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Abstract. Distributed constraint optimization (DCOP) is a promising
approach to coordination, scheduling and task allocation in multi-agent
networks. DCOP is NP-hard [6], so an important line of work focuses on
developing fast incomplete solution algorithms that can provide guaran-
tees on the quality of their local optimal solutions.
Region optimality [11] is a promising approach along this line: it provides
quality guarantees for region optimal solutions, namely solutions that are
optimal in a specific region of the DCOP. Region optimality generalises
k- and t-optimality [7, 4] by allowing to explore the space of criteria that
define regions to look for solutions with better quality guarantees.
Unfortunately, previous work in region-optimal quality guarantees fail to
exploit any a-priori knowledge of the reward structure of the problem.
This paper addresses this shortcoming by defining reward-dependent re-
gion optimal quality guarantees that exploit two different levels of knowl-
edge about rewards, namely: (i) a ratio between the least minimum re-
ward to the maximum reward among relations; and (ii) the minimum
and maximum rewards per relation.

1 Introduction

Distributed Constraint Optimization (DCOP) is a popular framework for coop-
erative multi-agent decision making. It has been applied to real-world domains
such as sensor networks [12], traffic control [3], or meeting scheduling [8]. In
real-world domains, and particularly in large-scale applications, DCOP tech-
niques have to cope with limitations on resources and time available for reason-
ing. Because DCOP is NP-Hard [6], complete DCOP algorithms (e.g. Adopt [6],
OptAPO [5], DPOP [8]) that guarantee global optimality are unaffordable for
these domains due to their exponential costs. In contrast to complete algorithms,
incomplete algorithms [12, 2, 10, 7, 4] provide better scalability.

Unfortunately, an important limitation for the application of incomplete al-
gorithms is that they usually fail to provide quality guarantees on their solutions.



The importance of quality guarantees is twofold. First, they help guaran-
tee that agents do not converge to a solution whose quality is below a certain
fraction of the optimal solution (which can have catastrophic effects in certain
domains). Secondly, quality guarantees can aid in algorithm selection and net-
work structure selection in situations where the algorithmic cost of coordination
must be weighed up against solution quality (trade-off cost versus quality).

To the best of our knowledge, region optimal algorithms [11] are the only
incomplete DCOP algorithms that can provide guarantees on the worst-case so-
lution quality of their solutions at design time and exploit the available knowl-
edge, if any, about the DCOP(s) to solve regarding their graph structure. The
region optimal framework, that generalises the k- and t- optimal frameworks pro-
posed in [7, 4], defines quality guarantees for region optimal solutions, namely
solutions that are optimal in specific region of the DCOP. Thus, region opti-
mality allows to explore the space of local optimality criteria (beyond size and
distance) looking for those that lead to better solution qualities. To assess region
optimal quality guarantees, in our previous work [11] we propose two methods
with different computational costs: (1) a first one, based on solving an LP, that
guarantees tightness; and (2) a second one that requires linear time but does not
ensure tightness.

Unfortunately, previous work in region-optimal bounds fail to exploit some
a-priori knowledge of the reward structure of the DCOP problem, if available,
and only the knowledge of graph structure is exploited so far. As argued in
[1] for the particular case of k-optimality, this limits the applicability of these
approaches to many domains for which some information about the range of
rewards is available. For example, in sensor networks [12], we may know the
maximum reward of observing a phenomenon and the minimum reward when
we have no observations.

This is the shortcoming we address in this paper and at this aim we extend
the region optimal bounds to be able to exploit two different kinds of knowledge
about the reward structure. Concretely, we show how to tight region optimal
quality guarantees by assuming: (1) a ratio between the least minimum reward
to the maximum reward among relations, along the lines of [1] (e.g. the ratio
between the maximum reward of observing a phenomenon and the minimum
reward when no observation is known); and (2) that the minimum and maxi-
mum rewards per relation are known (e.g. the maximum reward of observing a
phenomenon and the minimum reward when no observation are known).

This paper is organised as follows. Section 2 provides some background on
DCOPs and on the region optimal framework. Section 3 extends region optimal
quality guarantees to exploit some a-priori knowledge about the reward struc-
ture. Section 4 analyses the tightness of the proposed reward-based guarantees
and the improvement with respect to the guarantees formulated in [11]. Finally,
section 5 draws conclusions.
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Fig. 1. Example of (a) a DCOP graph, (b) its 1-distance region, (c) its 5-size region
and (d) its 5-size-distance-bounded region

2 Background

2.1 DCOP

A Distributed Constraint Optimization Problem (DCOP) consists of a set of
variables, each assigned to an agent which must assign a discrete value to the
variable: these values correspond to individual actions that can be taken by
agents. Constraints exist between subsets of these variables that determine re-
wards to the agent team based on the combinations of values chosen by their
respective agents, namely relations. Let X = {x1, . . . , xn} be a set of variables
over domains D1, . . . ,Dn. A relation on a set of variables V ⊆ X is expressed
as a reward function SV : DV → R+, where DV is the joint domain over the
variables in V . This function represents the reward generated by the relation
over the variables in V when the variables take on an assignment in the joint
domain DV . Whenever there is no need to identify the domain, we simply use S
to note relations.expressed as negative rewards).



In a DCOP each agent knows all the relations that involve its variable(s). In
this work we assume that each agent is assigned a single variable, so we will use
the terms “agent” and “variable” interchangeably.

Formally, a DCOP is a tuple 〈X ,D,R〉, where: X is a set of variables (each
one assigned to a different agent); D is the joint domain space for all variables;
and R is a set of reward relations. The solution quality for an assignment d ∈ D
to the variables in X is the sum of the rewards for the assignment over all the
relations in the DCOP, namely:

R(d) =
∑
SV ∈R

SV (dV ) (1)

where dV ∈ DV contains the values assigned by d to the variables in V . With
slight abuse of notation we allow to write equation 1 as R(d) =

∑
S∈R S(d).

Solving a DCOP amounts to choosing values for the variables in X such
that the solution quality is maximized. A binary DCOP (each relation involves
a maximum of two variables) is typically represented by its constraint graph,
whose vertexes stand for variables and whose edges link variables that have
some direct dependency (appear together in the domain of some relation). An
example of a constraint graph is depicted in figure 1(a).

2.2 Region optimality

In [11] we introduce region optimality, a framework that generalise the k- and
t-optimal frameworks [7, 4] by providing reward-independent quality guarantees
for optima in regions characterised by any arbitrary criterion. Region optimality
allows to explore the space of criteria (beyond size and distance) looking for
those that lead to better solution qualities. Next we give a brief overview of the
region optimal framework by defining the concepts of neighbourhood, region and
region optimal solution.

Formally, a neighbourhood, A, is a subset of variables of X . For instance, fig-
ure 1(b)(1) depicts a neighbourhood for the DCOP in figure 1(a) where boldfaced
nodes in the constraint graph stand for variables included in the neighbourhood,
namely {x0, x1, x3}. Given two assignments x and y, we define D(x, y) as the
set containing the variables whose values in x and y differ. Then given a neigh-
bourhood A, we say that x is a neighbour of y in A iff x differs from y only in
variables that are contained in A, thus D(x, y) ⊆ A.

Given some assignment x, we say that it is optimal in a neighbourhood A if
its reward cannot be improved by changing the values of some of the variables
in the neighbourhood. That is, for every assignment y such that x is a neighbour
of y in A, we have that R(x) ≥ R(y). Thus, an assignment x is optimal in
the neighbourhood of figure 1(b)(1) if any other assignment that maintains the
values of x2, x4 and x5 as in x receives at most the same reward as x.

Given two neighbourhoods A,B ⊆ X we say that B completely covers A if
A ⊆ B. We say that B does not cover A at all if A∩B = ∅. Otherwise, we say that
B covers A partially. For each neighbourhood A we can classify each relation SV



in a DCOP into one of three disjoint groups, depending on whether Cα covers V
completely (T (A)), partially (P (A)), or not at all (N(A)). For example, given the
neighbourhood {x0, x1, x3} in figure 1(b)(1) we can classify the relations of the
DCOP in figure 1(a) as : T ({x0, x1, x3}) = {S{x0,x3}, S{x0,x1}}, P ({x0, x1, x3}) =
{S{x1,x2}, S{x3,x4}, S{x1,x4}}, N({x0, x1, x3}) = {S{x2,x5}, S{x4,x5}}.

A region C is a multi-set1 of subsets of X , namely a multi-set of neighbour-
hoods of X . For instance, figure 1(b) show a region composed of six neighbour-
hoods (b)(1)-(b)(6). Given a region C, we say that x is inside region C of y iff x
differs from y only in variables that are contained in one of the neighbourhoods
in C, that is, if there is a neighborhood Cα ∈ C such that x is neighbour of y in
Cα. Then, we can claim optimality for x in a region C (noted as xC) whenever
it is optimal in each neighbourhood Cα ∈ C, that is if it cannot be improved
by any other assignment inside region C. For instance, an assignment x will be
optimal in the region depicted in figure 1(a) if it is optimal in each of its six
neighbourhoods.

Finally, for each relation SV ∈ R we define cc(SV , C) = |{Cα ∈ C s.t V ⊆
Cα}|, that is, the number of neighbourhoods in C that cover the domain of SV
completely. We also define nc(SV , C) = |{Cα ∈ C s.t V ∩ Cα = ∅}|, that is,
the number of neighbourhoods in C that do not cover the domain of SV at all.
For instance, in the region of figure 1(b) there are two neighbourhoods that
totally cover the relation S{x0,x1}, namely neighbourhoods (1) and (2). Thus,
cc(S{x0,x1}, C) = 2. Moreover, there is only one neighbourhood that do not cover
S{x0,x1} at all, namely neighbourhood (6). Thus, nc(S{x0,x1}, C) = 1.

In [11] we show how region optimality generalises k− and t−optimality by
observing that: (i) both criteria are based on the definition of a region over
the constraint graph; and (ii) given any assignment, checking for either k-size
or t-distance optimality amounts to checking for optimality in that region. For
example, figure 1(b) shows the neighbourhoods corresponding to the 1-distance
region of the DCOP in figure 1(a), where each neighbourhood corresponds to
one variable and its direct neighbours (e.g. neighbourhood (1) includes vari-
able x0 and its direct neighbours) whereas figure 1(c) shows the neighbourhoods
corresponding to the 5-size region of the DCOP in figure 1(a), where each neigh-
bourhood stands for a set of five connected variables.

Furthermore, region optimality allows to explore the space of arbitrary crite-
ria to generate regions that otherwise will never be explored by size or distance
criteria. For example, figure 1(d) shows a region created by the size-bounded-
distance criteria proposed in [11]. Observe that the 5-size-bounded-distance re-
gion will never be created by either size or distance criteria because: (1) regard-
ing size, it includes regions of size 4 and size 5; and (2) regarding distance, the
region includes neighbourhoods different from the 1-distance region (shown in
figure 1(b)) and from the 2-distance region which includes neighbourhoods that
contain all the variables in the DCOP.

1 A multi-set is a generalisation of a set that can hold multiple instances of the very
same element.
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Fig. 2. Example of (a) a DCOP graph and (b) its 2-size region.

In the next section we describe the methods to calculate bounds for a C-
optimal assignment, namely an assignment that is optimal in an arbitrary region
C.

2.3 Region optimal reward-independent quality guarantees

In this section we review the methods proposed in [11] to calculate reward-
independent quality guarantees for any region optima. In [11] we propose two
methods to calculate region optimal reward-independent quality guarantees each
one with a different computational cost: (1) a first one, based on solving an LP,
that guarantees tightness; and (2) a second one, that requires linear time but
does not ensure tightness. Assuming no knowledge of reward structure (except
from they are non-negative) but exploiting the knowledge of the graph structure
when available, these methods provide worst case quality of a C-optimal solution
as a fraction of the global optimal, where C is an arbitrary region.

We say that we have a bound δ when we can state that the quality of any
C-optimal assignment xC is larger than δ times the quality of the optimal x∗.
Hence, having a bound δ means that for every xC we have that R(xC)

R(x∗) ≥ δ.

Tight region optima quality guarantees. For a given set of relations R,

let xC− be the C-optimal assignment with smallest reward, then R(xC−)

R(x∗) provides
a tight bound on the quality of any C-optimal for the specific rewards R.

In we show how to calculate a tight bound on a C-optimal assignment in-
dependently from the specific DCOP rewards by directly searching the space of

reward values to find the set of rewards R∗ that minimizes R∗(xC−)

R∗(x∗) .
The assessment of this bound involves to solve the following program:



Find R, xC and x∗ that
minimize R(xC)

R(x∗)

subject to xC being a C-optimal for R

Given the definition of region optimality, the condition of being a C-optimal
for R can be expressed as: for each x inside region C of xC we have that
R(xC) ≥ R(x). However, instead of considering all the assignments for which
xC is guaranteed to be optimal, we consider only the subset of assignments such
that the set of variables that deviate with respect to xC take the same value than
in the optimal assignment. If we restrict to this subset of assignments, then each
neighbourhood covers a 2|C

α| assignments, one for each subset of variables in the
neighbourhood. Let 2C

α

stand for the set of all subsets of the neighbourhood
Cα. Then for each Ak ∈ 2C

α

we can define an assignment xαk such that for
every variable xi in a relation completely covered by Ak we have that xαki = x∗i ,
and for every variable xi that is not covered at all by Ak we have that xαki = xCi .
Then, we can write the value of xαk as :

R(xαk) =
∑

S∈T (Ak)

S(x∗) +
∑

S∈P (Ak)

S(xαk) +
∑

S∈N(Ak)

S(xαk) (2)

Now, the definition of C-optimal can be expressed as:

R(xC) ≥
∑

S∈T (Ak)

S(x∗)+
∑

S∈P (Ak)

S(xαk)+
∑

S∈N(Ak)

S(xC) ∀Ak ∈ {2C
αk |Cαk ∈ C} (3)

that, by setting partially covered relations to the minimum possible reward (0
assuming non-negative rewards), results in:

R(xC) ≥
∑

S∈T (Ak)

S(x∗) +
∑

S∈N(Ak)

S(xC) ∀Ak ∈ {2C
αk |Cαk ∈ C} (4)

where T (Ak) is the set of completely covered relations, P (Ak) the set of partially
covered relations and N(Ak) the set of relations not covered at all.

Applying these transformations detailed in [9], we can simplify the initial
program into the following linear program (LP) with z and y being vectors of
positive real numbers:

minimize
∑
S∈R zS

subject to∑
S∈R yS = 1

and for each neighbourhood Ak ∈ {2Cαk |Cαk ∈ C} covered by C subject to∑
S∈R zS ≥

∑
S∈T (Ak) yS +

∑
S∈N(Ak) zS

where T (Ak) contains the relations completely covered by Ak and N(Ak) the
relations that are not covered by Ak at all.

As an example, consider the DCOP constraint graph in figure 2(a) and its
2-size region depicted in figure 2(b) for which we assess the LP region optimal
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Fig. 3. Example of reward tables for which the 2-size region optimal bound for the
DCOP of figure 2(a) is tight

bound as follows. In this case, we assume xC− = 〈x0 = 0, x1 = 0, x2 = 0, x3 = 0〉
and x∗ = 〈x0 = 1, x1 = 1, x2 = 1, x3 = 1〉 where 0 and 1 stand for the first
and second value in each variable domain. First we create the real variables, two
for each of the four relations. Thus, given the relation Sx0x1 we create two real
variables: one representing the value of xC−, zx0x1 , and one representing the value
of x∗, yx0x1 . Finally, to guarantee the optimality of xC we add six constraints, one
for each neighbourhood that compose the 2-size region depicted in figure 2(b).
Thus, for the neighborhood depicted at the left of the figure 2(b) (composed
of variables x0, x1), we constraint via c0 that the value of xC− must be greater
than the sum of the values of totally covered relations for x∗ (yx0x1) plus the
values of non-covered relations for xC− (zx2x3). The resultant linear programming
formulation is:

minimize zx0x1 + zx1x3 + zx2x3 + zx0x2

subject to
yx0x1 + yx1x3 + yx2x3 + yx0x2 = 1

and subject to:
(c0) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ yx0x1 + zx2x3

(c1) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ yx0x2 + zx1x3

(c2) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ 0
(c3) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ 0
(c4) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ yx1x3 + zx0x2

(c5) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ yx2x3 + zx0x1

After solving this LP, δ =
∑
S∈R zS provides a tight bound on the quality of

a C-optimal solution for the graph structure represented by R. Thus, by solving
the LP for the 2-size optimal region in figure 2(b) we obtain a bound δ = 1

3 .
Moreover, we can use the values of the instantiated real variables, corresponding
to the relations rewards for xC− and x∗, to generate DCOPs for which the assessed



bound is tight. Figure 2.3 shows a DCOP with a reward structure for which the
2-size region optimal bound δ = 1

3 obtained for the constraint graph in figure
2(a) is tight. It is easy to see that value of the 2-size optimal xC− = 〈0, 0, 0, 0〉 is
1/3, higher than the value of any assignment inside the 2-size region, whereas
the value of the optimal assignment x∗ = 〈1, 1, 1, 1〉 is 1.

Let M be the number of variables of the largest neighbourhood in C. The LP
has 2 · |R| variables and O(2M · |C|) constraints, and hence it is solvable in time
polynomial in |R| and in 2M · |C|.

Faster quality guarantees for region optima. Because the computational
complexity of the LP method can be high as the number of relations |R|, the
number of neighbourhoods |C| or its size M grows in we propose a faster alterna-
tive method to compute region optimal bounds. This faster method can compute
a bound, by means of proposition 1, in time O(|R||C|) but, as a counterpart, we
lose the tightness of the bound.

Proposition 1. Let 〈X ,D,R〉 be a DCOP with non-negative rewards and C a
region. If xC is a C-optimal assignment then

R(xC) ≥ cc∗
|C| − nc∗

R(x∗) (5)

where cc∗ = minS∈R cc(S, C), nc∗ = minS∈R nc(S, C), and x∗ is the optimal
assignment.

Proposition 1 proved in [11] directly provides a simple algorithm to compute
a bound. Given a region C and a graph structure, we can directly assess cc∗ and
nc∗ by computing cc(S, C) and nc(S, C) for each relation S ∈ R and taking the
minimum. This will take time O(|R||C|), that is linear in the number of relations
of the DCOP and linear in the number of neighbourhoods in the region.

Despite its complexity improvements, the bound assessed by proposition 1
is not guaranteed to be tight and can return worse bounds than the ones pro-
vided by the LP-based mechanism. As an example, now we turn back to fig-
ure 2 to assess the bounds for the 2-size optimal region in figure 2(b) using
equation 5. Given the relation S{x0,x1}, we assess the number of neighbour-
hoods that completely cover {x0, x1} as cc(S{x0,x1}, C2) = 2 (the first neighbour-
hood) and the number of neighbourhoods that do not cover {x0, x1} at all as
nc(S{x0,x1}, C2) = 1 (the sixth neighbourhood). After repeating the process for
the rest of relations in the constraint graph, we obtain that cc∗ = 1 and nc∗ = 1,
and hence cc∗

|C1|−nc∗ = 2
6−2 = 1

2 and hence, this faster bound is not tight (compare
with the tight bound assessed above δ = 1

3 ).
Both the LP and proposition 1 assess bounds that depend on the graph

structure but are independent of the specific reward values. We can always use
them to assess bounds independently of the graph structure by assessing the
bound for the complete graph, since any other structure is a particular case of
the complete graph with some rewards set to zero.



3 Reward-based region optimal bounds

Previous section reviewed two methods that provide bounds on any C-optimal,
characterized by an arbitrary C criterion, that are independent of the specific
reward structure. However, as shown in [1] for the specific criterion of group size,
if some knowledge of the reward structure of the problem is available then it can
be exploited to assess more accurate bounds. Here we show how to incorporate
reward structure knowledge in the region optimality framework and formulate
two different improvements by assuming:

– a ratio between the least minimum reward to the maximum reward among
constraints, the so-called minimum fraction reward (section 3.1); and

– the knowledge of the minimum and maximum rewards per relation, the so-
called extreme relations rewards (section 3.2).

Finally, section 4 provides results to characterise the gain on tightness ob-
tained when exploiting the knowledge about these different reward structures.

3.1 Based on the minimum fraction reward

In this section we show how to tight the LP-based or the faster region optimal
bounds described in section 2.3 when we know that the minimum reward is a
certain factor β (0 < β ≤ 1) of the maximum reward on any relation. Thus, this
refinement is a generalization of the improvements in tightness for size-optimal
bounds proposed in [1].

Extending the LP-based mechanism to exploit knowledge of the min-
imum fraction reward First, we show how assuming a minimum fraction
reward of β we tight the quality guarantees obtained by means of the LP mech-
anism described in section 2.3. In order to obtain a tighter bound, we will employ
the set of partially covered relations.

In this case, instead of setting the values of all relations
∑
S∈P (Cα) S(xαk) to

0, as in equation 4, we can exploit the knowledge that S(xαk) ≥ β·S(x∗) ∀S ∈ R.
Then, ∀Ak ∈ {2Cαk |Cαk ∈ C}, the restriction for assignment xαk is rewritten as:∑

S∈R
S(xC) ≥

∑
S∈T (Cα)

S(x∗) +
∑

S∈P (Cα)

β · S(x∗) +
∑

S∈N(Cα)

S(xC) (6)

Notice that it is the only change we need to do to incorporate the knowledge
of the minimum fraction reward and that the program can be simplified to an
LP, following analogous operations as the ones detailed in [9], with the same
number of variables than in the reward independent case.

As an example, we turn back to figure 2 to assess the LP region optimal
bound for the 2-size region depicted in figure 2(b) when assuming a minimum
fraction reward β. With respect to the reward-independent LP formulation, the
right part of each constraint is modified to add the real variables related to the



values of x∗ for the partially covered relations multiplied by β. This results in
the following LP formulation:

minimize zx0x1 + zx1x3 + zx2x3 + zx0x2

subject to
yx0x1 + yx1x3 + yx2x3 + yx0x2 = 1

and subject to:
(c0) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ yx0x1 + β · (yx1x3 + yx0x2) + zx2x3

(c1) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ yx0x2 + β · (yx0x1 + yx2x3) + zx1x3

(c2) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ β · (yx0x1 + yx1x3 + yx2x3 + yx0x2)
(c3) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ β · (yx0x1 + yx1x3 + yx2x3 + yx0x2)
(c4) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ yx1x3 + β · (yx0x1 + yx2x3) + zx0x2

(c5) zx0x1 + zx1x3 + zx2x3 + zx0x2 ≥ yx2x3 + β · (yx1x3 + yx0x2) + zx0x1

The solution of the LP defines a tight bound on the quality of a C-optimal
solution for the graph structure represented by R and rewards with a minimum
fraction reward of β. Thus, by solving the above LP with β set to 1

2 we assess
a C-optimal bound δ = 2

3 for DCOPs with rewards with a minimum fraction
reward of 1

2 . Notice that this per-reward bound provides a significant increment
with respect to the reward-independent bound assessed in section 2.3 and with
respect to the straightforward bound we can obtain by only taking into account
β, namely δ = 1

2 .

Extending the faster mechanism to exploit knowledge of the minimum
fraction reward Second, we show how assuming a minimum fraction reward
of β we can improve the faster C-optimal bounds, reviewed in section 2.3. Before
that we define, for each relation S ∈ R, pc(S, C) = |C|−nc(S, C)−cc(S, C) as the
number of neighbourhoods in region C that partially cover relation S. Then, the
following proposition shows how to exploit the minimum fraction reward along
with the partially covered relations to obtain a bound tighter than the one in
equation 5.

Proposition 2. Let 〈X ,D,R〉 be a DCOP, C a region and β the minimum
fraction reward. If xC is a C-optimal assignment then:

R(xC) ≥
(

cc∗
|C| − nc∗

+ β
pc∗

|C| − nc∗

)
R(x∗) (7)

where cc∗ = minS∈R cc(S, C), nc∗ = minS∈R nc(S, C), pc∗ = minS∈R pc(S, C),
and x∗ is the optimal assignment.

Proposition 2 directly provides a simple algorithm to compute a bound. Given
a region C and a graph structure, we can directly assess cc∗, pc∗ and nc∗ by
computing cc(S, C), pc(S, C) and nc(S, C) for each relation S ∈ R and taking the
minimum. This will take time O(|R||C|), that is linear in the number of relations
of the DCOP and linear in the number of neighbourhoods in the region. As an



example, now we turn back to figure 2 to assess the bounds for the 2-size region
C2 in figure 2(b) when assuming a minimum fraction reward β = 1

2 . Given
the relation Sx0,x1 we assess the number of neighbourhoods that completely
cover {x0, x1} as cc(Sx0x1 , C2) = 1 (the first neighbourhood), the number of
neighbourhoods that partially cover {x0, x1} as pc(Sx0x1 , C2) = 4 (from the
second to the fifth neighborhoods) and the number of neighbourhoods that do
not cover {x0, x1} at all as nc(Sx0x1 , C2) = 1 (the sixth neighbourhood). After
repeating the process for the rest of relations in the constraint graph, we obtain
that cc∗ = 1, pc∗ = 4 and nc∗ = 1, and hence cc∗

|C|−nc∗+β pc∗
|C|−nc∗ = 1

6−1 + 1
2 ·

4
6−1 =

3
5 . Notice that this leads to a significant improvement with respect to the reward-
independent faster bound assessed in section 2.3 as δ = 1

5 although this bound
is also not tight (compare with the C-optimal bound δ = 2

3 assessed by means
of the LP ).

Proof. The proof is analogous to the one for the general bound of equation 5
formulated in [11], but without disregarding partially covered relations. For every
Cα ∈ C, consider an assignment xα such that: xαi = xCi if xi 6∈ Cα, and xαi = x∗i
if xi ∈ Cα. Since xC is C-optimal, for all Cα ∈ C, R(xC) ≥ R(xα) holds, and
hence:

R(xC) ≥

∑
Cα∈C

( ∑
S∈T (Cα)

S(x∗) +
∑

S∈N(Cα)

S(xC) +
∑

S∈P (Cα)

S(xα)

)
|C|

. (8)

Using β we can express the third term in equation 8 in terms of R(x∗)
considering that the knowledge for any relation S ∈ R satisfies S(xα) ≥ β ·S(x∗).
Therefore, the following inequalities hold:∑

Cα∈C

∑
S∈P (Cα)

S(xα) ≥
∑
S∈R

pc(S, C) · β · S(x∗) ≥ pc∗ · β · R(x∗) (9)

From the proof of the general bound of equation 5 in [11] we know that the
first and the second sets of relations of equation 8 can be also expressed in terms
of R(xC) and R(x∗). Therefore, after substituting these results in equation 8
and rearranging terms, we obtain equation 7.

3.2 Based on the extreme relation rewards

In this section we show how to tight the reward-independent C-optimal bound δ
for a DCOP problem when we know the values of the minimum and maximum
rewards for each relation S ∈ R, namely lS = mindV ∈DV S(dV ) and uS =
maxdV ∈DV S(dV ) respectively.

Proposition 3. Let 〈X ,D,R〉 be a DCOP and C a region. If xC is a C-optimal
assignment then:

R(xC) ≥ 1
U

((U − L) · δ + L) · R(x∗) (10)

where U =
∑
S∈R uS, L =

∑
S∈R lS.



Proposition 3 directly provides a constant-time method to tight any reward-
independent C-optimal bound δ by assuming that the extreme values of relations
are known. Because proposition 3 does not make any assumption about how
δ is calculated rather than it is reward-independent C-optimal bound for xC ,
this improvement applies to both mechanism reviewed in section 2.3: (i) to the
reward-independent C-optimal bounds obtained by means of the LP; and (ii) to
the faster reward-independent bounds of equation 8.

As an example we turn back to figure 2 to assess the bounds for the 2-size
region C2 in figure 2(b) when assuming some particular extreme rewards per
relation. First, assume a first scenario in which each relation of the DCOP in
figure 2(a) has a minimum reward of 2 and a maximum reward of 4. Thus, U = 16
and L = 8. In this scenario, when the reward-independent bound is assessed by
means of the LP method explained in section 2.3 δ = 1

3 , and hence the bound
of proposition 3 is 1

U ((U − L) · δ + L) = 1/16 · ((16− 8) · 1/3 + 8) = 2/3. In a
similar way, if δ is set to the faster reward-independent bound obtained by means
of equation 5 δ = 1/5, the bound of proposition 3 is 1/16·((16−8)· 15 +8) = 3/5. It
is worth noting that these bounds are the same than the bounds obtained in the
above section by the respective LP and the faster mechanisms when assuming a
minimum fraction reward of β = 1

2 . Thus, in this first scenario the two different
assumptions about the reward structure lead to the same bounds.

Now assume a second scenario in which the DCOP in figure 2(a) has two
relations with a minimum reward of 2 and a maximum of 4, and two relations
with a minimum reward of 3 and a maximum of 4. Thus, U = 16 and L = 10.
In this scenario, when reward-independent bound is assessed by means of the
LP method the bound of proposition 3 is 1/16 · ((16 − 10) · 1/3 + 10) = 3/4
whereas when it is assessed by means of the faster method is 1/16 · ((16− 10) ·
1
5 + 10) = 7/10. Therefore, in this second scenario, exploiting the knowledge
about the extreme rewards of relations leads to tighter bounds than exploiting
the knowledge about the minimum fraction reward.

Next we provide the proof for proposition 3.

Proof. Let R̂ be a distribution defined as R̂(x) = R(x)−L =
∑
S∈R(S(x)− lS).

Notice that the rewards of R̂ are non-negative because after substracting the
minimum of each non-negative relation of R we obtain new relations in which
the minimum value is 0. Moreover, because the value of any assignment in R̂ is
equal to the value in R plus a constant, any C-optimal xC in R is also C-optimal
in R̂. Thus, by definition of C-optimal bounds the following inequality holds:

R̂(xC) ≥ δ · R̂(x∗) (11)

Then by expressing R̂ in terms of R and isolating R(xC) we obtain:

R(xC) ≥ δ · R(x∗) + (1− δ) · L (12)

Now multiplying and dividing the right equation side by R(x∗):

R(xC) ≥
(
δ · R(x∗) + (1− δ) · L

R(x∗)

)
· R(x∗) (13)



Since the bound provided by equation 13 above increases as the value of
the optimum, R(x∗), decreases, we can get rid of R(x∗), which is in general
unknown, by replacing it with an upper bound. By definition, U is an upper
bound of R(x∗). Hence, we can substitute U for R(x∗) to obtain equation 10.

Equation 10 places the reward-independent bound in equation 5 within the
[L,U ] scale, and subsequently assesses the fraction of upper bound U that it
represents.

4 Comparing reward-dependent bounds

Since the more knowledge quality guarantees exploit from the problem the
tighter they are likely to be, per-reward region optimal guarantees proposed in
the above sections are expected to be tighter than reward-independent bounds
of section 2.2. Furthermore, because not all the assumptions over the reward
structure have the same level of specificity, exploiting the knowledge about the
extreme rewards per relation is also expected to lead to tighter quality guarantees
than only assuming a ratio between them.

Hence, at the aim of illustrating the tightness of region optimal quality guar-
antees when exploiting different knowledge about the reward structure, we pro-
vide with: (i) empirical results that show the average-case improvement over
LP-based region optimal bounds; and (ii) theoretical results that characterise
the relations between faster region optimal bounds.

4.1 Comparing LP region optimal quality guarantees

Next we provide with results that illustrate the average-case region optimal
bounds assessed with the LP mechanism.

Figures 4(a)(b) show the values of the region optimal bounds, defined as a
percentage of the optimal, for random DCOPs with 100 agents and density 4
using as a criterion neighborhoods of size 3 and of distance 1 respectively. All
results are averaged over 50 sample instances. Bounds are calculated using the
LP method. Because, intuitively, the gain obtained by exploiting the knowledge
about the extreme rewards per relation with respect to the minimum fraction
reward varies with the heterogeneity of the reward structure, we generate DCOPs
with two types of relations: (1) type 1, relations whose rewards are integers
drawn from a uniform distribution U [2500, 10000] and (2) type 2, relations whose
rewards are integers drawn from a uniform distribution U [5000, 10000].

The dotted lines show the per-reward bounds when exploiting the knowledge
of the minimum fraction reward, the dashed lines when exploiting the knowledge
of the extreme relation rewards and the solid lines show the region optimal
bounds as presented in section 2.3, that apply to any reward structure. The x-axis
represents the fraction of the total relations of type 2 with respect to the default
relations of type 1. First of all observe that, independently of the particular
knowledge exploited, per-reward bounds provide significant improvements with
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Fig. 4. Reward-based bounds on 100 agent random DCOPs with density 4 using as a
criterion (a) node size 3 and (b) distance 1.

respect to the reward-independent bound. For example, in figure 4 (a) the reward
independent bound is around 12% whereas per-reward bounds are around 22%
when exclusively relations of type 1 (x-axis= 0) and around 60% when exclusively
using relations of type 2 (x-axis= 1). Moreover, it is worth noting that when
all relations are of the same type, independently of the knowledge exploited
about the reward, both per-reward bounds are very close. In contrast, in mixed
instances, when both type of relations are present, graphs show that minimum
fraction reward bounds can not improve the bound further by taking advantage
of relations of type 2. Indeed, when exploiting the minimum fraction reward the
LP mechanism does not get a significant improvement with the introduction
of relations of type 2 until relations of type 1 disappear. In contrast, when
exploiting the knowledge about the extreme relation rewards the region optimal
bound progressively increases with the fraction of relations of type 2.

In summary, these results show how exploiting more knowledge about the
reward structure, such as the extreme rewards per relation, help obtain tighter
bounds for a wider range of reward distributions, particularly in heterogeneous
distributions composed of rewards of different kind.

4.2 Comparing faster region optimal quality guarantees

In what follows we provide with some theoretical results on the improvement
on bound tightness of the faster region optimal quality guarantees under the
different reward structure assumptions.

On the one hand, it is easy to see that the faster per-reward region optimal
guarantees assessed by equation 7 and 10 are guaranteed to be greater or, in the



worst-case equal, than the faster reward-independent region optimal guarantees
assessed by means of equation 5.

On the other hand, we are interested in comparing per-reward faster quality
guarantees when exploiting different assumptions over the reward structure. At
this aim, next we prove that faster quality guarantees that exploit the knowledge
about the extreme rewards per relation are guarantee to be tighter than those
that exploit the minimum fraction bound.

Proposition 4. Let 〈X ,D,R〉 be a DCOP, C a region, β the minimum fraction
reward, where lSV = min

dV ∈DV
SV (dV ), uSV = max

dV ∈DV
S(dV ):

cc∗
|C| − nc∗

+ β
pc∗

|C| − nc∗
≤ U − L

U

cc∗
|C| − nc∗

+
L

U
(14)

Proof. After rearranging terms and simplifying, we obtain that equation 14 is
equivalent to:

pc∗ · β ≤ (|C| − nc∗ − cc∗) ·
L

U
(15)

First, from the definition of partial covering, pc(S,C) = |C| − nc(S,C) −
cc(S,C), we observe that pc(S,C) increases as nc(S,C) and cc(S,C) decrease.
Since nc∗, cc∗ are the minimum values that functions nc, cc can take on respec-
tively, then pc∗ ≤ |C| − nc∗ − cc∗ holds. Therefore, proving that β ≤ L

U , namely

that minS∈R lS
uS
≤

P
S∈R lSP
S∈R uS

, is enough to prove that equation 15 holds. We build
the proof by induction of the number of relations n = |X |. Consider without loss
of generality a problem with n relations such that lr1

ur1
≤ . . . ≤ lrn−1

urn−1
≤ lrn

urn

holds. If n = 2, then min( lr1ur1 ,
lr2
ur2

) ≤ lr1+lr2
ur1+ur2

simplifies to lr1
ur1
≤ lr2

ur2
, which by

problem definition is true. When n > 2 we must prove that lr1
ur1
≤ lr1+

P
j≥2 lrj

ur1+
P
j≥2 urj

holds, or equivalently that lr1
ur1
≤

P
j≥2 lrjP
j≥2 urj

. By recursively applying the expres-

sion for n = 2 to
P
j≥2 lrjP
j≥2 urj

we obtain that:P
j≥2 lrjP
j≥2 urj

= lr2
ur2

+
P
j≥3 lrjP
j≥3 urj

≥ min( lr2ur2 ,
P
j≥3 lrjP
j≥3 urj

) ≥ . . .

≥ min( lr2ur2 ,min( lr3ur3 , . . . ,min(
lrn−1
urn−1

,min( lrnurn ) . . .) = lr2
ur2

.

Thus,
P
j≥2 lrjP
j≥2 urj

≥ lr2
ur2

and consequently,
P
j≥2 lrjP
j≥2 urj

≥ lr1
ur1

holds.

5 Conclusions

In this paper we extended the region optimal region bounds in [11] to exploit
some a-priori knowledge of the reward structure of the problem, if available.
To that end, this paper provided reward-dependent bounds that incorporate as
available prior knowledge: (i) a ratio between the least minimum reward to the
maximum reward among relations; (ii) a minimum and maximum rewards per
relation.
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