooperative solutions.
H, X and O, respectively, indicate Hole, Stranger and Outer Limit patterns attached
to the cases in the darker coloured regions of dubiosity.

First, we explored the problem space to find dubious future problems. Then,
we exploited these problems to better locate them in the case base within their
future neighbourhood. Both steps used an evolutionary approach to scan the
problem space. Next, to help the understanding of the regions where dubious
future problems are located, we associated each problem with one of the six du-
biosity patterns defined in the paper. These patterns were based on the neigh-
bourhood of future problems to the existing cases. Finally, we have proposed an
algorithm for grouping dubious future problems according to these patterns to
identify regions of dubiosity. We argued that these regions enabled us to focus
on the regions in the case base that suffer from the same deficiency rather than
dealing with individual problems, thus facilitating maintenance tasks.

We described the experiments performed in a Robosoccer application and
have shown how DFPs associated with dubiosity patterns helped us to detect
dubious regions in the case base and to analyse bad performing mechanisms of
the CBR system.

We believe that the proposed method is useful for improving the performance
of CBR systems in a proactive fashion. The proposed method uses only the
domain ontology for generating future problems and evaluates them by using
the confidence and similarity measures provided by the CBR system.

As future work we plan to relate the dubiosity patterns to possible mainte-
nance tasks and to design a graphical tool for navigating through the problem
space. We plan to join the method described in this paper with a visualisation
method for case base competence based on solution qualities presented in [14].
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