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Abstract—Social conventions are useful self-sustaining proto-
cols for groups to coordinate behavior without a centralized
entity enforcing coordination. We perform an in-depth study
of different network structures, to compare and evaluate the
effects of different network topologies on the success and rate of
emergence of social conventions. While others have investigated
memory for learning algorithms, the effects of memory or history
of past activities on the reward received by interacting agents
have not been adequately investigated. We propose a reward
metric that takes into consideration the past action choices of
the interacting agents. The research question to be answered
is what effect does the history based reward function and the
learning approach have on convergence time to conventions in
different topologies. We experimentally investigate the effects of
history size, agent population size and neighborhood size or the
emergence of social conventions.

I. INTRODUCTION

Social norms such as driving on the left side of the road or
not stepping in front of other people in line are prevalent in
human groups and societies. Such norms are conflict resolution
strategies that develop from the population interactions instead
of a centralized entity dictating agent protocol. History of
interaction is then instrumental for norm evolution. Learning
algorithms incorporate history of interaction into their calcula-
tions, but reward metrics are typically static and independent
of the agent histories. Norm evolution is dependent upon
the exertion of social pressure by the group on aberrant
individuals. It is through learning via repeated interactions that
social pressure is applied to individuals in the group. However,
a reward metric based on the current interaction does not
necessarily model the full context or capture the persistent
nature of social pressure in human societies. In particular,
society often uses past history to judge individuals and hence
actions have future consequences in addition to immediate
effects. Accordingly, we propose a reward structure based
upon the agent’s interaction history as a more appropriate
alternative to the single interaction reward metric normally
used. In our model agents are rewarded based upon the
conformity of action between two agents, such that the agent
who has the most of the majority interaction receives higher
reward. Hence, both interacting agents’ history of actions are
used to calculate each individual’s payoff from an interaction.

We investigate how this history, and in particular, its size
(memory size) affects the emergence of social conventions in
different types of societal structures.

We are also keenly interested in understanding how agent
relationships and social connections affect the success and rate
of adoption of social norms. We represent different societal
connection topologies by different network types in which the
network links represent interactions between agents. Given a
connection topology, agents repeatedly play a two-player game
with the reward for interaction based on their respective action
histories. We believe that the underlying topology of the so-
ciety is a key factor in determining the convention emergence
process. In this work we will experiment on different types
of topologies in order to observe, compare and analyze their
effects and dynamics of reaching social conventions.

The structure of this article is as follows: we review the
previous and related work in the area of emergence of social
conventions in multiagent systems in Section II; in Section III
we present the agent interaction and reward model that we
have used; experimental results are presented in Section IV;
conclusions from the analysis of the results are presented
in Section V, and finally we present the future work in
Section VI.

II. PREVIOUS WORK

Sen and Airiau [1], [2] explored norm emergence where
interaction rewards were not dependent on previous interac-
tions. That work is focused on the problem of coordination
of two cars arriving at an intersection. Each agent can choose
to “go” or “yield” to the other agent. The reward metric is
designed so that if each agent chooses the same action, they
receive small payoff but if agents choose opposite actions,
they receive a large payoff. So if the row and the column
agents both “go” they both receive a poor payoff, but only
one player choosing to go will yield a relatively high payoff
for both. Depending on which player chooses to yield, two
possible effective social norms can be established. Each agent
in an interaction was randomly chosen from the population.
Agents learned to adopt a consistent social norm from repeated
interactions with other agents in the population. The history of
interaction does not directly affect the reward agents receive.



Reward is only affected by the agents’ action choice in
the current interaction. However, learning takes place via
social pressure from repeated interaction, thus the history of
interaction indirectly influences agent’s action choice.

Delgado et al. [3] investigate a similar norm emergence
scenario with several key differences. The agents in their
research are restricted in their interactions to their neighbors
in a scale free graph. Furthermore, their agents are playing
a coordination game in which payoff is high if both agents
chose the same action and low if both agents chose different
actions. The authors formulate their action choice in terms
of history. Each agent keeps a history of interactions and the
corresponding reward. The agents then utilize the history to
select the best payoff action. However, the history does not
determine the reward they receive.

Kittock’s research [4] is very similar to the research done
by Delgado et al. summarized above. Kittock also utilizes the
same style of payoff metric used in Delgado’s work as well
as using a graph to restrict agent interactions. Agents utilize
memory of interaction payoffs to select their actions. His work
is different in that he investigates several graph topologies and
payoff matrices.

ITI. MODEL

The social learning situation for norm emergence that we are
interested in is that of learning to reach a social convention. We
borrow the definition of a social convention from [5]: A social
law is a restriction on the set of actions available to agents.
A social law that restricts agents’ behavior to one particular
action is called a social convention.

We represent the interaction between two agents as an n-
person m-action game. At each time step, each agent is paired
with another agent and decides in which state it wants to be.
In our case, as in the case in [3], a social convention will be
reached if all the n agents are in the same state, i.e., the actual
state chosen is immaterial. For our purpose, an agent choosing
a particular action is equivalent to it being in a corresponding
state. In this paper, we consider only binary interactions, i.e.,
n=2, and agents are choosing between one of two available
actions, A and B, i.e., m=2.

We consider the following three different environment
types: (i) a one-dimensional lattice with connections between
all neighboring vertex pairs (examples can be seen in Fig-
ures 1(a) and 1(b)); (ii) a scale-free network, whose node
degree distribution asymptotically follows a power law (an
example can be seen in Figure 1(c)); (iii) to further our
understanding of the norm emergence process, and to capture
some typical real-world scenarios, e.g., a community of closely
knit researchers and their students, we use a rather novel
network topology, namely the fully connected stars network:
such a network has a relatively small number of hubs or core
nodes which are fully connected forming a clique, and each
of these core nodes is also connected with a number of leaf
nodes (an example can be seen in Figure 1(d)).

Each agent is represented by a node in the network and the
links represent the possibility of interaction between nodes

(or agents). The one-dimensional lattice provides a structure
in which agents are connected with their n nearest neighbors.
Different values of the neighborhood size (n) produces differ-
ent network structures; for example, when n = 2 the network
will have a ring structure (as in Figure 1(b)) and agents will
only be connected with their direct neighbors (those at left
and right if we imagine a ring topology). On the other hand,
when n = PopulationSize, the network is a fully connected
network (as in Figure 1(a)) where each agent is connected with
all other agents. On the other hand, in the scale-free network
there are many vertices with small degrees and only few of
vertices with large degrees. This makes the network diameter !
significantly small with respect to the one-dimensional lattice.

As in [4], we use agents with a memory M}, of size M
(same size for all the agents). For agent k, the memory M
will record some information on the history of its decisions:
The value of the position i of the memory A}, will be a tuple
(a},t") where t" is the time the i-th memory event took place,
and a}€ is the decision taken by agent k at time t(1<i<M).
Thus, the memory of each agent will work as a record of the
history for the last memory size actions taken by the agent.

Agents cannot observe the other agent’s memory, current
decision, or immediate reward, and hence cannot calculate
the payoff for any action before actually interacting with the
opponent. When two agents interact, the instantaneous reward
that an agent receives is calculated based on the action it
selected and the action history of both agents as shown in
Algorithm 1, where A, and B, are the number of A and B
actions in memory that agent x has taken, Action, is the
last action taken by agent x, and for which it is rewarded,
MajorityAction is selected to be whichever action is played
most by the two playes combined, M ajorityActions, is
the number of actions in x’s memory equal to the majority
action, and TotalMajorityActions is the number of times
the majority action was chosen by both players in their finite
histories.

Agents use a learning algorithm to estimate the worth of
each action. Agents will choose their action in each inter-
action in a semi-deterministic fashion. A certain percentage
of the decisions will be chosen randomly, representing the
exploration of the agent, and for the rest of the decisions, the
agents deterministically choose the action estimated to be of
higher utility. In all the experiments presented in this article,
the exploration rate has been fixed at 25%, i.e., one-fourth of
the actions are chosen randomly.

The learning algorithm used here is a simplified version
of the Q-Learning algorithm [6]. The Q-Update function for
estimating the utility on an action is:

Q'(a) — (1 —a) x Q" a) + a x reward ()

where reward is the payoff received from the current interac-
tion and Q*(a) is the utility estimate of action a after selecting
it ¢ times. When agents decide not to explore, they will choose

The diameter of a graph is the largest number of vertices which must be
traversed in order to travel from one vertex to another
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Algorithm 1: Memory Based Reward Function.

// First, we select the majority action

Total AActions = A1 + As;

Total BActions = By + Bs;

if Total AActions < Total BActions then

| MajorityAction = B;

if Total BActions < Total AActions then

| MajorityAction = A;

if TotalAActions == Total BActions then
MajorityAction =

‘ RandomlyselectedbetweenAor B;

// Then, we calculate the reward
depending on the agents action
selection and on the majority action

if Actiony == MajorityAction then

_ MajorityActions;
‘ reward; = Total MajorityActions
else

| reward; =0
end

the action with higher Q value. The reward used in the learning
process is a proportional reward of that calculated previously
with Equation 1.

The simulation process for repeated interactions in the agent
society is presented in Algorithm 2.

Algorithm 2: Simulation Process.

for timesteps do

forall agents do
Select another partner agent from population;
Each selected agent chooses an action;
The joint action from the selected agents and
their history determines rewards;
Selected agent(s) use received reward to update

action estimates;
end

end

We have used two different learning modalities: (a) In the

(d) Fully Connected Stars Network

(¢) Scale-Free Network

Underlying Topologies

Multi learning approach both interacting agents use the payoff
to update their memory and policy, (b) In the Mono learning
approach, however, only the first agent selected, and not the
second one, updates its memory and action estimate after an
interaction. Each agent interacts exactly once per time step
in mono-learning, whereas in multi-learning different agents
interact different times in the same time step because of
randomness of partner selection.

IV. EXPERIMENTS

To evaluate the rate and success of norm emergence we ran
experiments with different societal configurations by varying
the following system and agent properties:

o Memory Size: We vary the number of past interactions
stored by an agent, so we can analyze the effects of
memory Ssizes.

« Population Size: We study both the effects of population
size and results that were not affected by scale of the
population.

o Neighborhood Size: We study how different neighbor-
hood sizes in a one dimensional lattice affect the process
of emergence of conventions.

o Underlying Topology: We observe the dynamics of the
process of emergence of conventions depending on the
underlying topology.

o Learning Modalities: We compare how conventions are
reached with different learning modalities, namely, one
or both agents learning from an interaction.

Results reported here have been averaged over 25 runs.
Agents are initialized with uniformly random memories, and
initially are unbiased in their action choice. We conclude
that a social convention has been reached when 100% of
the population choose the same action. Other authors in the
literature such [4] or [3] fixed the convergence rate at 90%.
However we have observed that with certain reward functions
on certain topologies, even after 90% of the society has
converged to a convention, it can still switch back to the
other convention. Though some aspects of results from our
simulated agent society can be transferred to human situations
(with additional mechanisms), our results are targeted towards



a better understanding of how to develop self-adaptive agent
societies.

A. Effect of Neighborhood Size

To observe the effect of neighborhood size, we use a one-
dimensional lattice (as scale-free networks and fully connected
stars predetermine the neighbors for each node) and use a
memory size of 5. Figure 2 shows a comparison of con-
vergence times for different neighborhood sizes, measured
as percentages of the population size, in a multi learning
approach.

We can see that when increasing the neighborhood size,
the convergence time is steadily reduced until it stabilizes
after a certain neighborhood size. This effect is due to the
topology of the network. When the one dimensional lattice
has a small neighborhood size, on average, the diameter of
the graph is high and therefore agents located in different
parts of the network need a higher number of interactions
to communicate their decisions or arrive at a consensus. It is
also interesting to note that for smaller neighborhoods, larger
populations converge much faster.
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Fig. 2.  Convergence rates with different Neighborhood Sizes in a One
Dimensional Lattice (Multi Learning)

Similar convergence results are also obtained with the mono
learning approach and we do not include them here due to
space constraints. Once the neighborhood size crosses about
30% of the population size, the convergence time does not
significantly decrease anymore. The relation of the neighbor-
hood size and the diameter follows a geometric distribution
and is shown in Figure 3. We note that when the neighborhood
size crosses 30% of the population size, the diameter of
the network is no longer significantly reduced, and hence
the convergence times are also not significantly reduced any
further.

B. Effect of memory size

In this experiment, we want to observe the effect of different
memory sizes on convention emergence for different network
topologies. We fix the population size at 100 agents. For the
one-dimensional lattice, we use a fully connected network. We
present the convergence times for different memory sizes in
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Figure 4. The results show that larger memory sizes gradually
increase time for convergence. This phenomenon is due to
the configuration of the reward function and the learning
algorithm. Each action in memory gets a relatively high
reward for smaller compared to larger memory sizes (refer
to the reward function defined in Algorithm 1). The learning
algorithm, therefore, receives larger reinforcements for the
actions performed for smaller memory sizes, resulting in
faster convergence. Convergence is accelerated in this situation
because higher rewards have a larger impact on the Q value
updated by the learning algorithm 1. On the other hand, when
dealing with higher memory windows, the proportional reward
is much smaller, and therefore, the reinforcement will be
smaller. Due to this smaller reinforcement, a higher number
of interactions, and hence higher number of timesteps, will
be needed to reinforce that action to same degree, thereby
increasing convergence time.

We also note from Figure 4, that the mono-learning ap-
proach takes longer to converge than the multi-learning ap-
proach. A part of this difference is explained by the fact
that the average number of learning interactions in a multi-
learning approach is twice that of the mono-learning approach
for the same number of time steps. There is, however, an
additional clear trend of accelerated learning when both agents
are learning from the same interaction.

In Figure 5 (note that the y-axis is in a logarithmic
scale), we can observe the relative performance of different
topologies for different memory sizes with the mono-learning
approach. During this experiment, we limited the execution
of the simulations to one million timesteps. We observe that
the Fully Connected Stars network takes the most time to
converge, followed by the Scale-Free network. For both the
Scale Free and the Fully Connected Networks we can observe
that the convergence time increases with increasing memory
size. These inefficiencies are largely due to more time taken
to break or resolve conflicting subconventions that form with
scale-free and fully connected stars networks but not for fully
connected networks (see following section for an explanation).
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As a result, the fully connected network, scales up much better
with increasing memory size.

C. Effect of Learning Approach

In this set of experiments, we observe the difference in
convergence times with the two learning approaches for dif-
ferent topologies. We first compare results of the two learning
approaches in a one-dimensional lattice with 100 agents (see
Figure 6, where the y-axis is drawn on a logarithmic scale). For
smaller neighborhood sizes, i.e., when the network diameter
is high, multi-learning takes longer to converge than mono-
learning. After reaching the point where the diameter is no
longer affected by the neighborhood size (as discussed before,
this happens when the neighborhood size is about 30% of
the population size) , the multi learning performs better. The
reason for this interesting phenomenon is the creation of local
subconventions with multi-learning when the diameter is large.

When agents have a small neighborhood size, they will
interact often with their neighbors, resulting in diverse subcon-
ventions forming at different regions of the network. With the
multi-learning approach, agents reinforce each other in each
interaction. Such divergent subconventions conflict in overlap-

ping regions. To resolve these conflicts, more interactions are
needed between the agents in the overlap area between regions
adopting conflicting subconventions. Unfortunately, the agents
in the overlapping regions may have more connections in
their own subconvention region and hence will be reinforced
more often by their subconventions, which makes it harder
to break subconventions to arrive at a consistent, uniform
convention over the entire society. In the case of the mono-
learning approach, the agents in the overlapping region will not
be disproportionately reinforced by the other agents sharing its
subconvention, making it easier to break those subconventions.

On the other hand, when neighborhood sizes are large, and
hence network diameters are small, agents interact with a large
portion of the population. This makes it more difficult to create
or sustain subconventions. In addition, this large neighborhood
size is more effectively utilized by the multi-learning as agents
will be learning from all the interactions they are involved in,
and not only from the interactions initiated by them.
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For the scale-free and fully-connected stars networks, sys-
tematic variation of neighborhood size is not possible in
general. We do observe an interesting phenomenon for these
kind of networks. When the multi-learning approach is used in
Scale Free Networks and Fully Connected Stars, subconven-
tions are persistent and the entire population does not converge
to a single convention. This is the first time in all of our
research on norm emergence that we observed the coexistence
of stable subconventions.

The explanation of this rather interesting phenomena can
be found in the combination of the memory-based reward
function and the inherent topologies of such networks. We
present, in Figure 7, a portion of a representative Scale Free
or Fully Connected Stars network where subconventions have
formed. We see that agent 1 (hub node 1) and its connected
leave nodes (nodes 10, 11, and 12) have converged to one
subconvention (represented by the color of the nodes) that is
different from the subconvention reached by agent 2 (hub node
2) and its connected leave nodes (nodes 21, 22, and 23). As
an agent has equal probability of interaction with any of its
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Fig. 7. Subnetwork topology resistent to subconventions in a multi learning

approach

neighbors, both agents 1 and 2 interact more frequently with
their associated leave nodes that share their subconvention.

Also note that when two agents interact and both actions
have been taken equally often in their combined memories, as
will be the case when agents 1 and 2 interact, the majority
action will be selected randomly, giving advantage to one of
the agents. Now, in this scenario, for the subconventions to be
broken it is needed that for one of the hub nodes the following
holds true: (1) the agent’s g-value for its preferred action
decreases, and (2) the g-value for the action preferred by the
other agent increases. In order for the agent’s g-value for its
preferred action to decrease, a number of repeated interactions
(proportional to the memory size) between the hub nodes (in
our example 1 and 2) have to occur, and as there will be
no clear majority action, the preference has to be given to
the same action, e.g., that preferred by agent 2, in all those
interactions. As the reward for the agent 1’s action will then
be 0, its g-value will start decreasing. In order for the agent
1’s g-value for its non-preferred action to increase, a number
of interactions (also proportional to the memory size) between
it and agent 2 has to occur and agent 1 has to explore in that
interaction and try agent 2’s preferred action. This will result
in agent 1’s estimate of agent 2’s preferred action to increase,
albeit slowly. Only when both these fortuitous events follow
each other, and without the intervention of another interaction
with the leaves associated with agent 1 (which would rein-
force the subconvention), can the subconvention be ultimately
broken. The likelihood of these sequence of events happening
is exceedingly small and hence subconventions routinely arise
with the multi-learning approach. Viewed another way, the
leaf nodes can only interact with their hubs and each of them
will reinforce the subconvention action for their associated hub
node in every time step, making it extremely difficult to resolve
conflicting subconventions as in the situation in Figure 7.

On the other hand, as an agent is reinforced only once
each time-step in the mono-learning approach, the processes
required to break the subconventions are more likely, even
though the corresponding probability is still relatively small.
This probability decreases with larger memory sizes and hence
subconventions are more likely to emerge with larger memory
sizes when using mono-learning. There is a correlation with
the memory size. Therefore, subconventions persist longer
with larger memory sizes, and this phenomenon caused the
significant convergence time for scale-free networks and full-
connected star networks (we discussed this in the previous

section with reference to results displayed in Figure 5).

D. Weighted Reward

To facilitate the reconciliation of subconventions, we decide
to investigate a reasonable modification of the reward function.
The current reward function only takes into account the previ-
ous actions chosen by both agents. In particular, the identify, or
more specifically, the social position of the interacting agents
did not influence the rewards calculated. We can, however, eas-
ily imagine scenarios where the position or social status of an
agent can influence the payoff calculation. A straightforward
way to incorporate social status in reward calculation would
be to use a multiplicative weight, depending on the degree of
the interacting node?, in Algorithm 1 presented in section IIL
As a result, interactions with central, better connected nodes
will produce higher rewards than those with relatively isolated
nodes on the fringe of the network. By using this weighted
reward we are allowing the hub agents to have a greater
influence on other agents. The new reward function calculation
is described in Algorithm 3.

Algorithm 3: Memory and Social Position Based Reward
Function.

// First, we select the majority action

Total AActions = Ay + Asy;

TotalBActions = By + Bo;

Weight = Degrees;

if Total AActions < Total BActions then

| MajorityAction = B;

if Total BActions < Total AActions then

| MajorityAction = A;

if Total AActions == Total BActions then
MajorityAction =

‘ RandomlyselectedbetweenAor B;

// Then, we calculate the reward
depending on the agents action
selection and on the majority action

if Action; == MajorityAction then

| reward, = Weight x raleridions .

else

| reward; =0;

end

In this algorithm, A, and B, are the number of A and B
actions in memory that agent = has taken, Action, is the last
action taken by agent x, MajorityActions, is the number of
actions equal to the majority action that agent x has previously
taken, T'otal M ajorityActions is the number of actions of the
majority action, and Degree, is the degree of agent x in the
network.

Note that this modified reward function will not produce
different results for the one-dimensional lattice networks, as
all nodes in such networks have the same degree and hence
will have the same multiplicative factor in the reward function.

>The degree of a vertex in a graph is number of edges connected to that
vertex.
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The results for the Scale Free network using the new
Weighted Reward function and for the two learning approaches
are shown in Figure 8. When we compare the results with this
new Weighted reward function with those with the unweighted
(uniform) reward function for Scale-Free networks with multi-
learning (see Figure 9), we observe that the weighted reward
function results in faster convergence. The main reason for
this is that the weighted reward function allow the hub
nodes to influence more weights and allows them to resolve
subconventions (as leaf nodes have less influence on the hub
nodes), and thereby producing faster convergence.

For the Fully Connected Stars networks, we observe that
the Weighted Reward function produces faster convergence
when using the mono-learning approach (see Figure 10). How-
ever, subconventions continue to persist with multi-learning
approaches. The reason for this effect is due to the uniform
degree distribution of the hub nodes in the network and
the design of the reward function. The Fully Connected
Stars networks engender a three phase convention emergence
process: (1) first the leaf nodes drive the hubs, then (2) the
hubs have to coordinate, and (3) finally the leaf nodes will
have to coordinate with their hub. The second of these phases
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still takes significant time and is fragile, as explained in
Section IV-C.

V. CONCLUSIONS

We have presented a set of experiments to study the
emergence of social conventions based not only on direct
interactions but also on the memory of each of the agents
under different interconnection topologies between agents.
This social learning framework requires each agent to learn
from repeated interaction with anonymous members of the
society. Norm emergence in real environments are likely to
be influenced by both physical neighborhood effects imposed
by mobility restrictions and biases as well as diverse learning,
memory and reasoning capabilities of members of the society.
Our main goal in this paper was to study the effects of these
features on the rate of norm emergence.

Our initial hypotheses were that different characteristics
of the topology in which agents are located would produce
different convergence times for reaching a social convention.
Experimental results confirm this hypotheses. We have shown
that conventions emerge in less time when agents are allowed
to interact with other agents located farther away from them
in one-dimensional lattice topologies. The reason for this
acceleration is that agents interact with a larger percentage of
the population, which prevents formation of local conventions.
We observe that memory size have a pronounced affetc on the
emergence of conventions in all topologies studied with agents
having larger memory sizes taking longer to reach conventions.
This is due to the fact that the reward amount for a given
action is inversely proportional to the memory size. As a result,
reward sizes are smaller for larger memory sizes, requiring a
higher number of interactions for a convention to be reached.

Finally, we have observed how the learning modality does
directly affect the convention emergence process. We observe
that subconventions are more likely to appear and are more
resistant when using the multi-learning approach, and might
not be resolved for scale-free and fully-connected star net-
works. To aid in breaking such stalemates, we introduced a
new, plausible reward function which allows socially important



nodes (those with more connections to other agents) to have
more influence in the reward function. This new reward
function accelerates the emergence of conventions in scale-
free networks but subconventions persist in fully-connected
star networks.

VI. FUTURE WORK

One question that we plan to answer in future work is under
what circumstances and configuration of parameters the one-
dimensional lattice behaves similarly to the scale-free network
for large population sizes. We have observed that when the
population size increases, the convergence times in the one-
dimensional lattice increases at a much faster rate compared
to scale-free networks. We believe that a dynamic adjustment
of the neighborhood size on a one-dimensional lattice will
produce similar dynamics to those obtained with scale-free
networks.

We also want to experiment with heterogeneous populations,
as done by Mukherjee er al. [2]. In the current paper, all
the agents are initialized with the same parameters and with
the same distribution of initial memory. We want to observe
the resulting dynamics of different types of populations. For
example, in a scale-free network, we can initialize the hubs
with a specific bias towards a certain action, and observe the
speed of convergence of the rest of the population. Another
interesting experiment to be carried out is when agents in the
same population are initialized with different memory sizes.

Finally, to make the model more general, we want to
increase the number of actions available to agents to m > 2.
This extension will give us a more generalized game, and allow
us to represent and study more diverse real-life situations.
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