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Abstract

We compare a classical CNN architecture for
sequence classification involving several con-
volutional and max-pooling layers against a
simple model based on weighted finite state
automata (WFA). Each model has its advan-
tages and disadvantages and it is possible that
they could be combined. However, we believe
that the first research goal should be to inves-
tigate and understand how do these two appar-
ently dissimilar models compare in the context
of specific natural language processing tasks.
This paper is the first step towards that goal.
Our experiments with five sequence classifica-
tion datasets suggest that, despite the apparent
simplicity of WFA models and training algo-
rithms, the performance of WFAs is compara-
ble to that of the CNNs.

1 Introduction

In the latter years CNNs have been proposed as
models for sequence classification and it has been
shown that they can give competitive results, even
when compared to more complex models (Kim,
2014; Zhang and Wallace, 2017; Kalchbrenner
et al., 2014; Johnson and Zhang, 2015; Goldberg,
2016). They typically combine various convolu-
tional filters with max-pooling layers.

Because they have several interacting layers, it
is in general is hard to interpret exactly what is it
that they are learning. But most likely their success
relies on the fact that their convolutional filters have
the ability to capture arbitrary features of the input
sequence.

On the other hand, non-deterministic weighted
automata (WFAs) are recurrent models that only
use linear activation functions.Essentially, WFAs
can be regarded as recurrent neural networks where
the function that predicts the dynamic state repre-
sentation from previous states is linear.

For more details about the relations between lin-
ear activation RNNs and WFAs, we refer the reader
to (Rabusseau et al., 2019). Several algorithms
based on low rank matrix decompositions have
been proposed (Hsu et al., 2009, 2012; Bailly et al.,
2009; Balle et al., 2011; Cohen et al., 2012; Balle
et al., 2014).

In addition to being easily trainable, WFAs offer
other advantages. The main advantage is that they
are classical computer science models that have
been intensively researched in the theoretical com-
munity. Because of this they are relatively well
understood and we know how to efficiently per-
form important computations. For example, con-
sider a WFA computing a distribution over strings,
there are simple and efficient algorithms to com-
pute marginal probabilities for prefixes, infixes and
suffixes. Furthermore another advantage of these
models is that there are well known and understood
algorithms for transforming them into determinis-
tic automata. The resulting deterministic automata
can be used to interpret the computation performed
by WFAs.

Both CNNs and WFAs are general models, and
the exact architecture can be specified to solve
different tasks such as language modeling, or se-
quence classification which is the focus of this pa-
per. Each model has its advantages and disadvan-
tages and it is possible that they could be combined.

However, we believe that the first research goal
should be to investigate and understand how do
these two apparently dissimilar models compare in
the context of specific natural language processing
tasks.

This paper is the first step towards that goal.
We focus on the task of sequence classification
and compare the performance of WFAs and CNNs
trained under the same initial conditions, over five
different data sets.

To a certain extent a similar comparison between
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WFAs and neural models was made by (Quattoni
and Carreras, 2019) in the context of language mod-
eling. But to our knowledge this is the first empiri-
cal comparison of CNNs and WFAs for sequence
classification.

2 WFAs for Sequence Classification

2.1 Preliminaries: WFAs for sequence
modelling

We will use weighted finite state automata (WFAs)
as elementary building blocks to build our sequence
prediction model.

More precisely, a WFA takes as input a sequence
and outputs a real number, that is: f : Σ? → R
where x = x1 · · ·xn is sequence of length n over
some finite alphabet Σ.

We denote as Σ? the set of all finite sequences,
and we use it as a domain of our functions. A WFA
with k states is defined as a tuple:

A = 〈α0,α∞, {Aσ}σ∈Σ〉 (1)

where: α0, α∞ ∈ Rk are the initial and final
weight vectors; and Aσ ∈ Rk×k are the transition
matrices associated to each symbol σ ∈ Σ.

The function fA : Σ? → R realized by a WA A
is defined as:

f(x) = α>0 Ax1 · · ·Axnα∞ . (2)

Probabilistic Non-Deterministic Finite Automata
(PNFA) are WFAs that compute a probabilistic dis-
tribution over strings. One can easily transform
a PNFA into another automata that computes sub-
string expectations via simple transformations of
the model parameters, and the reverse is also true,
see Balle et al. (2014) for details.

In this paper we will directly learn and use au-
tomata that compute expectations. To train the
WFAs we will use the classical spectral learning
method by described in Balle et al. (2014), using
the scalability techniques by Quattoni et al. (2017).

2.2 WFA Classifier Ensemble

We will now describe how we combine class spe-
cific WFAs to build a sequence classifier. Let’s
assume that we have a set L = {1, . . . , l}
of target class labels and a training set D =
{(x1, y1), . . . , (xn, yn)} of n labeled samples
where x ∈ Σ? is an input sequence and y ∈ L

is an output label. Our goal is to use D to learn a
function mapping sequences to class labels, i.e. a
classifier c : Σ? → L.

We start by partitioning the training set D into l
training sets (d1, . . . dl), one for each target class.
Then for each training set dl we train a correspond-
ing WFA: fl(x) : Σ? → R using the spectral
method. We can think that this model is computing
an approximation of the expected number of times
of observing a subsequence x from a sequence sam-
pled from the distribution of sequences of class l.
More generally, one can regard fl(x) as a real val-
ued score that measures the compatibility between
a subsequence x and a label l. Intuitively, think of
x as an ngram feature.

With the scores computed by the class-specific
WFAs we will build a prediction function. The idea
is quite simple, we will run the scoring function
over all ngrams up to a given length and aggregate
the outputs to compute a single score measuring
the compatibility of a sequence and a target class.

More precisely, we define a maximum ngram
length parameter t. Given a sequence x we denote
the set of all ngrams of x up to length t as Wx =
(w1, . . . , wm). The aggregate prediction score is
simply defined as:

z(x, l) =
∑
w∈Wx

fl(w)∑
l′∈L fl′(w)

. (3)

We can regard

fl(w)∑
l′∈L fl′(w)

(4)

as an approximation of the conditional distribution
P (l|w), since fl(w) is an approximation of an ex-
pectation and therefore is a non-negative score.

Given the aggregate scoring function z(x, l)
the prediction of the WFA ensemble is simply:
argmaxlz(x, l). Essentially, we are using the gen-
erative models in a discriminative manner.

A natural question to ask is why not to use the
Naive Bayes score:

z(x, l) = logP (l) +
∑
w∈Wx

logP (w|l) (5)

where we approximate P (w|l) by fl(w). To do
so, instead of the expectation WFA, we would use
a WFA that computes probabilities (which can be
easily obtained from the WFA that computes ex-
pectations (Balle et al., 2014)). We have indeed
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tried this approach but it performed poorly since the
generative model cannot capture the discriminative
ngrams of the data.

On the other hand we realized that the simple
modification of using the generative models to
make a discriminative prediction resulted in good
performance.

3 Experiments

We conducted experiments on five sequence classi-
fication data sets:

• MR: This is a movie review data set where
the task is to classify a sentence as positive or
negative review. There are two classes and the
average sentence length is 20. The total num-
ber of samples is 106,662 and the vocabulary
size 18,765 (Pang and Lee, 2005).

• SST-2: This is a sentiment treebank, where
the task is to predict a positive or negative
sentiment label. There are two classes and the
average sentence length is 19. The total num-
ber of samples is 9,613 and the vocabulary
size 16,185 (Socher et al., 2013).

• Subj: This is a subjectivity data set were the
task is to predict if a sentence is subjective or
objective.There are two classes and the aver-
age sentence length is 23. The total number
of samples is 10,000 and the vocabulary size
21,323 (Pang and Lee, 2004).

• TREC: This is a question classification data
set. The task is to classify a question into six
question types (e.g. a question about a loca-
tion, a person, etc.). There are six classes and
the average sentence length is 10. The total
number of samples is 5,952 and the vocabu-
lary size 9,592 (Li and Roth, 2002).

• CR: This data set contains reviews written by
customers about various products. The task
is to predict the review is positive or negative.
There are two classes and the average sentence
length is 19. The total number of samples is
3,775 and the vocabulary size 5,340 (Hu and
Liu, 2004).

The WFA models have two parameters: the num-
ber of states k and the maximum window size t,
both parameters were validated using a validation
set. For k we tried [50, 100, 200] and for t we
tested [2, 3, 4, 5].

DATA CNN WFA
MR 76.1 77.3
SST-2 82.7 81.6
Subj 89.6 91.9
TREC 91.2 90.1
CR 79.8 79.5
average 83.9 84.1

Table 1: Results of the WFA classifier against a base-
line CNN.

Figure 1: Performance as a function of the number of
states of the model for the SUBJ dataset.

When a standard train-development-test parti-
tion was not provided in the original data set we
performed 10 fold cross validation and report mean
performance.

We will compare the performance of the ensem-
ble WFA with a classical CNN architecture for
sequence classification. More specifically, we com-
pare against the model described in (Kim, 2014).
The model has 100 convolutional filters run over
ngrams of size: [3, 4, 5], a max-pooling layer and
a fully connected softmax layer. The word embed-
dings are randomly initialized and then modified
during training. The model was trained using 0.5
drop-out and l2 regularization.

We performed experiments on the 5 sequence
classification datasets and report the results on Ta-
ble 1. As we can see the results show that the
performance of the WFA model is comparable to
that of the CNN. Figure 1 shows accuracy as a func-
tion of the number of states of the model for the
SUBJ dataset, as we can see even with only 5 states
the model shows reasonable performance, around
89.5.
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4 Discussion

In the surface CNNs and WFAs for sequence clas-
sification might seem quite dissimilar. The perfor-
mance of the CNNs relies on learning good dis-
criminative ngram features via their convolutional
filters. In contrast the WFA ensemble focuses on
learning good estimates of the moments distribu-
tions of each class.

However, if we look closer into the WFAs we
realize that implicitly the WFA can also capture
arbitrary features of the input sequences via its
latent states (i.e. the latent states can remember any
regular pattern of the input sequence).

The ability to induce patterns seems to be con-
firmed by our experiments. Our results show that
by simply making a discriminative prediction out
of the outputs of the class specific WFAs we can
get very close to matching the performance of the
CNNs.

Both CNNs and WFAs have their advantages
and disadvantages. The main advantage of the
CNNs is that they are very flexible and can induce
arbitrary patterns. However, training them can be
computationally expensive and the resulting model
might be hard to interpret.

On the other hand WFAs can be easily trained
with the classical spectral method. Most of the
models reported in these experiments were trained
in less than five minutes in a regular machine with
four CPUs. In addition, because the relation be-
tween inputs and latent-state is more transparent
(i.e. just a linear function) they might be interpreted
more easily.

The main disadvantage of WFAs is that they
lack the modeling flexibility of CNNs. This is be-
cause it is harder to incorporate arbitrary loss func-
tions. While there have been extensions of spectral
methods that can exploit any convex loss function
(Quattoni et al., 2014) this usually results in opti-
mizations that are significantly more costly. And
therefore the resulting training algorithms loose
part of the practical appeal of the classical spectral
method.

Finally, another potential limitation of WFAs is
that because the latent state dynamics is linear, they
might need more states than models that can make
use on non-linear dynamics.

Most likely the best model would combine the
best of both worlds. But the first step is to un-
derstand their similarities and differences in the
context of concrete NLP tasks. We believe our

results are a first tiny step towards that goal.

5 Future Work

In many ways our experiments are crippled. The
most evident limitation is that none of the mod-
els exploit external features such as pre-trained
word embeddings, as it is well known that such
features are essential to improve the performance
of sequence prediction models.

As we already said this is just a first comparison,
and we focused on the simplest possible configu-
ration of both models. In the future, we plan to
make comparisons of models that incorporate word
embeddings.

Notice that WFAs have also been defined for
real valued inputs (Recasens and Quattoni, 2013)
and therefore they can also incorporate pre-trained
word embedding vectors.

Furthermore, the comparison is relatively unfair
in the sense that the WFAs are trained in a gener-
ative fashion. There have been proposals for dis-
criminative training or discriminative refinements
that we plan to explore in the future (Quattoni and
Carreras, 2019; Quattoni et al., 2014).

Finally, in this paper we focus on comparisons
against CNNs. But it would be interesting to ex-
pand the study to other models such as RNNs and
LSTMS.
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Raphaël Bailly, François Denis, and Liva Ralaivola.

2009. Grammatical inference as a principal compo-
nent analysis problem. In Proceedings of the 26th
Annual International Conference on Machine Learn-
ing, ICML ’09, pages 33–40, New York, NY, USA.
ACM.

Borja Balle, Xavier Carreras, Franco M. Luque, and
Ariadna Quattoni. 2014. Spectral Learning of
Weighted Automata: A Forward-Backward Perspec-
tive. Machine Learning, 96(1):33–63.

Borja Balle, Ariadna Quattoni, and Xavier Carreras.
2011. A spectral learning algorithm for finite
state transducers. In Proceedings of the 2011th
European Conference on Machine Learning and
Knowledge Discovery in Databases - Volume Part
I, ECMLPKDD’11, pages 156–171, Berlin, Heidel-
berg. Springer-Verlag.

https://doi.org/10.1145/1553374.1553379
https://doi.org/10.1145/1553374.1553379
https://doi.org/10.1007/s10994-013-5416-x
https://doi.org/10.1007/s10994-013-5416-x
https://doi.org/10.1007/s10994-013-5416-x
https://doi.org/10.1007/978-3-642-23780-5_20
https://doi.org/10.1007/978-3-642-23780-5_20


163

Shay B. Cohen, Karl Stratos, Michael Collins, Dean P.
Foster, and Lyle Ungar. 2012. Spectral learning of
latent-variable pcfgs. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 223–
231, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Yoav Goldberg. 2016. A primer on neural network
models for natural language processing. Journal of
Artificial Intelligence Research, 57(1):345420.

Daniel Hsu, Sham M Kakade, and Tong Zhang. 2012.
A spectral algorithm for learning hidden markov
models. Journal of Computer and System Sciences,
78(5):1460–1480.

Daniel J. Hsu, Sham M. Kakade, and Tong Zhang.
2009. A spectral algorithm for learning hidden
markov models. In COLT 2009 - The 22nd Con-
ference on Learning Theory, Montreal, Quebec,
Canada, June 18-21, 2009.

M. Hu and B. Liu. 2004. Minning and summarizing
customers reviews. In Proceedings of ACL SIGKDD
2004.

Rie Johnson and Tong Zhang. 2015. Effective use of
word order for text categorization with convolutional
neural networks. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 103–112, Denver, Col-
orado. Association for Computational Linguistics.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
son. 2014. A convolutional neural network for mod-
elling sentences. In Proceedings of the 52th Annual
Meeting on Association for Computational Linguis-
tics.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), Doha, Qatar. Associa-
tion for Computational Linguistics.

X. Li and D. Roth. 2002. Learning questions classifiers.
In Proceedings of ACL 2002.

B. Pang and L. Lee. 2004. A sentimental eduction:
Sentiment analysis using subjectivity summarization
based on minimum cuts. In Proceedings of the An-
nual Meeting on Association for Computational Lin-
guistics.

B. Pang and L. Lee. 2005. Seeing starts: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of the An-
nual Meeting on Association for Computational Lin-
guistics.

Ariadna Quattoni, Borja Balle, Xavier Carreras, and
Amir Globerson. 2014. Spectral regularization for
max-margin sequence tagging. In Proceedings
of the 31st International Conference on Machine

Learning (ICML-14), pages 1710–1718. JMLR
Workshop and Conference Proceedings.

Ariadna Quattoni and Xavier Carreras. 2019. Interpo-
lated spectral NGram language models. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 5926–5930,
Florence, Italy. Association for Computational Lin-
guistics.

Ariadna Quattoni, Xavier Carreras, and Matthias Gallé.
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