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Abstract. Norms are the obligations, permissions and prohibitions as-
sociated with members of a society. Norms provide a useful abstraction
with which to specify and regulate the behaviour of self-interested soft-
ware agents in open, heterogeneous systems. Any realistic account of
norms must address their dynamic nature: the norms associated with
agents will change as agents act (and interact) – prohibitions can be
lifted, obligations can be fulfilled, and permissions can be revoked as a
result of agents’ actions. These norms may at times conflict with one an-
other, that is, an action may be simultaneously prohibited and obliged (or
prohibited and permitted). Such conflicts cause norm-compliant agents
to experience a paralysis: whatever they do (or not do) will go against
a norm. In this paper we present mechanisms to detect and resolve
normative conflicts. We achieve more expressiveness, precision and re-
alism in our norms by using constraints over first-order variables. The
mechanisms to detect and resolve norm conflicts take into account such
constraints and are based on first-order unification and constraint sat-
isfaction. We also explain how the mechanisms can be deployed in the
management of norms regulating environments for software agents.

1 Introduction

Norms are the obligations, permissions and prohibitions associated with mem-
bers of a society [3, 18]. Norms provide a useful abstraction to specify and regu-
late the observable behaviour in electronic environments of self-interested, het-
erogeneous software agents [2, 6]. Norms also support the establishment of or-
ganisational structures for coordinated resource sharing and problem solving [8,
19]. Norm-regulated environments may experience problems when norms asso-
ciated with their agents are in conflict – actions that are forbidden, may, at the
same time, also be obliged and/or permitted.

We illustrate such situations with a scenario in which software agents share
information. A norm stipulates that “everyone is forbidden to share any informa-
tion with agent ag1” (that is, everyone is forbidden to share(Info, ag1)). However,
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as agents interact, a new norm stipulates that “everyone is obliged to share a
particular piece of information info1 with all other agents” (that is, everyone is
obliged to share(info1, X))1. These two norms are in conflict regarding action
share/2 and some of its possible values. Normative conflicts “paralyse” norm-
compliant software agents because whatever they do (or refrain from doing) goes
against a norm.

In this paper, we propose a means to automatically detect and resolve norm
conflicts. We make use of first-order unification [7] to find out if and how norms
overlap in their scope of influence [15]. If such a conflict is detected, a resolution
can be found by proposing a curtailment of the conflicting norms. We curtail
norms by adding constraints, thus limiting their scope of influence. For example,
if we add the constraint Info 6= info1 to the prohibition above, we curtail this
norm excluding info1 from its scope of influence – the norm becomes “everyone
is forbidden to share any information, excluding info1, with ag1”. The scope of
influence of the prohibition becomes restricted and does not overlap with the
influence of the obligation. Alternatively, if we add the constraint X 6= ag 1 to
the obligation above, we curtail its scope of influence to exclude a value, thus
avoiding the conflict with the prohibition.

In next Section we present our approach to norm-governed agency. In Sec-
tion 3 we define norm conflicts and how to resolve them. Section 4 presents
algorithms for the management of norm-regulated environments, that is, the
adoption and removal of norms. In Section 5 we explain a simple mechanism
endowing agents with norm-awareness. Section 6 explores indirect conflicts aris-
ing from relationships among actions. In Section 7 we survey related work. In
Section 8 we draw conclusions and give directions for future work.

2 Norm-Governed Agency

Our model of norm-governed agency assumes that agents take on roles within a
society or organisation and that these roles have norms associated with them.
Roles, as used in, e.g., [20], help us abstract from individual agents, defining a
pattern of behaviour to which any agent that adopts a role ought to conform.
We shall make use of two finite, non-empty sets, Agents = {a1, . . . , an} and
Roles = {r1, . . . , rm}, representing, respectively, the sets of agent identifiers and
role labels. Central to our model is the concept of actions performed by agents:

Definition 1. 〈a : r, ϕ̄, t〉 represents a specific action ϕ̄ (a ground first-order
atomic formula), performed by a ∈ Agents adopting r ∈ Roles at time t ∈ IN .

Although agents are regarded as performing their actions in a distributed fashion
(thus contributing to the overall enactment of the system), we propose a global
account for all actions performed. It is important to record the authorship of
actions and the time when they occur. The set Ξ stores such tuples recording
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actions of agents and represents a trace or a history of the enactment of a society
of agents from a global point of view:

Definition 2. A global enactment state Ξ is a finite, possibly empty, set of
tuples 〈a :r, ϕ̄, t〉.

A global enactment state Ξ can be “sliced” into many partial states Ξa = {〈a :
r, ϕ̄, t〉 ∈ Ξ | a ∈ Agents} containing all actions of a specific agent a. Similarly,
we could have partial states Ξr = {〈a : r, ϕ̄, t〉 ∈ Ξ | r ∈ Roles}, representing
the global state Ξ “sliced” across the various roles. We make use of a global
enactment state to simplify our exposition; however, a fully distributed (and
thus more scalable) account of enactment states can be achieved by slicing them
as above and managing them in a distributed fashion.

2.1 Norm Specification

We extend the notion of a norm as presented in [26]. We adopt the notation of
[20] for specifying norms, complementing it with constraints [14]. Constraints are
used to refine the influence of norms on specific actions. A syntax for constraints
is introduced as follows:

Definition 3. Constraints, represented as γ, are any construct of the form τ C

τ ′, where τ, τ ′ are first-order terms (that is, a variable, a constant or a function
applied to terms) and C ∈ {=, 6=, >,≥, <,≤}.

We shall make use of numbers and arithmetic functions to build terms τ . Arith-
metic functions may appear infix, following their usual conventions2. Some sam-
ple constraints are X < 120 and X < (Y + Z). Norms are thus defined:

Definition 4. A norm ω is a tuple 〈ν, td, ta, te〉, where ν is any construct of
the form Oτ1:τ2

ϕ ∧
∧n

i=0 γi (an obligation), Pτ1:τ2
ϕ ∧

∧n
i=0 γi (a permission) or

Fτ1:τ2
ϕ∧

∧n
i=0 γi (a prohibition), where τ1, τ2 are terms, ϕ is a first-order atomic

formula and γi, 0 ≤ i ≤ n, are constraints. The components td, ta, te ∈ IN are,
respectively, the time when ν was declared (introduced), when ν becomes active
and when ν expires, td ≤ ta ≤ te.

Term τ1 identifies the agent(s) to which the norm is applicable and τ2 is the
role of such agent(s). Oτ1:τ2

ϕ ∧
∧n

i=0 γi thus represents an obligation on agent
τ1 taking up role τ2 to bring about ϕ, subject to constraints γi, 0 ≤ i ≤ n. The
γi’s express constraints on those variables occurring in ϕ.

In the definition above we only cater for conjunctions of constraints. If dis-
junctions are required then a norm must be established for each disjunct. For
instance, if we required the norm PA:Rmove(A)∧A < 10∨A = 15 then we must
break it into two norms PA:Rmove(A) ∧ A < 10 and PA:Rmove(A) ∧ A = 15.
We assume an implicit universal quantification over variables in ν. For instance,
PA:Rp(X, b, c) stands for ∀A ∈ Agents.∀R ∈ Roles .∀X.PA:Rp(X, b, c).

2 We adopt Prolog’s convention [1] using strings starting with a capital letter to rep-
resent variables and strings starting with a small letter to represent constants.



We propose to formally represent the normative positions of all agents taking
part in a virtual society, from a global perspective. By “normative position” we
mean the “social burden” associated with individuals [12], that is, their obliga-
tions, permissions and prohibitions:

Definition 5. A global normative state Ω is a finite and possibly empty set of
tuples ω = 〈ν, td, ta, te〉.

A global normative state, expressed by Ω, complements the enactment state of
a virtual society, expressed by Ξ, with information on the normative positions
of individual agents. The management (i.e., creation and updating) of global
normative states is an interesting area of research. A practical approach is that
of [11]: rules depict how norms should be inserted and removed as a result of
agents’ actions. A sample rule is

〈Ag
1
:seller , sold(Ag

2
,Good,Price), T 〉 ⊕〈OAg2:buyerpay(Ag

1
,Price), (T + 1), (T + 1), (T + 5)〉

representing that if an agent Ag1 acting as a seller agrees to selling to Ag2

some Good at cost Price then we introduce (denoted by the “⊕” operator) an
obligation on Ag2 acting as a buyer, to pay Ag1 the agreed Price within 5 “ticks”
of a global clock. Similarly to Ξ, we use a single normative state Ω to simplify
our exposition; however, we can also slice Ω into various sub-sets and manage
them in a distributed fashion as explored in [9].

3 Norm Conflicts

We provide definitions for norm conflicts, enabling their detection and resolu-
tion. Constraints confer more expressiveness and precision on norms, but the
mechanisms for detection and resolution must factor them in. We use first-order
unification [7] and constraint satisfaction [14] as the building blocks of our mech-
anisms. Unification allows us i) to detect whether norms are in conflict and ii)
to detect the set of actions that are under the influence of a norm. Initially, we
define substitutions:

Definition 6. A substitution σ is a finite and possibly empty set of pairs x/τ ,
where x is a variable and τ is a term.

We define the application of a substitution in accordance with [7] . In addition,
we describe, how substitutions are applied to norms (X stands for O, P or F):

1. c · σ = c for a constant c.
2. x · σ = τ · σ if x/τ ∈ σ; otherwise x · σ = x.
3. pn(τ0, . . . , τn) · σ = pn(τ0 · σ, . . . , τn · σ).
4. (Xτ1:τ2

ϕ ∧
∧n

i=0 γi) · σ = (X(τ1·σ):(τ2·σ)ϕ · σ) ∧
∧n

i=0(γi · σ).
5. 〈ν, td, ta, te〉 · σ = 〈(ν · σ), td, ta, te〉

A substitution σ is a unifier of two terms τ1, τ2, if τ1 · σ = τ·σ. Unification is a
fundamental problem in automated theorem proving and many algorithms have
been proposed [7]; recent work offers means to obtain unifiers efficiently. We shall
use unification in the following way:



Definition 7. unify(τ1, τ2, σ) holds iff τ1·σ = τ2·σ, for some σ. unify(pn(τ0, . . . ,
τn), pn(τ ′0, . . . , τ

′
n), σ) holds iff unify(τi, τ

′
i , σ), 0 ≤ i ≤ n.

The unify relationship checks if a substitution σ is indeed a unifier for τ1, τ2, but
it can also be used to find σ. We assume that unify is a suitable implementation
of a unification algorithm which i) always terminates (possibly failing, if a unifier
cannot be found); ii) is correct; and iii) has a linear computational complexity.

3.1 Conflict Detection

Conflict detection consists of checking if the variables of a prohibition and those
of a permission/obligation have overlapping values. The values of the arguments
of a norm specify its scope of influence, that is, which agent/role the norm
concerns, and which values of the action it addresses. In Fig. 1 we show two
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Fig. 1. Conflict Detection: Overlap in Scopes of Influence

norms over action deploy (S, X, Y ), establishing that sensor S is to be deployed
on grid position (X, Y ). The norms are OA1:R1

deploy(s1, X1, Y1) ∧ 10 ≤ X1 ≤
50∧5 ≤ Y1 ≤ 45 and FA2:R2

deploy(s1, X2, Y2)∧5 ≤ X2 ≤ 60∧15 ≤ Y2 ≤ 40, their
scopes shown as rectangles filled with different patterns. The overlap of their
scopes is the rectangle in which both patterns appear together. Norm conflict is
formally defined as follows:

Definition 8. Norms ω, ω′ ∈ Ω are in conflict under substitution σ, denoted as
conflict(ω, ω′, σ), iff the following conditions hold:

1. ω = 〈(Fτ1:τ2
ϕ ∧

∧n
i=0 γi), td, ta, te〉, ω′ = 〈(O′τ ′

1
:τ ′

2

ϕ′ ∧
∧n

i=0 γ′i), t
′
d, t
′
a, t′e〉,

2. unify(〈τ1, τ2, ϕ〉, 〈τ
′
1, τ
′
2, ϕ
′〉, σ), satisfy(

∧n
i=0 γi ∧ (

∧m
i=0 γ′i · σ))

3. overlap(ta, te, t
′
a, t′e).

That is, a conflict occurs if i) a substitution σ can be found that unifies the
variables of two norms3, and ii) the conjunction

∧n
i=0 γi ∧ (

∧m
i=0 γ′i) · σ) of con-

straints from both norms can be satisfied4 (taking σ under consideration), and

3 A similar definition is required to address the case of conflict between a prohibi-
tion and a permission – the first condition should be changed to ω′ = 〈(P′

τ ′

1
:τ ′

2

ϕ′ ∧
V

n

i=0
γ′

i), t
′
d, t

′
a, t′e〉. The rest of the definition remains the same.

4 We assume an implementation of the satisfy relationship based on “off-the-shelf”
constraint satisfaction libraries such as those provided by SICStus Prolog [25] and
it holds if the conjunction of constraints is satisfiable.



iii) the activation period of the norms overlap. The overlap relationship holds if
i) ta ≤ t′a ≤ te; or ii) t′a ≤ ta ≤ t′e.

For instance, PA:Rp(c, X)∧X > 50 and Fa:bp(Y, Z)∧Z < 100 are in conflict.
We can obtain a substitution σ = {A/a, R/b, Y/c, X/Z} which shows how they
overlap. Being able to construct such a unifier is a first indication that there may
be a conflict or overlap of influence between both norms regarding the defined
action. The constraints on the norms may restrict the overlap and, therefore,
leave actions under certain variable bindings free of conflict. We, therefore, have
to investigate the constraints of both norms in order to see if an overlap of the
values indeed occurs. In our example, the permission has a constraint X > 50
and the prohibition has Z < 100. By using the substitution X/Z, we see that
50 < X < 100 and 50 < Z < 100 represent ranges of values for variables X and
Z where a conflict will occur.

For convenience (and without any loss of generality) we assume that our
norms are in a special format: any non-variable term τ occurring in ω is replaced
by a fresh variable X (not occurring anywhere in ω) and a constraint X =
τ is added to ω. This transformation can be easily automated by scanning ω
from left to right, collecting all non-variable terms {τ1, . . . , τn}; then we add
∧n

i=1Xi = τi to ν. For example, norm PA:Rp(c, X) ∧ X > 50 is transformed into
PA:Rp(C, X) ∧ X > 50 ∧ C = c.

3.2 Conflict Resolution

We propose to resolve norm conflicts by manipulating the constraints on their
variables, thus removing any overlap in their values. In Fig. 2 we show the
norms of Fig. 1 without the intersection between their scopes of influence –
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OA1:R1
deploy(s1, X1, Y1) ∧ 10 ≤ X1 ≤ 50 ∧ 5 ≤ Y1 ≤ 45
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FA2:R2
deploy(s1, X2, Y2) ∧ 5 ≤ X2 < 10 ∧ 15 ≤ Y2 ≤ 40

FA2:R2
deploy(s1, X2, Y2) ∧ 50 < X2 ≤ 60 ∧ 15 ≤ Y2 ≤ 40

Fig. 2. Conflict Resolution: Curtailment of Scopes of Influence

the prohibition has been curtailed, its scope being reduced to avoid the values
that the obligation addresses. Specific constraints are added to the prohibition
in order to perform this curtailment; these additional constraints are derived
from the obligation, as we explain below. In our example above, we obtain
two prohibitions, FA2:R2

deploy(s1, X2, Y2) ∧ 5 ≤ X2 < 10 ∧ 15 ≤ Y2 ≤ 40 and
FA2:R2

deploy(s1, X2, Y2) ∧ 50 < X2 ≤ 60 ∧ 15 ≤ Y2 ≤ 40.
We formally define below how the curtailment of norms takes place. It is

important to notice that the curtailment of a norm creates a new (possibly
empty) set of curtailed norms:



Definition 9. Relationship curtail(ω, ω′, Ω), where ω = 〈Xτ1:τ2
ϕ ∧

∧n
i=0 γi,

td, ta, te〉 and ω′ = 〈X′τ ′

1
:τ ′

2

ϕ′ ∧
∧m

j=0 γ′j , t
′
d, t
′
a, t′e〉 (X and X′ being either O, F or

P) holds iff Ω is a possibly empty and finite set of norms obtained by curtailing
ω with respect to ω′. The following cases arise:

1. If conflict(ω, ω′, σ) does not hold then Ω = {ω}, that is, the curtailment of
a non-conflicting norm ω is ω itself.

2. If conflict(ω, ω′, σ) holds, then Ω = {ωc
0, . . . , ω

c
m}, where ωc

j = 〈Xτ1:τ2
ϕ ∧∧n

i=0 γi ∧ (¬γ′j · σ), td, ta, te〉, 0 ≤ j ≤ m.

In order to curtail ω, thus avoiding any overlapping of values its variables may
have with those variables of ω′, we must “merge” the negated constraints of ω′

with those of ω. Additionally, in order to ensure the appropriate correspondence
of variables between ω and ω′ is captured, we must apply the substitution σ
obtained via conflict(ω, ω′, σ) on the merged negated constraints.

By combining the constraints of ν = Xτ1:τ2
ϕ ∧

∧n
i=0 γi and ν′ = X′τ ′

1
:τ ′

2

ϕ′ ∧∧m
j=0 γ′j , we obtain the curtailed norm νc = Xτ1:τ2

ϕ ∧
∧n

i=0 γi ∧ ¬(
∧m

j=0 γ′j · σ).
The following equivalences hold:

Xτ1:τ2
ϕ ∧

n∧

i=0

γi ∧ ¬(

m∧

j=0

γ′j · σ) ≡ Xτ1:τ2
ϕ ∧

n∧

i=0

γi ∧ (

m∨

j=0

¬γ′j · σ)

That is,
∨m

j=0(Xτ1:τ2
ϕ ∧

∧n
i=0 γi ∧ ¬(γ′j · σ)). This shows that each constraint

on ν′ leads to a possible solution for the resolution of a conflict and a possible
curtailment of ν. The curtailment thus produces a set of curtailed norms νc

j =

Xτ1:τ2
p(t1, . . . , tn) ∧

∧n
i=0 γi ∧ ¬γ′j · σ, 0 ≤ j ≤ m.

Although each of the νc
j , 0 ≤ j ≤ m represents a solution to the norm conflict,

we advocate that all of them have to be added to Ω in order to replace the
curtailed norm. This would allow a preservation of as much of the original scope
of the curtailed norm as possible.

As an illustrative example, let us suppose Ω = {〈FA:Rp(C, X)∧C = c∧X >
50, td, ta, te〉}. If we try to introduce a new norm ω′ = 〈PB:Sp(Y, Z) ∧ B =
a ∧ S = r ∧ Z > 100, t′d, t

′
a, t′e〉 to Ω, then we detect a conflict. This conflict

can be resolved by curtailing one of the two conflicting norms. The constraints
in ω′ are used to create such a curtailment. The new permission ω′ contains
the following constraints: B = a, S = r and Z > 100. Using σ, we construct
copies of ω, but adding ¬γ′i · σ to them. In our example the constraint Z > 100
becomes ¬(Z > 100) · σ, that is, X ≤ 100. With the three constraints contained
in ω′, three options for curtailing ω can be constructed. A new Ω ′ is constructed,
containing all the options for curtailment:

Ω′ =

8
><
>:

〈PB:Sp(Y, Z) ∧B = a ∧ S = r ∧ Z > 100, t′d, t′a, t′e〉
〈FA:Rp(C, X) ∧ C = c ∧X > 50 ∧ A 6= a, td, ta, te〉
〈FA:Rp(C, X) ∧ C = c ∧X > 50 ∧ R 6= r, td, ta, te〉
〈FA:Rp(C, X) ∧ C = c ∧X > 50 ∧X ≤ 100, td, ta, te〉

9
>=
>;

For each ¬γ′i · σ (A 6= a, R 6= r and X ≤ 100 in our example), the original
prohibition is extended with one of these constraints and added as a new, more



restricted prohibition to Ω′. Each of these options represents a part of the scope
of influence regarding actions of the original prohibition ω, restricted in such
a way that a conflict with the permission is avoided. In order to allow a check
whether any other action that was prohibited by ω is prohibited or not, it is nec-
essary to make all three prohibitions available in Ω ′. If there are other conflicts,
additional curtailments may be necessary.

3.3 An Implementation of Norm Curtailment

We show in Figure 3 a prototypical implementation of the curtailment process as
a logic program. We show our logic program with numbered lines to enable the
easy referencing of its constructs. Lines 1–7 define curtail, and lines 8–14 define

1 curtail(ω, ω′, Ω)←
2 ω = 〈Xτ1:τ2

ϕ ∧
Vn

i=0
γi, td, ta, te〉∧

3 ω′ = 〈X′

τ′

1
:τ′

2

ϕ′ ∧
Vm

j=0
γ′

j , t′d, t′a, t′e〉∧

4 conflict(ω, ω′, σ)∧

5 merge([(¬γ′

0
· σ), . . . , (¬γ′

m · σ)], (
Vn

i=0
γi), bΓ )∧

6 setof (〈Xτ1:τ2
ϕ ∧ Γ, td, ta, te〉,member(Γ, bΓ ), Ω)

7 curtail(ω, ω′, {ω})

8 merge([], , [])

9 merge([(¬γ′ · σ)|Gs], (
Vn

i=0
γi), [Γ |bΓ ])←

10 satisfy((
Vn

i=0
γi) ∧ (¬γ′ · σ))∧

11 Γ = (
Vn

i=0
γi) ∧ (¬γ′ · σ)∧

12 merge(Gs, (
Vn

i=0
γi), bΓ )

13 merge([ |Gs], (
Vn

i=0
γi), bΓ )←

14 merge(Gs, (
Vn

i=0
γi), bΓ )

Fig. 3. Implementation of curtail as a Logic Program

an auxiliary predicate merge/3. Lines 1–6 depict the case when the norms are
in conflict: the test in line 4 ensures this. Line 5 invokes the auxiliary predicate
merge/3 which, as the name suggests, merges the conjunction of γi’s with the
negated constraints γ ′j ’s. Line 6 assembles Ω by collecting the members Γ of the

list Γ̂ and using them to create curtailed versions of ω. The elements of the list
Γ̂ assembled via merge/3 are of the form (

∧n
i=0 γi) ∧ (¬γ′j · σ) – additionally,

in our implementation we check if each element is satisfiable5 (line 10). The
rationale for this is that there is no point in creating a norm which will never be
applicable as its constraints cannot be satisfied, so these are discarded during
their preparation.

3.4 Curtailment Policies

Rather than assuming that a specific deontic modality is always curtailed6, we
propose to explicitly use policies determining, given a pair of norms, which one
is to be curtailed. Such policies confer more flexibility on our curtailment mech-
anism, allowing for a fine-grained control over how norms should be handled:

5 We have made use of SICStus Prolog [25] constraint satisfaction libraries [13].
6 In [26], for instance, prohibitions are always curtailed. This ensures the choices on

the agents’ behaviour are kept as open as possible.



Definition 10. A policy π is a tuple 〈ω, ω′, (
∧n

i=0 γi)〉 establishing that ω should
be curtailed (and ω′ should be preserved), if (

∧n
i=0 γi) hold.

A sample policy is 〈〈FA:Rp(X, Y ), Td, Ta, Te〉, 〈PA:Rp(X, Y ), T ′d, T
′
a, T ′e〉, (Td <

T ′d)〉. It expresses that any prohibition held by any agent that corresponds to
the pattern FA:Rp(X, Y ) has to be curtailed, if the additional constraint, which
expresses that the prohibition’s time of declaration Td precedes that of the per-
mission’s T ′d, holds. Adding constraints to policies allows us a fine-grained control
of conflict resolution, capturing classic forms of deontic conflict resolution – the
constraint in the example establishes a precedence relationship between the two
norms known as lex posterior (see Section 7 for more details). We shall represent
a set of such policies as Π .

4 Management of Normative States

In this section we explain how our approach to conflict detection and resolution
can be used to manage normative states Ω. We explain how we preserve conflict-
freedom when adopting a new norm as well as how norms are removed – when
a norm is removed we must guarantee that any curtailment it caused is undone.

4.1 Norm Adoption

The algorithm in Fig. 4 describes how an originally conflict-free (possibly empty)
set Ω can be extended in a fashion that resolves any emerging conflicts during

algorithm adoptNorm(ω, Ω, Π, Ω′)
input ω, Ω, Π

output Ω′

begin

Ω′ := ∅
if Ω = ∅ then

Ω′ := Ω ∪ {ω}
else

for each ω′ ∈ Ω do

if conflict(ω, ω′, σ) then // test for conflict

if 〈ωπ, ω′

π, (
Vn

i=0
γi)〉 ∈ Π and // test policy

unify(ω, ωπ, σ) and unify(ω′, ω′

π, σ) and satisfy(
Vn

i=0
(γi · σ)) then

begin

curtail(ω, ω′, Ω′′)
Ω′ := Ω ∪Ω′′

end

else

if 〈ω′

π, ωπ, (
Vn

i=0
γi)〉 ∈ Π and // test policy

unify(ω, ωπ, σ) and unify(ω′, ω′

π, σ) and satisfy(
Vn

i=0
(γi · σ)) then

begin

curtail(ω′, ω, Ω′′)
Ω′ := (Ω − {ω′}) ∪ ({ω} ∪Ω′′)

end

end

Fig. 4. Norm Adoption Algorithm

norm adoption. With that, a conflict-free Ω is always transformed into a conflict-
free Ω′ that may contain curtailments. The algorithm makes use of a set Π of
policies determining how the curtailment of conflicting norms should be done.



When a norm is curtailed, a set of new norms replace the original norm.
This set of norms is collected into Ω′′ by curtail(ω, ω′, Ω′′). A curtailment takes
place if there is a conflict between ω and ω′. The conflict test creates a unifier
σ re-used in the policy test. When checking for a policy that is applicable, the
algorithm uses unification to check (a) whether ω matches/unifies with ωπ and
ω′ with ω′π; and (b) whether the policy constraints hold under the given σ. If a
previously agreed policy in Π determines that the newly adopted norm ω is to
be curtailed in case of a conflict with an existing ω′ ∈ Ω, then the new set Ω′

is created by adding Ω′′ (the curtailed norms) to Ω. If the policy determines a
curtailment of an existing ω′ ∈ Ω when a conflict arises with the new norm ω,
then a new set Ω′ is formed by a) removing ω′ from Ω and b) adding ω and the
set Ω′′ to Ω.

4.2 Norm Removal

As well as adding norms to normative states we also need to support their
removal. Since the introduction of a norm may have interfered with other norms,
resulting in their curtailment, when that norm is removed we must undo the
curtailments it caused, that is, we must return (or “roll back”) to a previous form
of the normative state. In order to allow curtailments of norms to be undone,
we record the complete history of normative states representing the evolution of
normative positions of agents:

Definition 11. H is a non-empty and finite sequence of tuples 〈i, Ω, ω, π〉, where
i ∈ IN represents the order of the tuples, Ω is a normative state, ω is a norm
and π is a policy.

We shall denote the empty history as 〈 〉. We define the concatenation of se-
quences as follows: if H is a sequence and h is a tuple, then H • h is a new
sequence consisting of H followed by h. Any non-empty sequence H can be de-
composed as H = H′ • h • H′′, H′ and/or H′′ possibly empty. The following
properties hold for our histories H:

1. H = 〈0, ∅, ω, π〉 • H′

2. H = H′ • 〈i, Ω′, ω′, π′〉 • 〈i + 1, Ω′′, ω′′, π′′〉 • H′′

3. adoptNorm(ωi, Ωi, {πi}, Ωi+1)

The first condition establishes the first element of a history to be an empty Ω.
The second condition establishes that the tuples are completely ordered on their
first component. The third condition establishes the relationship between any
two consecutive tuples in histories: normative state Ωi+1 is obtained by adding
ωi to Ωi adopting policy πi.

H is required to allow the retraction of a norm in an ordered fashion, as not
only the norm itself has to be removed but also all the curtailments it caused
when it was introduced in Ω. H contains a tuple 〈i, Ω, ω, π〉 that indicates the
introduction of norm ω and, therefore, provides us with a normative state Ω
before the introduction of ω. The effect of the introduction of ω can be reversed



by using Ω and redoing (performing a kind of “roll forward”) all the inclusions
of norms according to the sequence represented in H via adoptNorm .

This mechanism is detailed in Figure 5: algorithm removeNorm describes
how to remove a norm ω given a history H; it outputs a normative state Ω and
an updated history H′ and works as follows. Initially, the algorithm checks if ω
indeed appears in H – it does so by matching H against a pattern of a sequence
in which ω appears as part of a tuple (notice that the pattern initialises the
new history H′). If there is such a tuple in H, then we initialise Ω as Ωk,

algorithm removeNorm(ω,H, Ω,H′)
input ω,H
output Ω,H′

begin

if H = H′ • 〈k, Ωk , ω, πk〉 • · · · • 〈n, Ωn, ωn, πn〉 then

begin

Ω := Ωk

for i = k + 1 to n do

begin

adoptNorm(ωi, Ω, {πi}, Ω′)
H′ := H′ • 〈i, Ω, ωi, πi〉
Ω := Ω′

end

end

else

begin

H = H′′ • 〈n, Ωn, ωn, πn〉
Ω := Ωn, H′ := H

end

end

Fig. 5. Algorithm to Remove Norms

that is, the normative state before ω was introduced. Following that, the for

loop implements a roll forward, whereby new normative states (and associated
history H′) are computed by introducing the ωi, k + 1 ≤ i ≤ n, which come
after ω in the original history H. If ω does not occur in any of the tuples of
H (this case is catered by the else of the if construct) then the algorithm uses
pattern-matching to decompose the input history H and obtain its last tuple –
this is necessary as this tuple contains the most recent normative state Ωn which
is assigned to Ω; the new history H′ is the same as H.

5 Norm-Aware Agent Societies

With a set Ω that reflects a conflict-free global normative situation, agents can
test whether their actions are norm-compliant. In order to check actions for
norm-compliance, we again use unification. If an action unifies with a norm,
then it is within its scope of influence:

Definition 12. 〈a : r, ϕ̄, t〉, is within the scope of influence of 〈Xτ1:τ2
ϕ∧

∧n
i=0 γi,

td, ta, te〉 (where X is either O, P or F) iff the following conditions hold:

1. unify(〈a, r, ϕ̄〉, 〈τ1, τ2, ϕ〉, σ) and satisfy(
∧n

i=0 γi · σ)
2. ta ≤ t ≤ te



This definition can be used to establish a predicate check/2, which holds if its
first argument, a candidate action (in the format of the elements of Ξ of Def. 2),
is within the influence of a prohibition ω, its second parameter. Figure 6 shows

check(Action, ω)←
Action = 〈a :r, ϕ̄, t〉∧
ω = 〈(Fτ1:τ2

ϕ ∧
V

n

i=0
γi), td, ta, te〉∧

unify(〈a, r, ϕ̄〉, 〈τ1, τ2, ϕ〉, σ) ∧ satisfy(
V

n

i=0
γi · σ) ∧ ta ≤ t ≤ te

Fig. 6. Check if Action is within Influence of a Prohibition

the definition of this relationship as a logic program. Similarly to the check of
conflicts between norms, it tests i) if the agent performing the action and its role
unify with the appropriate terms τ1, τ2 of ω; ii) if the actions ϕ̄, ϕ themselves
unify; and iii) the conjunction of the constraints of both norms can be satisfied,
all under the same unifier σ. Lastly, it checks if the time of the action is within
the norm temporal influence.

6 Indirect Conflicts

In our previous discussion, norm conflicts were detected via a direct comparison
of atomic formulae representing actions. However, conflicts and inconsistencies
may also arise indirectly via relationships among actions. For instance, if an
agent has associated norms PA:Rp(X) and FA:Rq(X, X) and that the action
p(X) amounts to the action q(X, X), then we can rewrite the permission as
PA:Rq(X, X) and identify an indirect conflict between the two norms. We use
a set of domain axioms in order to declare such domain-specific relationships
between actions:

Definition 13. The set of domain axioms, denoted as ∆, are a finite and possi-
bly empty set of formulae ϕ → (ϕ′1 ∧ · · · ∧ϕ′n) where ϕ, ϕ′i, 1 ≤ i ≤ n, are atomic
first-order formulae.

In order to address indirect conflicts between norms based on domain-specific
relationships of actions, we have to adapt our curtailment mechanism. With the
introduction of domain axioms ϕ → (ϕ′1 ∧ · · · ∧ ϕ′n), the conflict check has to
be performed for each of the conjuncts in this relationship. For example, if we
have ∆ = {(p(X) → q(X, X)∧ r(X, Y ))} and 〈PA:Rp(X), td, ta, te〉, then actions
q(X, X) and r(X, Y ) are also permitted. If we also have 〈FA:Rq(X, X), td, ta, te〉
then an indirect conflict occurs. We now revisit Def. 8, extending it to address
indirect conflicts:

Definition 14. An indirect conflict arises between two norms ω, ω′ under a set
of domain axioms ∆ and a substitution σ, denoted as conflict∗(∆, ω, ω′), iff:

1. conflict(ω, ω′, σ), or
2. ω = 〈(Xτ1:τ2

ϕ∧
∧n

i=0 γi), td, ta, te〉, there is an axiom (ϕ′ → (ϕ′1∧· · ·∧ϕ′m)) ∈
∆ such that unify(ϕ, ϕ′, σ′), and

∨m
i=1 conflict∗(∆, 〈(Xτ1:τ2

ϕ′i ∧
∧n

i=0 γi), td,
ta, te〉 · σ′, ω′),



The above definition recursively follows a chain of indirect conflicts, looking for
any two conflicting norms. Case 1 provides the base case of the recursion, check-
ing if norms ω, ω′ are in direct conflict. Case 2 addresses the general recursive
case: if a norm X (that is, O, P or F) on an action ϕ unifies with ϕ′ on the
left-hand side of a domain axiom (ϕ → (ϕ′1 ∧ · · · ∧ ϕ′m)) ∈ ∆, then we “trans-
fer” the norm from ϕ to ϕ′1, . . . , ϕ

′
m, thus obtaining 〈(Xτ1:τ2

ϕ′i ∧
∧n

i=0 γi), td,
ta, te〉, 1 ≤ i ≤ m. If we (recursively) find an indirect conflict between ω′ and
at least one of these norms, then an indirect conflict arises between the original
norms ω, ω′. It is important to notice that the substitution σ′ that unifies ϕ and
ϕ′ is factored in the mechanism: we apply it to the new ϕ′is in the recursive
call(s).

Domain axioms may also accommodate the delegation of actions between
agents. Such a delegation transfers norms across the agent community and, with

that, conflicts also. We introduce a special logical operator ϕ
τ1:τ2 τ′

1
:τ′

2
−−−−−−→(ϕ′1∧· · ·∧ϕ′n)

to represent that agent τ1 adopting role τ2 can transfer any norms on action ϕ
to agent τ ′1 adopting role τ ′2, which should carry out actions ϕ′1∧· · ·∧ϕ′n instead.
We formally capture the meaning of this operator as follows:

3. ω = 〈(Xτ1:τ2
ϕ∧

∧n
i=0 γi), td, ta, te〉, there is a delegation axiom (ϕ

τ1:τ2 τ′

1
:τ′

2
−−−−−−→(ϕ′1∧

· · · ∧ ϕ′m)) ∈ ∆, s.t. unify(〈ϕ, τ1, τ2〉, 〈ϕ′, τ ′1, τ
′
2〉, σ

′), and
∨m

i=1 conflict∗(∆,
〈(Xτ ′

1
:τ ′

2
ϕ′i ∧

∧n
i=0 γi), td, ta, te〉 · σ′, ω′)

That is, we obtain a domain axiom and check if its action, role and agent unify
with those of ω. The norm will be transferred to the new actions (ϕ′1 ∧ · · · ∧ϕ′m)
but these will be associated with a possibly different agent/role pair τ ′1:τ

′
2. The

new norms are recursively checked and if at least one of them conflicts with
ω′, then an indirect conflict arises. Means to detect loops in delegation must be
added to the definition above.

7 Related Work

Efforts to keep law systems conflict-free can be traced back to the jurispruden-
tial practice in human society. Inconsistency in law is an important issue and
legal theorists use a diverse set of terms such as, for example, normative in-
consistencies/conflicts, antinomies, discordance, etc., in order to describe this
phenomenon. There are three classic strategies for resolving deontic conflicts
by establishing a precedence relationship between norms: legis posterioris – the
most recent norm takes precedence, legis superioris – the norm imposed by the
strongest power takes precedence, and legis specialis – the most specific norm
takes precedence [17].

Early investigations into norm conflicts were outlined in [21], describing three
forms of conflict/inconsistency as total-total, total-partial and intersection. These
are special cases of the intersection of norms as described in [16] – a permission
entailing the prohibition, a prohibition entailing the permission or an overlap of
both norms.



In [22, 23], aspects of legal reasoning such as non-monotonic reasoning in law,
negation and conflict are discussed. It is pointed out that legal reasoning is often
based on prima facie incompatible premises, which is due to the defeasibility
of legal norms and the dynamics of normative systems, where new norms may
contradict older ones (principle of legis posterioris), the concurrence of multiple
legal sources with normative power distributed among different bodies issuing
contradicting norms (principle of legis superioris), and semantic indeterminacy.
To resolve such conflicts, it is proposed to establish an ordering among norms
according to criteria such as hierarchy (legis superioris), chronology (legis poste-
rioris), speciality (exception to the norm are preferred) or hermeneutics (more
plausible interpretations are preferred). The work presented in [16] discusses
in part these kinds of strategies, proposing conflict resolution according to the
criteria mentioned above.

The work described in [5] analyses different normative conflicts – in spite of
its title, the analysis is an informal one. That work differentiates between ac-
tions that are simultaneously prohibited and permitted – these are called deontic
inconsistencies – and actions that are simultaneously prohibited and obliged –
these are called deontic conflicts. The former is merely an “inconsistency” be-
cause a permission may not be acted upon, so no real conflict actually occurs.
On the other hand, those situations when an action is simultaneously obliged
and prohibited represent conflicts, as both obligations and prohibitions influ-
ence behaviours in an incompatible fashion. Our approach to detecting deontic
conflict can capture the three forms of conflict/inconsistency of [21], viz. total-
total, total-partial and intersection, respectively, when the permission entails the
prohibition, when the prohibition entails the permission and when they simply
overlap. Finally, we notice that the world knowledge explained in [5], required to
relate actions, can be formally captured by our indirect norm conflicts depicted
in Section 6.

The work presented in this paper is an adaptation and extension of [16, 26]
and [10], also providing an investigation into deontic modalities for representing
normative concepts [4, 24]. In [26], a conflict detection and resolution based on
unification is introduced: we build on that research, introducing constraints to
the mechanisms proposed in that work.

8 Conclusions, Discussion and Future Work

We have presented mechanisms to detect and resolve conflicts in norm-regulated
environment. Such conflicts arise when an action is simultaneously obliged and
prohibited/permitted. We represent norms as first-order atomic formulae whose
variables can have arbitrary constraints associated – this allows for more expres-
sive norms, with a finer granularity and greater precision. The mechanisms are
based on first-order unification and constraint satisfaction, extending the work
of [26], and addressing a more expressive class of norms. Our conflict resolution
mechanism amounts to manipulating the constraints of norms to avoid overlap-
ping values of variables – this is called the “curtailment” of variables/norms.



A prototypical implementation of the curtailment process is given as a logic
program and is used in the management of the normative state of an agent so-
ciety. We have also introduced an algorithm to manage the adoption of possibly
conflicting norms, whereby explicit policies depict how the curtailment between
specific norms should take place, as well as an algorithm depicting how norms
should be removed, thus undoing the effects of past curtailments.

In this work we only considered norms with universal quantifiers over discrete
domains. These assumptions limit the applicability of our solution. Universally
quantified permissions capture a common sense of norm: an agent is permitted
to perform an action with any value its quantified variables may get (and which
satisfy the constraints); the same holds for prohibitions. However, obligations are
conventionally existential: an agent is obliged to perform an action once with
one of its possible values.

We are currently exploiting our approach in mission-critical scenarios [27],
including, for instance, combat and disaster recovery (e.g. extreme weather con-
ditions and urban terrorism). Our goal is to describe mission scripts as sets of
norms: these will work as contracts that teams of human and software agents
can peruse and make sense of. Mission-critical contracts should allow for the del-
egation of actions and norms, via pre-established relationships between roles: we
have been experimenting with special “count as” operators which neatly capture
this. Additionally, our mission-critical contracts should allow the representation
of plan scripts with the breakdown of composite actions into the simplest atomic
actions. Norms associated with composite actions will be distributed across the
composite actions, possibly being delegated to different agents and/or roles.
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