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Abstract

The multinomial logistic regression (MLR) model is widely used in
statistics and machine learning. Stochastic gradient descent (SGD) is
the most common approach for determining the parameters of a MLR
model in big data scenarios. However, SGD has slow sub-linear rates of
convergence Ij] A way to improve these rates of convergence is to use
manifold optimization E] Along this line, stochastic natural gradient
descent (SNGD), proposed by Amari BL was proven to be Fisher efficient
when it converged. However, SNGD is not guaranteed to converge and it
is computationally too expensive for MLR models with a large number of
parameters.

Here, we propose a stochastic optimization method for MLR based on
manifold optimization concepts which (i) has per-iteration computational
complexity is linear in the number of parameters and (ii) can be proven
to converge.

To achieve (i) we establish that the family of joint distributions for
MLR is a dually flat manifold and we use that to speed up calcula-
tions. Sénchez-Lépez and Cerquides B] have recently introduced con-
vergent stochastic natural gradient descent (CSNGD), a variant of SNGD
whose convergence is guaranteed. To obtain (ii) our algorithm uses the
fundamental idea from CSNGD, thus relying on an independent sequence
to build a bounded approximation of the natural gradient. We call the
resulting algorithm dual stochastic natural gradient descent (DNSGD).
By generalizing a result from Sunehag et al. ﬂa], we prove that DSNGD
converges. Furthermore, we prove that the computational complexity of
DSNGD iterations are linear on the number of variables of the model.

Keywords: Multinomial logistic regression, Stochastic gradient descent, Nat-
ural gradient, Convergence, Riemannian manifold, Computational complexity
1 Introduction

Multinomial Logistic Regression (MLR) is a widely used tool for classification.
Some relevant examples solving real-world tasks are ﬂa] for the image classifi-
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cation branch, [7] for video recommendation tasks, or numerous examples in
health and life sciences for analyzing nominal qualitative response variables, to
name some |8, 19, 10, [11].

The justification of MLR goes beyond practical. In statistical decision the-
ory, it is well known that MLR for the choice probability can be derived assuming
that (i) the random utilities are independent and identical distributed (i.i.d.)
across alternatives and that (ii) their common distribution is a Gumbel func-
tion |[12]. Recent results [13] show that the Gumbel distribution for the choice
variables is not necessary and that any distribution which is asymptotically
exponential in its tail is sufficient to obtain the MLR model.

Cross-entropy, also known as log-loss, is the loss function most used in MLR
and it is also convenient from a statistical decision theory standout. Once
the form of the loss function is elicited [14, [15] and the inverse link function
is understood as a mapping from scores to class probabilities, the log-loss is
proved to be a proper composite loss together with logistic regression models
[15, 116, 17]. This provides theoretical support for the usage of the log-loss from
the standpoint of statistical decision theory.

Classification algorithms predict the value of a discrete variable (class) given
some other variables (features). We use Y for the class variable and X € Q for
the features. We assume a finite set of classes Y € {1, ..., s}. We are interested in
computing the unknown conditional probability distributions P(Y | X'). This is
accomplished by optimizing the expected risk function [18]. Stochastic gradient
descent (SGD), even though it was introduced in the mid-twentieth century, is
the most common approach for the task because it is fast and simple. The strat-
egy of SGD is very intuitive: Assume P is an unknown probability distribution
on X x Y, L is a differentiable function from R¥ to R, and [ is a differentiable
loss function such that L(n) = E.p [I(7, 2)]. If o € R¥ is an initial estimation,
SGD algorithm is defined by the update equation

N1 < e — Ve VI, s¢) (1)

where Vi(n,s;) = IS_lr\ > s, VI, 2) is an approximation to the gradient of
L(n:) according to a sample set s; ~ P and ~,; is a positive number encoding
the learning rate. After certain regularities on the function and the learning
rate, SGD converges to the minimum [19]. However, usually convergence speed
suddenly drops after a moderate solution quality has been reached, making the
minimum unreachable from a practical point of view. Furthermore, SGD highly
depends on the learning rate parameter, which can be difficult to tune, and it is
vulnerable to the plateau phenomenon and to ill-conditioning. To face this issue,
many SGD variants have arisen that basically modify the direction VI(n;, s;)
using a positive semi-definite matrix M;. Specifically, such generalization of
SGD can be described by equation

Ner1 < M — Ve MV, 5t) (2)

where M; is commonly a preconditioning matrix capturing the local curvature
or related information such as the Hessian matrix in Newton s method [20] or



the inverse of the Fisher Information Matrix in Stochastic Natural Gradient
Descent (SNGD) [3]. Due to the increment of the computational complex-
ity (equation [2 defines a second order method) a trade-off between quality of
curvature information and computational cost is assumed. Some widely used
examples are preconditioned SGD, diagonal approximations of the Hessian [21];
Adagrad |22], Adadelta [23], RMSProp [24] or Adam [25] that use the diagonal
of the covariance matrix of the gradients.

Among existing preconditioning matrix algorithms, we focus our attention
to SNGD and its variants. This kind of algorithm runs over a smooth manifold
M of dimension n [26] equipped with a metric g defined at every p € M. Metric
gp is the positive-definite tensor that expresses the local metric information at
p. The pair (M, g) is a Riemannian manifold of dimension n [26]. It is possible
to choose a system of coordinates n € U C R™ — or parametrization — to refer
to points in M. In this case the metric information of ¢ at 7 is given by an
n dimensional square matrix G, symmetric and positive-definite, in the base
derived by the parametrization.

Assume M is not standard R"™, for instance when M is a sphere of dimension
n or when it is a Statistical manifold [27], that is, manifolds whose points
refer to probability distributions of the same family, where usually the Fisher
information metric (FIM) is choosed. In such cases, it is interesting to work in a
Riemannian manifold for two reasons. First, because it provides correct notions
of angles and local lengths which yields better updates. This is important when
the gradient is the key tool for an optimization algorithm, since the gradient
possesses these local magnitudes. And second, it allows to correctly define a
direction in the space, in opposition to what happens with SGD, where the
descent direction is parametrization dependent, in the sense that the gradient
depends on the selected parametrization 7.

Roughly speaking, the gradient of a function f at p € M is the steepest
direction of f at p. In a Riemannian manifold this is called the natural gradient
by [3], noted as Vf(p), and it is well defined since it takes into account the
metric. If a parametrization 7 is fixed, Amari [3] proved that

Vin) = (Gy) 'V fn) (3)

where V f(n) is the natural gradient at 7 in the base derived by the parametriza-
tion.

SNGD follows the natural gradient instead of the gradient. In particular, it
sets the preconditioning matrix M; = (G,,)~" in update equation [ to follow
the natural gradient according to equation [3]

Mo = N — 7V, 22)

o (4)
e —7(Gn,) ™ Vi, 2t)

This algorithm, or an approximation, usually speeds up learning in many prob-
lems, avoids the plateau effect and it defines parametrization independent di-
rections. However, it faces two main problems:



i) its computational complexity is high due to the need of either inverting a
matrix or solving a linear system, and

ii) it does not converge in some scenarios where SGD does [28] or it needs
stronger assumptions such as compactness to stabilize [29].

Issue i) warns about the higher computational complexity order, which really
is a problem for nowadays large-scale high-dimensional problems, and issue ii)
refers to the convergence property.

The objective of this work is to propose a natural gradient optimization
method [2] for MLR, the Dual Stochastic Natural Gradient Descent (DSNGD),
whose convergence is proven and whose computational complexity order equals
that of SGD. Therefore this article reveals a strategy to approximate SNGD
without suffering issues i) and ii).

To deal with issue i) we establish that the family of joint distributions for
MLR is a dually flat manifold and we use that to speed up calculations. To
overcome issue ii) our algorithm uses the fundamental idea from CSNGD [4],
relying on an independent sequence to build a bounded approximation of the
natural gradient.

Section [2] introduces some related work with essential concepts needed to
solve issues i) and ii) for our natural gradient based algorithm. Section Bl defines
DSNGD. Sections [l and [l face issues i) and ii) respectively for the discrete case,
that is, when X = {1,...m}, and they prove discrete DSNGD is convergent and
as fast as SGD, in terms of complexity order.

2 Related work

2.1 Dually flat manifolds

Issue i) is adressed in this paper by restricting to dually flat manifolds (DFM)
[30,131]. The computational cost of natural gradient can be significantly reduced
if the ambient space is a dually flat manifold, as one can see for instance for
mirror descent [32].

DFM are built after two dual connections — conjugate connections — that are
flat, that is, where Riemann-Christoffel curvature vanishes. As it is proved in
[30], in such manifolds, there exist two dual parametrizations n and n*, related
by the Legendre transform of a convex function F'(n), such that

n* = VF(n)

VQF@?) =G, )

considering that n and n* refer to the same point. This leads to a key property



of DFM, starting by applying the chain rule to equation Bl

V) = (Gy) "'V f(n)

= (Gn) 'V )V (")

= (Gy) 'VVEMV f(n*) (6)
= (Gn)flGan(n*)

=Vfn)

for any differentiable function f defined in M. Equation [@] is proved for linear
exponential families, a well known DFM, in [33] and [34]. Therefore, equation [Gl
states that the natural gradient equals the gradient in its dual parametrization.
Here one deduces a strategy to compute the natural gradient, or an approxi-
mation, without paying the costs of matrix inversion or linear system solving.
Summing up, the main idea that solves issue ii) is equation[fl For example, in
the case of SNGD in a DFM, one equivalently writes SNGD as

Ner1 < e — VI, 2t) (7)

Equations M and [7 define SNGD, but the latter avoids matrix inversions and
linear system solving.

2.2 Mirror descent

DSNGD described in this article is by no means the only algorithm taking profit
from dual space properties. Mirror descent algorithm [32] makes use of dual
parametrizations. As proved in [34], mirror descent in a dually flat manifold is
nothing else than SNGD run in the dual space.

According to |35], mirror descent follows below update rule.

ne <V E*(n;)

. (8)
Nip1 < VE@m) — v Vi(ne, st)

where F' is a convex function and F* is the Legendre transform of F. Even
though both DSNGD and mirror descent rely on duality, there are clear differ-
ences between them: (i) mirror descent is normally defined for off-line learning,
(ii) DSNGD has its convergence guaranteed, and (iii) mirror descent keeps a se-
quence of points in the manifold expressed both in primal and dual parametriza-
tions while DSNGD has two sequences moving in the primal and dual space
which are not necessarily connected. Difference (iii) is specially relevant since
it requires mirror descent to rely on the computation of duals, while DSNGD
can be run in spaces where we do not even know how to efficiently compute the
dual coordinates of a point when given its primal coordinates.



2.3 Multinomial logistic regression

As described above, our strategy to reduce the per-iteration computational com-
plexity of DSNGD relies on the fact that the family of joint distributions for
MLR is a dually flat manifold.

The main assumption of MLR [36] is that the log-odds ratio of the class
posteriors P(Y | X) is an affine function of the features X'. Banerjee [36] proved
(Theorem 2) that a class of distributions fulfills that assumption if and only if
for each value of Y, the class of conditional distributions P(X | ) belongs to
the same linear exponential family (LEF)E In section B.I] we use these results
to prove that the class of joint distributions P(), X) is also a LEF. It is well
known that a LEF is a DFM [30]. Usually, finding the minimum expected risk
MLR parameters is formulated as an optimization problem in R¥ which is solved
by means of SGD. Instead, we propose to formulate the problem as a manifold
optimization problem |2], over the manifold of probability distributions P(Y, X)
fulfilling the main assumption of MLR. Since we will prove that this manifold is
dually flat, this formulation of the problem will allow us to capture the curvature
information of the manifold efficiently.

2.4 Convergent Stochastic Natural Gradient Descent

In [4], an convergent variant for SNGD, namely CSNGD, is presented. CSNGD
becomes stable in every toy scenario presented, unlike SNGD which fails in
those same situations. Moreover, from a practical point of view it inherits the
convergence speed of SNGD. CSNGD is defined with the update rule

M1 < ne — 1e(Ge,) " Vi, 2¢) 9)

where {(;}+en can be any convergent sequence in R¥. Both SNGD and CSNGD
work by progressively building a sequence {n;}ien. However, CSNGD addi-
tionally maintains an independent sequence (;, which is only required to be
convergent. This difference allows CSNGD to converge to the unique minimum
of a convex function after some reasonable conditions on the learning rate pa-
rameter. Precisely, SNGD does not converge due to the inverse matrix (G, )~
in equation [4] since eigenvalues of that matrix are unbounded. CSNGD forces
convergence and eigenvalue confinement of sequence {(G¢,) ' }ten because of
the convergence of sequence {(;}+en and continuity property, stabilizing the al-
gorithm. This idea is used in section B to define DSNGD and it allows us to
prove its convergence in section

2.5 Convergence of interior half-space gradient approxi-
mations

In [5] Sunehag et al. provide a variable metric stochastic approximation theory.
One of the key results in that paper is Theorem 3.2 which proves convergence

IFor a definition of linear exponential family see [37]



given that we take a scaling matrix B; at step ¢ of the algorithm, provided that
the spectrum of their (possibly non-convergent) scaling matrices is uniformly
bounded from above by a finite constant and from below by a strictly positive
constant. Moreover it assumes the step direction at iteration ¢ is some Y; modi-
fied by the scaling matrix. Vector Y; is drawn from a family of random variables
Y defined for all , and Y; = Y (1:). The result is stated here.

Theorem 1 (Theorem 3.2 in [5]). Let L : R¥ — R be a twice differentiable
function with a unique minimumT and N1 = Ne—Y: B Y where By is symmetric
and only depends on information available at time t. Then 1y converges to i
almost surely if the following conditions hold

C.1 (Vt) E,Y; = VL(1;)
C.2 3K)(vn) [|[ViL(n)|| < 2K

C.3(¥0>0 inf VL >0
(95>0) it VLG
C.4 (3A,B)(vt) E, |Yi||* < A+ B -L(m)

C.5(3m,M:0<m< M <o) (Vt)ymI < B, < MI,where I is the identity matriz;

C.6 Z'yf < 00, Z”yt =00
t t

E; in conditions C.1 and C.4 notes the conditional expectation given obser-
vations until time ¢t. That is, E;X = E[X | F], where F; = {m1,...,m:} in this
case. We recall Robbins-Siegmund Theorem [38] below, which is the key tool
for proving both Theorem [I] and our generalization.

Theorem 2 (Robbins-Siegmund). Let (£, F, P) be a probability space and Fy C
Fo C --- a sequence of sub-o-fields of F. Let Uy, By, ex and (¢, t = 1,2,... be
non-negative Fy-measurable random variables such that

E(Ut+1 |]:t) < (1+ﬂt)Ut+€t_<t7 t= 1,2,... (10)

Then on the set {d, By < 00, Y, & < oo}, Uy converges almost surely to a ran-
dom variable, and ), ; < 0o almost surely.

3 Dual Stochastic Natural Gradient Descent

Recall from the introduction that the main idea to reduce the computational
complexity of DSNGD is to define our optimization problem over a DFM. We
start by establishing in section B.Ilthat the family of joint distributions P(Y, X)
satisfying the core MLR assumption is a LEF and hence a DFM. Then, we rely
on duality to provide an efficient computation of the natural gradient of the
log-loss function in section Finally, we provide the DSNGD algorithm in
section



3.1 MLR generative model. The joint distribution

The next result proves that the the family of joint distributions P(Y, X) satis-
fying the core MLR assumption is a LEF and hence a DFM.

Proposition 1. The log-odds ratio of the class posteriors P(Y | X) is an affine
function of the features X if and only if the joint distribution P(),X) belongs
to LEF.

Furthermore, there exist the LEF natural parametrization of the joint distri-
bution

expS(y)Ta +T(z)T 5,
A(n)

Pn(:Z?,y) =

(11)
Ai) = [ Y expst)a+ TS,
Ty
where n = (o, B), « € R*™L, B € R¥*t, B, is the y-th row of B and
T:Q—R
(12)

S:[1,..5] — R
are sufficient and minimal statistics of X and Y respectively.

The proof relies strongly on theorem 2 in [36] and can be found in ap-
pendix [Al This is convenient for our purpose, because, if we recall section 2.1]
in a DFM the costs of natural gradient computations can be highly reduced,
based on the property shown by equation Next, we provide the dually flat
parametrization of P(}), X).

3.1.1 Dually flat parametrization of the joint distribution

We have seen that P(),X) is a LEF and that we can choose the natural
parametrization of equation [[I] With a linear transformation, S can become
a canonical statistic, that means, S(i); = §;=; for 1 < i < s and S(s) = 0.
For simplicity, we fix statistic S to be canonical from now on. The conditional
probability distributions with n parametrization are

expS(y)Ta+T(x)T8,
>, expS(y)Ta+T(x)T8,

As [30] proves, the exponential family manifold is built after the convex
function F'(n) = log A(n). The reference proves that this Riemannian manifold
derived from F(n), according to equation Bl has the Fisher information metric,
as is usually considered for statistical manifolds, defined as

Py | =) = (13)

Gy = —Egyp, [VZ1og Py (y, z)] (14)

Equation[§l also reveals the dual parametrization n*. For LEF, it is called the
expectation parametrization and it is shown below. For more properties of the



dual parametrization see |30]. To simplify the notation, if = (331 e xn),

we note V, = (8%1 %)T. So for every i € {1,..., s} write

@ =VaF(n) =Y Su)Py(y) = Ey[S)] = (Py(¥Y = 1), (Py(¥ = 5 = 1))T

Bi =V F(n) =P (Y =) /XT(I)Pn(x | Y =i) = Py(Y = i)Ex|y=i[T(x)]
(15)
Define n* = (o*, 8*) with 8 = (87, ..., 8%) the dual parameterization, or equiv-
alently, the expectation parameters.
Observe that P(Y) is the categorical distribution (since Y is discrete and

finite) and therefore it is a LEF, where o* are actually the expectation param-
eters. Moreover

Bi

= IR = Ex|y=i(T(v)] (16)

are the expectation parameters of the conditional distribution P(X | Y = 1).

3.2 Fast natural gradient of the log-loss

This section allows to compute the natural gradient of the log-loss function with-
out having to use the metric matrix directly, but using both dual parametriza-
tions instead.

Given (y,z) € ¥ x X and n € R*, the log-loss function is defined as

l(n,z,y) = —log Py(y | x) (17)

Below result reveals Vi (n,x,y) using both dual parametrizations n and n*.

Proposition 2. Let [ be the log-loss function. Then, if P(Y,X) is a DFM

Vi(n,z,y) = Vh(z,n") - (ay(z, Py) — es(y)) (18)
where
Py =1|x)
qy(z, P) = : ; (19)
P(Y = s|z)

h(z,n*) = (log Py (Y = 1,x),...1og P« (¥ = s,x)) and es(k) is the k-th canoni-
cal s-dimensional vector.

The proof of proposition 2l is presented in Appendix [Bl To evaluate the
computational complexity of using equation [[§ we determine an expression of



Vh(z,(*) with respect to the expectation parameters 6, of X' given ) already
mentioned in equation Below notation is used

-1
1= 6]V, log Ps, (z | )
K; = i—1 : d(x,y,(") = — . (20)
1 - Pe-(y)
-1
and the proof is shown in Appendix [Cl
Proposition 3.
Ve (@, ¢
Ve h(z, ")
Vh(z,¢y= | (21)
where
Varh(z,(*) =K - diag(d(x,1,("), ..., d(z, 5,(7))
ng 1ng)9,C (I | y = k) . es(k:)T (22)

Vaeh(z, (") =

sph(, C7) P =)

The complexity analysis of natural gradient is presented now, and the reader
can find the proof in appendix [El

Proposition 4. The computational complexity of the natural gradient %l(n, z,y)
using proposition[is O(s-(A+t)) where A is the cost of computing Vg, log Py, ( |
Y), s is the number of classes and t is the dimension of statistic T.

Observe that the manifold dimension is & = s — 1+ s-t and therefore, a com-
putation is linear on the number of the variables of the model if its complexity
order is O(k) = O(s(1 4+ t)) = O(st). Therefore, the costs of computing the
natural gradient can be reduced to linear if the cost A is low enough, precisely,
if A is at most linear (O(A) < O(k)). This is the case when X is discrete and
finite (section M.

3.3 DSNGD definition

DSNGD aims to solve the MLR optimization problem using the natural parametriza-

tion n of the LEF on ) x X: If P is an unknown probability distribution over

Y x X, optimize L(n) = E [l(n,z,y)] for n € R* where I(n,z,y) is the

log-loss function. The solution 77 € R* to this problem refers to the conditional

distributions P5(Y | &) that better fits the hidden conditional distributions

P(Y|X). To that end, we define a stochastic natural gradient based algorithm.
Using proposition 2l DSNGD moves by following the update equation

Definition 1 (DSNGD update).
M1 = ne — 1 Vh(ze, ¢F) - (qy (e, Py,) — es(ye)) (23)

where {(} },cn 5 a sequence in the expectation parametrization such that {C:},cy
converges.

Cl),yN?

10



Note that gy(x, Py,) is a stable term (it only takes values between 0 and
1). Moreover, DSNGD forces the stability of the Vh(zy, (/) term, since ¢, is
a convergent sequence. This is the same strategy of CSNGD, and similarly,
it is going to ensure the convergence of the algorithm in theorem Observe
that equation 23] is also well defined when the parameterization is not minimal
(when T is not a minimal statistic), therefore DSNGD can be run in such general
case, where S and T are not minimal. Steps taken by DSNGD are specified in
Algorithm [ below.

Algorithm 1: DSNGD
Result: 7,

17 =10, 4= g5 Y 4 05

2 while observations x,y and stopping condition is false do
q < qy(z, Py);
grad_h < Vh(x,(*);
d = grad-h-(q—es(y));
nen—7-d
update ¢*;
update

end

© 0w N O oA ®

The sequence {(; },cy, or simply ¢/ as an abuse of notation, can be any
sequence in the dual space whose dualized sequence {(;},cy is convergent. For
example, it can be constant. The resulting algorithm keeps track of two in-
dependent sequences; the main sequence 7, which estimates the solution 7 to
the problem, and the sequence (; selected with the convergence constraint and
whose space is the dual. For example, assume the trivial case where X = {0}
and ) = {0, 1,2}. The only conditional probability distribution of the problem
is the Categorical distribution P() | X = 0). This space is represented by R?
and its dual space is represented by the simplex S2. Then, the main sequence
n: moves in R? while the independent sequence (; traces its path in S2. Figure
[ illustrates iterations followed by 7; (instruction line 6 of the algorithm) and
¢; (instruction line 7 of the algorithm) when running DSNGD for this simple
example.

Recall that the sequence ¢ can be chosen freely as long as its dual is conver-
gent. However, recall that DSNGD is a natural gradient based algorithm. The
algorithm effectively takes a natural gradient step only when 7, and (; refer to
the same probability distribution point, according to equation 23] and proposi-
tion 2 In section [ there is our proof of DSNGD convergence to the solution
7, and if ¢ is selected such that it also converges to the solution, then both
sequences get closer along the optimization process, turning DSNGD steps into
more accurate approximations of natural gradient steps. Therefore, in order
to benefit from natural gradient speed up properties, it is recommended that
sequence (; converges to the solution 7* = VF(7). For example, this can be
accomplished by determining ¢; using a maximum a posteriori estimator of the
parameters of P(Y, X) obtained from data up to t.

11
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(a) n: sequence in R? (b) ¢ sequence in the dual space S?

Figure 1: 7, and (; sequences obtained in DSNGD where X = {0} and Y =
{0,1,2}

4 Discrete DSNGD and computational complex-
ity

This section assumes that space X is discrete, that is X = {1,...,m} for some

m € N. For simplicity, we assume T' to be also a canonical statistic, that is,

T(i); = di—; € R™7! for 1 <i < m and T(m) = 0. A theorem deduces and

proves that the complexity order for discrete DSNGD of one iteration is linear

on the dimension of the parameter 7. Let us show a simple example of discrete
DSNGD to begin with.

4.1 Example

Let Y = {1,2} and & = {1,2} and minimal and canonical statistics S and 7.
Let 7 = (a, B) be the natural parameter and ¢* = (a*, 5*) be the independent
dual parameter. Observe that in this case, a and o* are 1-element vectors and
B and [* are 2-element not squared matrices. In this example we complete
an iteration of discrete DSNGD algorithm, following the instructions listed in
algorithm [I

Let (y,z) = (2,1) be an observation. Statistics T' and S are assumed to be
canonical. Instruction line 3 consist on using equation [[3] to compute

_(PY=1|x)\ _ exp (a1 + f1)
wier) = (5221 0) =7 (e 24
where R = m. For instruction line 4, express function h(z,(*)

(use equation [TH]), then apply the gradient.

h(x =1,¢") = (log B7,log 83) — Vh(z =1,{") = (25)

oS~ o
J= o o

12



Proceed now with instruction line 5. It computes the approximation of the
natural gradient and the direction that DSNGD uses for the n update.

d=Vh(z =1,{)(qy(z, Py) — ea(y = 2))
0 0
—|& of. (Rﬁexp (e +511)>
0 % ( 'eXpﬁ2) - (26)
0

R-exp (a1+81)

B
(R-exp fB2)—1
B3

Next instruction lines of the algorithm are standard to update the parameter
vector (a, f1,f2) using direction d, so there is no need to go further. If for
instance the observation is (y, ) = (2, 2), then the approximation of the natural
gradient is

Rexpay R—1
aj— IRe l—af—p53
— —Iv-exp ag
a=| Eem @)
1—ai—pB3
_ 1
where R = Troar

Before analyzing the computational complexity of DSNGD, it is necessary
to determine the generator of ¢ sequence. Sequence (; belongs to the dual
space of the LEF distributions on ) x X', and if S and T are canonical statistics
then it implies that ¢ are directly the probabilities P(y, ) after equation
It is possible to select the well known maximum a posteriori (MAP) estimator
with parameter a € R. This estimator is a simple counting of observations over
the discrete space ) x X with an starting assumption of incidence of a for every
event y,x. This estimator is linear and it clearly converges (to the solution).

First a similar result as proposition [3is stated, taking into account the new
assumption on X'. The proof of proposition below is found in appendix

Proposition 5. Let X = {1,....,m} and let T be a minimal and canonical
statistic. Then

0 T#m
K - diag(

r=m

Vo h(z,¢7) —{

1 1 )
P (z,Y=1)" """ Pex (2,9=5)

®\ 1 em—l(x)'es(y).r :E;ém
vﬂ;h<w7<>—m'{_1ml-es<y>r r=m

(28)

where 1,, € R™ is a vector filled with ones at every coordinate.

Now it is possible to analyze the computational complexity of discrete DSNGD.
Below theorem proves that DSNGD, just as SGD, is a linear algorithm.

13



Theorem 3. Let X = {1,...,m} and let T be a minimal and canonical statistic.
Assume estimator (* of DSNGD is linear. Then discrete DSNGD iterations
have linear complexity order on the manifold dimension.

Proof. Let k = (s — 1) + s - t be the dimension of n. Then O(k) = O(st).
Analyze the computational complexity of discrete DSNGD. That is, analyze
the computational cost of instruction lines 3,4,5,6 and 7 shown in Algorithm
m

Complexity of instruction lines 3,4 and 5 is given by proposition @l which is
O(sA + st)) where sA is the cost of computing Vg, log Py, (x | y) for all y € V.
Observe equations [15] and [I6] assuming 7" canonical and write

o = (Pe-(Y=1),.., P (Y = s —1))T

Oy =(Pe+(X=1]y),. Px(X=m—1|y))T (29)

Deduce then that O(sA) = O(k).

Instruction line 6 adds k operations.

Finally, recall that a linear complexity order estimator is chosen for (' se-
quence, implying that instruction line 7 is of linear order O(k).

In conclusion, the computational complexity order of DSNGD is

O(sA + st) + O(k) + O(k) = O(k) (30)

and therefore linear. O

5 Discrete DSNGD convergence

In this section we prove the convergence of the discrete DSNGD. Discrete
DSNGD refers to the case where X = {1,...,m} for some m € R. We start
by generalizing Theorem 3.2 in Sunchag’s et al. |5] (introduced above and re-
ferred to from now on as Theorem[I]) in Section[5.l This generalization provides
enough flexibility so as to be used later to prove the convergence of DSNGD in
Section

5.1 Generalizing Sunehag et. al. variable metric stochas-
tic approximation theory.

Theorem [l is used to prove CSNGD convergence, however it can not be used
to prove DSNGD convergence. First, because it demands the vector it follows
to be factored as the product of a matrix By and a vector Y; that approximates
the gradient (condition C.1). But DSNGD is defined to directly approximate
the natural gradient, without the gradient as reference. And second, even if
DSNGD is written as the product of a matrix and a vector, matrix Vh(x, ()
is not squared. So we need a more general convergence theorem.
Our result proves almost sure convergence of the sequence

Ner1 = Nt — 7Y (e, Fr) (31)

14



where Y (1, F;) is a family of random vectors defined for every n and for every
set

Fi =A{(yi,zi) | i <t} (32)

As an abuse of notation write ¥; meaning the random variable Y (r;, F;) € R™.

The main modification with respect to Theorem [ is that we unify conditions
C.1 and C.3

C1 (V) EY:=Vi(n)

C3 (V>0 inf Vi) >0 (33)
( ) Jo s Vi)l
to instead require
C.3 (V6>0) inf Vi) E;[Yi] >0 (34)
U(ne)—1(m)>5

New condition C.3 uses E;, referring to the conditional expectation given F; of
equation B2 which is a generalization of the definition of E; in Sunehag [5].

Theorem [Il imposes that the expectation of the step taken must be the gra-
dient and that the norm of the gradient must not approach to zero outside any
environment of the minimum. Instead, we impose that the expectation of the
step taken must not approach to the border of the half-space which has the
gradient as its normal vector, unless we are approaching the minimum simulta-
neously. This is a more general condition. Furthermore, condition C.5 on the
maximum and minimum eigenvalues of the matrix B; can also be removed. In
fact, our result proves the convergence of algorithms with scaling matrices B;
whose spectrum is not bounded from below by a strictly positive number, as
long as new version of condition C.3 holds.

It is formally stated below. Proof is found in appendix [Fl

Theorem 4. Let | : RF — R be a twice differentiable function with a unique
minimum 7 and N1 = Ny — 1 Yr. Then np converges to 71 almost surely if the
following conditions hold

C.2 (3K)(¥n) [|Vol(n)| < 2K

C.3(V6>0) inf Vi)' E[Y] >0
1(ne)—=1(7)>6

C.4 (34, B)(vt) E|Y:|* < A + Bi(ne)
C.6 Z(%)2 < 00, Z% =00
t t

5.2 Proving convergence

Next, we show how Theorem [ can be used to prove DSNGD convergence in
the discrete case. That is, we use it to prove the next result:

Theorem 5. DSNGD in the canonical parametrization such that Y and X are
discrete, converges almost surely to the optimum.
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The proof consists on showing that conditions C.2, C.3, C.4 and C.6
of theorem [ hold. Condition C.6 is assumed to hold, by just selecting an
appropriate sequence of learning rates ;. Conditions C.2 and C.4 are proved
in appendices [G] and [H respectively. Proof of condition C.3 is shown below.

Proof. Compute the gradient of [(n) (see equation [60]) and use proposition 2] to
obtain E, [Y}] involved in condition C.3.

=" Vh(a,n) > (ay(x) — es(y)Pla,y)

=" Vh(a, n)dif fy(z,n) (85)
E, [Yi] =) Vh(z,¢*)dif fy(z,m)
where o
dif fy(x,n) = (g(x, P)) — qy(z, P))P(x) (36)

Further evolve equation B3l to finally multiply Vi(n)TE, [Y;] and check con-
dition C.3. Continue by developing VI(n) first, precisely compute Vh(x,n). To
simplify the notation, decompose V = (Vq4, Vg, , ..., Vg,)

Voh(z,n) =S +u(P,) - (1,...,1) u(P) ==Y _S(y)P(y)

Vs, h(a,n) = T(@)es(y)T + vy, Py) - (1,.,1)  o(y, P) = = T(z)P(y,)

(37)
Since (1,...,1) - dif fy(z,n) = 0 then
Val(n) = Z Vah(ft, n)diffy(xv 77)
=Y S-dif fy(x,n)
=S -dif fy(n) (38)

Ve, l(n) =Y Vg, bz, n)dif fy(x,n)
= T(x)es(y)Tdif fy(x,n)

=T - dif fx(y,n)
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where

dif fy(n) =

P
(Py(Y=y|X=1)-P —y|X—1))F(X=1)

(Pn(yZanZm)—P(yZylX=m))F(X=m)

Now develop E;Y; further. Recall that the canonical parametrization is se-
lected so plug in proposition[Slinto equation35l Decompose E; = (E¢ o+, E¢ g1, ..., Et gx )

Etar | Zv . C)dif fy(,m)

—K ~diag(d(m,1,(%), .., d(m, s,¢)) - dif fy(m,n)
Ey; [Vi] ZVB z,¢") dsz;v(:v )

sz-dmg( (L,y,¢")s ey d(m,y, C7)) - dif fx(y,n)

Proceed now to check the condition. Develop the products until obtain

(40)

Val(n)Erar [Yi] =D e(y)
! _ (41)
Ve, [ Eep: (Vi = — c(y) + Y d(z,y, ) (Py(yle) — P(ylz))*Pla)?

x

where e(y) = d(m, y,C*)(P, (y) — Py))(Py(yle = m) — Plyle = m))P(x = m)
Finally,

VI)TE: [Yi] =Val(n)TEq,a- [Yi] +ZV6J )TEq g Y]

:Z Z )+ Zd ,y,C")(Py(ylz) — Plylz))* P(x)?

—Zdwc (y]7) — P(y]e)?P()?
(42)

Notice in equation 2] that VI(n)TE, [Y;] is a sum of positive numbers, and it
vanishes only if n = 7. Also, since d(z,y,(*) > 1, observe that

n)TE, [Yi] >Z (ylz) — P(ylz))*P(x)?

(43)
= Z i f £y, )|
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To finish proving the result, let {n; };en be a sequence such that
> lldif faly.mi)|* —— 0 (44)

Y

since every term is positive, then for every y € Y
i f fx(y,mi) |1 —0 (45)
implying that Py, (y|z) — P(y|x) —= 0 for all z,y and that
L) 1) —— 0 (46)
Hence it’s proven

(V5 > 0) inf > |dif fa(y,n:)|* >0 (47)

in
Um)—i(m)>6

and therefore, after equation @3] condition C.3 holds.

6 Conclusion and future work

Natural gradient based algorithms behave erratically when tested in practical
problems. However, as CSNGD shows, these kind of algorithms may stabi-
lize once convergence is guaranteed. With this in mind, we defined DSNGD,
which approximates the natural gradient at each step and whose convergence
in the discrete case can be proved. To that end, we stated and proved a general
result showing the convergence of interior half-space gradient approximations.
Furthermore, we point out that this convergence result may prove the conver-
gence of more general algorithms, since it doesn’t require the expectation of
the update’s direction to factor as a symmetric positive-definite matrix and the
gradient.

This paper concentrates on the theoretical aspects of DSNGD. We are cur-
rently working on a flexible implementation of the algorithm that can be easily
set up for different LEF linked to the conditional distributions P, (X | )), includ-
ing several commonly used discrete, continuous and multivariate distributions
such as the normal, Poisson and exponential. Moreover, DSNGD can potentially
be used in high dimensional scenarios due to its low computational complexity.
The benefits of approximating the natural gradient are specially promising in
this case, since the parameter space is potentially twisted and using metric in-
formation can be crucial for an algorithm’s good performance. In preliminary
empirical studies we are observing how it increasingly outperforms SGD as the
manifold dimension grows larger. We plan to compare DSNGD against the most
effective algorithms nowadays, in order to expose its weaknesses and reveal its
strengths.

For the more theoretical part, in the future we plan to study the convergence
of continuous and mixed DSNGD, that is when X is continuous, and in cases
where X = (Xg, X,) is divided into a discrete and a continuous part.
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Appendices

A Proof of Proposition 1

Proof. Prove first that if the logg-odds ratio of P() | X) is an affine function
of X then the joint distribution P(), X) belongs to LEF.

According to theorem 2 in [36], assume that P(X | J = i) belongs to the
same LEF for all ¢ € . Also, since Y is discrete and finite, P()) is a cate-
gorical distribution and hence, it belongs to LEF. This means that there exist
parameters o € R5~1 and 6; € R! for all i € Y such that

o exp S(i)Ta
FalY =1 = Sw)a (48)
Pz | Y =1)= fezzg ;2;)?9_
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where S and T are sufficient statistics of ) and X respectively. If @ is the matrix
having ; as i-th row, name 77 = (@, §) and write

PyY = i) =Pu(Y = i) Pr(z | ¥ = 1)

To prove the result, it is enough to find a change of variables from 7 = (@, 6)
to n = (a, B) satistying Py(y,z) = P,(y, ) where

exp S(1)Ta+ T(x)7B;
[.>,expSy)Ta+ T(x)T8,

since 7 is the natural parametrization of a LEF.

In particular, the change of variables has to satisfy that Pg(xz | Y = i) =
P,(z | Y =1i) and Py(y) = P,(y). Start with the conditional probability and
observe that

Py (Y =i, x) = (50)

P, (y—z x) B exp S(i)Ta+ T(x)7B;
f P, (Y =1i,x) f exp S()Ta+ T(x)Tf;
__expT(z )T Bi
fm exp T (x)Tf;

Last equation matches exactly with equation A8 by just settmg B =86. To
complete the change of variables continue by matching Py;(y) = Py (y)

[, expS(i)Ta+T(x)Tj;

>, L exp S(G)Ta+ T(x)Th;

_exp(S())Ta) [ expT(2)76;

5, e (SG)Ta) [, exp T(@)7, 52
~expS(i)Ta+log A;

Z expS(j)Ta+log A;

Pn(x |V =
(51)

Pn(y:i):

where A; = [ expT(x)Tf3;. Last equation must coincide with equation B8
That is

expS(i)Ta+logA;  expS(i)Ta
>_jexp S(j)Ta + log A; EyexpS( Ta
To simplify, assume S is canonical. That is S(¢) = e; is the i-th canonical vector

for all i # s and S(s) = 0 € R*~!. Note that it is enough to prove that there
exists a 4 € R such that

(53)

S(H)Ta+logA; — p=S3)Ta, Vie) (54)
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because as a consequence, equation [53 clearly holds. In our case, it is S(i)Ta =
a; when i # s and S(¢)Ta = 0, and therefore the solution is

log Ay 1
at| i ||| w=a
log As_1 1

u=log Ag

and the proof is completed when S is canonical.
Prove now the result for a general sufficient statistic S. Equation[B4]describes
the below linear equations system

log Ay 1

Sa + : —|:] -nw="Sa
log As—1 1

S(s)Ta+logAs —pu=S(s)Ta

(56)

where S is the matrix having S(1),...,S(s — 1) as rows. Since S is a sufficient
statistic, assume without loss of generality that S(1),...,S(s — 1) are linearly
independent vectors, and then S is invertible. Finally, it is easy to check that
the change of variables is

log Ay 1
a+87! : - ]l-u|l=a

log As_1 1

log A;

S(s)TS™! : —logA; (57)
log As—1
h= 1
Ss)TsTH ] -1
1

The converse implication is straightforward. Assuming that P(X,)) belongs
to LEF, and therefore assuming equation 50l start by expressing the conditional
probability distributions of Y given X in 7.

P,(y,x
Pyl 2) =2 s .
expS(y)Ta+T(x)T8,
S, expS(y)Ta+ T ()78,
and compute the log-odds ratio
Pz | Y =k)

log =Sk)Ta+T(x)"8r — (S(h)Ta+ T (x)"Br)

Py(z | Y =h) (59)
=(S(k) = S(h))Ta+ T'(2)T(Bk — Bn)
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which is clearly an affine function of features X. O

B Proof of Proposition

Proof. First, claim that

Vi(n,z,y) = Vh(z,n) - (qy(x, Py) — es(y)) (60)
Indeed,

Viog Py(y | #) =Vlog Py(y,x) — Vleg Y Py(y, )

Y

Vj;-’n , X
Vlos Fulyen) = %

‘P77 ,:EV]O P77 , T
:Vloan(yvx)_Zy (;:I)Dn(ygx) (y, ) (61)

=Vlog P, (y, ) — an(y | )V log P (y, x)

Y

=Vh(y,z,n) — Ey.[Vh(y, z,n)]
where h(y,z,n) = log P, (y, ). Observe we can rewrite equation [61] as;
Vieg Py(y | z) = =Vh(z,n) - (q(x,n) — es(i)) (62)

where h(z,n) = (h(1,2,7),..., h(s,2,7n)) implying the claim. From equation [60
observe that

Vi(n, z,y) = Vh(z,n) - (ay(z, Py) — es(y)) (63)
Finally, since the log-loss is defined in a DFM, then use previous equation and
equation [6] to finish the proof O

C Proof of Proposition [3
Proof. To simplify, break V,« = (Var, Vpr, ..., V) and then it’s clear that

va*h('rv 77*)
Vhiz)=| (64)

Start with V«h(x,n*) expression. Observe that i-th column of V,-h(z,n*) is

Varlog Py (Y = i,2) =V log Pox (Y = 1) + Vo log Pos (x| Y = 1)

65
=V log Pos (Y = i) + do0; Ve, log Py, (x | Y = i) (65)
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where in last step the chain rule is applied and d,-6; stands for the Jacobian of
0; with respect to o*.

Assume the canonical parametrization is used, then according to equation
write

By Y=1)
of = (66)
Pp(Y=s-1)
From equations [66] and [I6] obtain
. 1 es—1(1) i #£s
a* I Pa* = B ee— .
\Y og (y Z) Pa* (y _ ’L) { (_]_) 1 =38 (67)
dofr — -1 es—1(i) - 0] i #s
TP =D | (LT i=s
1
where e;_1 (i) is the i-th canonical s — 1 dimensional vector and 1 = | : [. From
1
here deduce,
Va*h(xa 77*) :K(S—I)Xs : dlag(d(xv 15 C*)a ) d({E, S, C*))
1-07Vp, log P(x | y) (68)

d(z,y,(") =

Pe-(y)

The part Vg:h(z,n*) follows the same steps. Observe that i-th column of
Vig:h(z,n") is

Vi log Py (Y =i, x) =Vg: log Pgs(z | )
:d5§ QZV‘QI 10g Pgi (:E | y = ’L)

{O yF£i
= Vo, log Py, (x|Y=i) .
— Po Y=

(69)

and therefore the claim is proved o

D Proof of Proposition

Proof. Compute Vg, log Py, (x|y) and proposition [ finishes the proof. Param-
eters 0y = (6y.1,...,0y,m—1) are the expectation parameters of the probability
distribution Py, (x|y) which belongs to LEF.

Recall that the canonical parametrization is taken and by equation[I6ldeduce

0y T #Em
P, =¥ 70
v, (aly) {Lq;%jx:m (70)
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which clearly implies

1 em—-1(x) xT#m
Vo, log Py (z|y) = =——— 71
6, 108 Gy( |y) ng (£C|y) {'1m—1 r=m ( )
Finally observe
. 1-0TVy logPy (z|y) 0 x#m
d(x7y7<-): Y ;, () ! = 1 r=m (72)
¢ Py, (z]y) Pex (y) -
Substitute the computations in proposition [3] to finish the proof. o

E Proof of Proposition 4]

Proof. Let A be the cost of computing Vg, log Py, (x | y). Prove first the next
claim: the number of operations required to compute V¢-h(z,(*) is

s (A+3t+2)—1 (73)

and hence O(s - (A +t)).

Indeed, terms Vg, log Py, (x | y) for every y € Y need s - A operations. The
cost of computing Pe«(y) for every y € ) is s — 1 according to equation
(only the term Fe-(s) requires operations). Obtain term d(x,y, (*) after 2¢ + 1
operations ( 2t — 1 for the scalar product of vectors, 1 for the subtraction in the
numerator and 1 last operation for the division). Since this needs to be done for
every y € Y then d(x,1,(*),...,d(x,s,¢*) is known with s - (2t + 1) operations.
Now, Va«h(x,(*) is obtained with the product of matrices M (which is almost
the identity matrix) and a diagonal matrix, which does not require any operation
(it is just a transformation). Finally Vg«h(x,(*) demands for ¢ divisions for
every y € ), and therefore for s -t operations. Hence, the claim is proved.

To previous analysis, add the costs represented by equation That is,
analyze the costs of computing gy(z, P,) and then the products shown in that
equation.

The vector gy(z, P,;) consist on computing P,(y | z) for every y € Y. Using
equation [3] gy(x, P,;) needs 2t + 1 for scalar products T'(z)7/,, 1 subtraction
in S(y)Ta—T(z)78, (recall that S statistic is canonical), then 1 exponentiation
and finally 1 division. This is done for every y € ). The denominator is the
same for every y so it can be computed just once with s — 1 sums. The total is

2ts + 5s — 1 (74)

operations.

Finally, the operations described in equation[I8 are 1 for (gy(z, P,;) —es(y)),
s—1for Va-h(z,(*)-V(gy(z, Py)—es(y)) product and ¢ operations for Vg. h(z, (*)-
V(gy(z, P,) — es(y)), this last one needs to be done for every y € J. The total
operations for this block it is then

s+s-t (75)
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To conclude the proof, the total operations needed is
s-(A+6t+8)—2 (76)
and the complexity order is O(s - (A +t))

F  Proof of Theorem {4

Proof. The proof uses Robbins-Siegmund theorem as key tool. Steps taken are
closely inspired by those taken in the proof of Theorem 3.2 in [5].

Compute Taylor’ second order approximation of I(n;+1), and after condition
C.2 apply Taylor’s inequality

U(1e41) < 1) — % Vi0)TYe + 7 K|V (77)
Therefore, applying the expectation conditioned to information at time ¢ obtain
Ee[l(ne41)] < 1) =5 Vi(0e) TE[Ya] + 77 KE:|[ Ve ? (78)
Use bound of C.4 to third term of right hand side
Eell(ne41)] < L0m) — 7 Vi(ne) "Be[Y] + 77 K (A + Bl(n)) (79)
Finally, substitute U; = I(1:) and arrange terms to match with equation [I0l
Ei[Ui1] < (14 By K)U; — v Vi) "E Vi) + 77 KA (80)

Note that theorem[2lconditions are satisfied, since condition C.6 implies ), 5; =
>, BK~y* = BKY ,v* < oo and ), & = >, KAy? < co. Hence, Robbins-
Siegmund theorem ensures that Uy = I(n;) converges almost surely to a random

variable and
DG =D Vi) E[Yi] < oo (81)
t t

Now prove that lim; (n;) = (7). If I(n:) converges to some different random
variable, condition C.3, second condition of C.6 and equation Bl lead to a
contradiction. Indeed, if lim;I(n:) = v # I(7), use condition C.3 and deduce
that for a fixed 0 < § < v — (7)) there exists an N large enough and € > 0 such
that

Vi) E [Yi] > € (82)

for all t > N. Therefore, equation [RI] becomes

N
D Vi) BV = Vi) "EYi] + Y % Vi) "B (Vi

t>N
N
> wVin) BNV + ) ew (83)
t t>N
> € Z Ve
t>N
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Second condition in C.6 applied to right hand side of above equation assures
that

Z 1V (ne) "B [Yy] = o0 (84)

which contradicts equation BI1
Finally, it is only possible that lim, I(n;) = I(7) almost surely as we wanted
to prove. O

G Proof of condition C.2 in Theorem

Proof. Compute the hessian of

=Y ln,y,2)P(y, ) (85)

The gradient of I(n,y, z) is

val(n7y5x) =5 (qy( ) - es(y))
Vi, L0y, x) = (qy(x)y — by=y) - T(x)

where S is the matrix having S(i) as i-th column for ¢ € Y. Therefore, the
hessian is

(86)

Val(n,y,x) = S - (diag(gy(z)) — gy (@) - gy(z)T) - ST
V6, V8, Ly, ) = Vg, qy(z)y, - T(z)
= —T(x) - T(x)Tqy(x)y, (¢ (T)y, — yr=y) (87)
VaVg (n,y,2) = Vaqy(x)y - T(z)
=T(2) (qv(z) —es(y)T- ST

Observe how all matrices in equation [R7 have their elements bounded once
S and T statistics are fixed, since ||gy(x)| < 1. Therefore

V21, y,2)]| < 2K,y (88)

for some positive numbers K, ,. Define K = max, , K, . then finally

IVl :IIVQZ (n,y,2) - P(x,y)]|
—IIZV (0. y,x) - P(z,y)||
<ZIIv2 (n,y,2)| - P, y)
<Z2 K,y P(z,y)

§2-KZP$,y
Y,

=2-K
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H Proof of condition C.4 in Theorem

Proof. Observe that for any € and ¢ large enough there exists A,, such that

HY;5||2 = (qy(x1) —es(ye))T - h(@e, () Th(ze, G) - (qy () — es(ye))

9 (90)
< Az llgy (@) — es(yo)l
where
Az, 2 |7, G)Th(ze, G| + € (91)
This is because (; converges and because of theorem [5l Now
lav (o) = es(we)* =1 = 2Py, (welae) + D Po,(yl0)?
v (92)
<s+1
therefore ||Y;||? < A, (s + 1) and
E|Y;|?> < E[A,, (s + 1
IVl < Bl s+ 1) .
<A(s+1)=A
where A’ = max, A, and then condition C.4 holds. O
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