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Abstract. This paper builds on a recent article co-authored by the present
author, H. Hosni and F. Montagna. It is meant to contribute to the logical

foundations of probability theory on many-valued events and, specifically, to a

deeper understanding of the notion of strict coherence. In particular, we will
make use of geometrical, measure-theoretical and logical methods to provide

three characterizations of strict coherence on formulas of infinite-valued  Luka-
siewicz logic.
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1. Introduction and motivation.

In a collection of seminal contributions starting with [5] and culminating in [6],
de Finetti grounded subjective probability theory on an ideal betting game between
two players, a bookmaker and a gambler, who wager money on the occurrence of
certain events e1, . . . , ek. For each event ei, gambler’s payoffs are 1 in case ei occurs,
and 0 otherwise. The probability of an event ei is defined, by de Finetti, as the fair
selling price fixed by the bookmaker for it.

Conforming to a standard notation, bookmaker’s prices for the events e1, . . . , ek
will be referred to as betting odds and an assignment β : {e1, . . . , ek} → [0, 1] of
betting odds β(ei) = βi will be called a book.

De Finetti had no particular inclination towards identifying events in a precise
logical ground [9]. However, in order for his main result to be stated in precise
mathematical terms, they will be understood, for the moment, as elements of a
finitely generated free boolean algebra and hence coded by boolean formulas. Now,
de Finetti’s result reads as follows: let us fix finitely many events e1, . . . , ek and
a book β on them. A gambler must choose stakes σ1, . . . , σk ∈ R, one for each
event, and pay to the bookmaker the amount σi · βi for each ei. When a (classical
propositional) valuation w determines ei, the gambler gains σi if w(ei) = 1 and
0 otherwise. The book β is said to be coherent if there is no choice of stakes
σ1, . . . , σk ∈ R such that for every valuation w

(a)

k∑
i=1

σi · βi −
k∑
i=1

σi · w(ei) =

k∑
i=1

σi(βi − w(ei)) < 0.
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The left hand side of (a) captures the bookmaker’s payoff, or balance, relative to
the book β under the valuation w.

Note that a stake σi may be negative. Following tradition, money transfers are
so oriented that “positive” means “gambler-to-bookmaker”. Therefore, if σi < 0,
the bookmaker is forced to swap his role with the gambler: he has to pay −σi ·β(ei)
to the gambler in hopes of winning −σi in case ei occurs.

De Finetti’s Dutch-Book theorem characterizes coherent books as follows: a
book β on events e1, . . . , ek pertaining to a boolean algebra A is coherent iff it
extends to a finitely additive probability P of A, [5].

Along with the assumptions which regulate de Finetti’s coherence criterion,
condition (a) above effectively forces the bookmaker to set fair prices for gambling
on events e1, . . . , ek. In other words, upon regarding each event ei as a {0, 1}-valued
random variable, de Finetti’s Dutch-Book theorem amounts to saying that coherent
assessments are those with null expectation. For, if the bookmaker publishes a book
with positive expectation (for him) a logically infallible gambler will choose negative
stakes and inflict a sure loss on him, that is to say, a sure financial loss whatever
the outcome of events.

Although coherence guards the bookmaker against the possibility of sure loss,
at the same time it may bar him from making a profit. To illustrate the idea,
consider an event e which is neither noncontradictory nor sure and the coherent
book β(e) = 0. If the gambler bets 1 on e, then her balance is as follows: she pays
1 · 0 = 0 and gets back 0 if w(e) = 0 and 1 if w(e) = 1. Hence, the bookmaker
never wins and possibly loses.

This rather odd feature of coherence was questioned in the mid 1950’s first by
Shimony [32] and then by Kemeny [16]. These authors studied a refinement of
de Finetti’s coherence that nowadays goes under the name of strict coherence (see
[11]). Intuitively, a choice of prices is strictly coherent if every possibility of loss,
for the bookmaker, is paired by a possibility of gain. Precisely, a book β is strictly
coherent if, for each choice of stakes σ1, . . . , σk ∈ R, the existence of a valuation w

such that
∑k
i=1 σi(βi−w(ei)) < 0 implies the existence of another one w′ for which∑k

i=1 σi(βi − w′(ei)) > 0.
Interest in the condition of strict coherence was prompted by Carnap’s analysis

of what he called “regular” probability functions in [1] (see also [31, Chapter 10])
and which we will term as Carnap probabilities. Those functions arise from the
axiomatization of finitely additive probabilities by strengthening the usual normal-
ization axiom in the right-to-left direction: 1 (respectively, 0) is assigned only to
tautologies (respectively, contradictions). In other words, a probability function P
is Carnap, if it is normalized, finitely additive and it satisfies P (e) 6= 0 for every
noncontradictory event e. In [11] the authors characterized strictly coherent books
on boolean events in terms of their extendability to Carnap probabilities1.

Several authors proposed generalizations of de Finetti’s coherence criterion and
his Dutch-Book theorem to events not pertaining to boolean logic. Paris in [30]
extended the classical Dutch-Book theorem to several non-classical propositional
logics including the modal logics K, T, S4, S5 and certain paraconsistent logics as

1Carnap probabilities are the same as Carnap-regular probabilities of [11]. In the present

paper we adopt this simplified notation in order to avoid any misleading interpretation of the
adjective “regular” which has indeed different meanings if referred to probability functions or to

Borel measures which will be discussed in Section 4.
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well. In [34], Weatherson considered the case of events pertaining to intuitionistic
logic and in [26], Mundici extended de Finetti’s criterion to the case of infinite-
valued  Lukasiewicz logic and MV-algebras [3, 27].

In the MV-algebraic realm valuations are [0, 1]-valued and hence they corre-
spond to homomorphisms into the standard MV-algebra defined on the unit inter-
val [0, 1]. De Finetti’s coherence criterion immediately translates to the MV-setting
with no extra conditions and the main result of [26] (see also [19]) is a de Finetti-
like theorem which characterizes coherent books on  Lukasiewicz events as those
which are extendible to states, i.e., [0, 1]-valued normalized and finitely additive
maps of an MV-algebra.

From the perspective of reasoning about uncertainty, the interest in  Lukasi-
ewicz events is twofold: on the one hand these events capture properties of the
world which are better described as gradual rather than yes-or-no; on the other
hand, they also mimic bounded random variables. Indeed, any  Lukasiewicz event e
may be regarded as a [0, 1]-valued continuous function fe on a compact Hausdorff
space (see [3, Theorem 9.1.5] and Section 2) and any state of e coincides with the
expected value of fe ([17, 29], [10, Remark 2.8] and Section 4). Therefore, up
to renormalization, Mundici’s generalization of de Finetti’s theorem [26, Theorem
2.1] implies the Dutch-Book theorem for books on bounded continuous random
variables.

For events pertaining to the restricted class of finite-dimensional MV-algebras,
in [11, Theorem 6.4] the authors proved a de Finetti-like theorem for strictly coher-
ent books in terms of their extendability to faithful states, i.e., states which satisfy
s(a) 6= 0 for all a 6= 0. Nevertheless, extending [11, Theorem 6.4] to more general
classes of MV-algebras is delicate because, as a consequence of seminal results by
Mundici [25, Proposition 3.2], Kelley [15], and Gaifman [13], an MV-algebra may
not have a faithful state.

In this paper we will investigate strictly coherent books on  Lukasiewicz events,
i.e., elements of a finitely generated free MV-algebra. Our results sensibly extend
the results of [11]. In particular, we will provide three characterizations of strict
coherence by adopting geometrical, measure-theoretical and logical methods. In
more details:

Geometrical approach: the functional representation of n-generated free MV-algebras
in terms of n-variable, piecewise-linear continuous functions (see [3, Theorem 9.1.5]
and [23]) implies that the set of all coherent books on a finite set Φ of  Lukasiewicz
events forms a convex polyhedron DΦ of Rk. The main result of Section 3 shows
that strictly coherent books on Φ form a subset of Rk which coincides with the
relative interior of DΦ.

Measure-theoretical approach: faithful states are the MV-algebraic analog of Carnap
probabilities on a boolean algebra. In Section 4 we will first give an integral rep-
resentation theorem for faithful states on finitely generated free MV-algebras and
then we will characterize strictly coherent books on  Lukasiewicz events as those
which extend to a faithful state.

Logical approach: the relation among free MV-algebras, rational polyhedra and
deducibility in propositional  Lukasiewicz logic, will enable us to characterize the
notions of coherence and strict coherence within propositional  Lukasiewicz logic (see
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Section 5). In our opinion this result is interesting because it shows that proposi-
tional  Lukasiewicz logic is capable to capture foundational aspects of probability
theory on infinite-valued events.

In the next section we will introduce necessary preliminaries about MV-algebras
and rational polyhedra.

2. Preliminaries.

The algebraic framework of this paper is that of MV-algebras (see [3, 27]), i.e.,
the Lindenbaum algebras of  Lukasiewicz infinite-valued logic [3, Definition 4.3.1]. A
typical example of an MV-algebra is the standard algebra [0, 1]MV = ([0, 1],⊕,¬, 0)
where x⊕y = min{1, x+y} and ¬x = 1−x. Further operations, together with their
standard interpretation, are defined in [0, 1]MV as follows: x � y = ¬(¬x ⊕ ¬y) =
max{0, x + y − 1}, x → y = ¬x ⊕ y = min{1, 1 − x + y}, x ∧ y = x � (x → y) =
min{x, y}, x ∨ y = ¬(¬x ∧ ¬y) = max{x, y}, 1 = ¬0. This structure generates the
class of MV-algebras both as a variety and as quasi-variety [2].

Another relevant example of an MV-algebra is given by the free n-generated
MV-algebra Fn. By a standard universal algebraic argument, Fn is the MV-algebra
of functions f : [0, 1]n → [0, 1] generated by the projection maps [3, Proposition
3.1.4] and whose operations �,⊕,→,∧,∨ and ¬ are defined via the pointwise ap-
plication of those in [0, 1]MV . By McNaughton theorem, up to isomorphism, Fn
coincides with the MV-algebra of n-variable McNaughton functions: maps from
[0, 1]n to [0, 1] which are continuous, piecewise linear, with finitely many pieces,
and such that each piece has integer coefficients (cf. [3, Theorem 9.1.5] and [23]).
For each f ∈ Fn, the oneset of f is {x ∈ [0, 1]n | f(x) = 1} and the zeroset of f is
{x ∈ [0, 1]n | f(x) = 0}.

The free n-generated MV-algebra is, up to isomorphism, the Lindenbaum alge-
bra of  Lukasiewicz logic  L in a language with n propositional variables and [0, 1]-
valuations of  L are exactly the homomorphisms of Fn to [0, 1]MV . Furthermore,
every x ∈ [0, 1]n determines the homomorphism hx : f ∈ Fn 7→ f(x) ∈ [0, 1]MV .

Proposition 2.1 ([26, Lemma 3.1]). For each finite n, homomorphisms of Fn
to [0, 1]MV , [0, 1]-valued valuations of  Lukasiewicz logic on n variables and points
of the n-cube [0, 1]n are in one-one correspondence.

For every closed subset C of [0, 1]n, let IC be the subset of Fn of those functions
whose zeroset contains C. Then, IC is an ideal of Fn and the quotient Fn/IC is
the MV-algebra whose universe coincides with the set given by the restrictions to
C of the functions of Fn (see [3, Proposition 3.4.5]). In particular, when C has
k elements, the quotient MV-algebra Fn/IC is isomorphic to the product algebra
[0, 1]kMV , [4]. The finite powers of [0, 1]MV — called locally weakly finite MV-
algebras in [4]— are called, in this paper, finite-dimensional.

2.1. Rational polyhedra, regular complexes and McNaughton func-
tions. In this section we will prepare the necessary results concerning rational
and regular complexes (see [8]) and their relation with finitely generated free MV-
algebras. We invite the reader to consult [18, 27, 28] for background.

Let k = 1, 2, . . .. By a (rational) convex polyhedron (or (rational) polytope)
of Rk we mean the convex hull of finitely many points of Rk (Qk respectively); a
(rational) polyhedron is a finite union of (rational) convex polyhedra. Given any
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polytope P, we respectively denote by ext P, ri P, rb P the set of its extremal
points, its relative interior and its relative boundary. Since each polytope P is
closed, P = ri P ∪ rb P. Further, for all vectors x, y ∈ Rk, we denote x · y their
scalar product and by |x| the norm of x.

Lemma 2.2. For each polytope P of Rk, the following conditions hold:

(1) For every e ∈ rb P, there exists σ ∈ Rk such that, for all γ ∈ P,
σ · e ≤ σ · γ;

(2) Let β ∈ ri P. Then, there exists σ ∈ Rk such that the sets P+
σ = {γ ∈

P | γ · σ < β · σ} and P−
σ = {γ ∈P | γ · σ > β · σ} are nonempty;

(3) Let β ∈ ri P. Then there exist σ ∈ Rk, e1, e2 ∈ ext P such that e1 ∈P+
σ

and e2 ∈P−
σ ;

(4) γ ∈ ri P iff there exists a map λ : ext P → [0, 1] such that
∑
e∈ext P λ(e) =

1, λ(e) > 0 for all e ∈ ext P and γ =
∑
e∈ext P λ(e) · e.

Before proving the lemma, recall that any hyperplane H of Rk separates the
space in two half spaces denoted H+ and H−. The above claims (2) and (3) state
that, if β is a point in the relative interior of a polytope P, then there exists a
hyperplane H passing through β such that, respectively: both H+∩P and H−∩P
are nonempty; each H+ ∩P and H− ∩P contains an extremal point of P.

Proof. (1) is the well-known supporting hyperplane theorem, see [22, Theo-
rem 14].

(2) Let β ∈ ri P. Let Σ be a sphere of radius r and centered at β and contained in
ri P. The existence of Σ is ensured by definition of relative interior [8, Chapter I,
Definition 1.8]. Let σ be a vector of origin β. Suppose σ is not orthogonal to the
affine hull of P and also 0 < |σ| < r. Trivially, (σ − β) · σ < β · σ < (σ + β) · σ.
Upon noting that σ − β, σ + β ∈ Σ, our claim is settled.

(3) By way of contradiction, assume that for no e ∈ ext P, e·σ < β ·σ. Equivalently,
for all e ∈ ext P,

(b) e · σ ≥ β · σ.
Since P+ is nonempty, in view of (2), let τ ∈P ∩P+, i.e.,

(c) τ · σ < β · σ.
If τ ∈ ext P the claim is settled. Assume that τ 6∈ ext P = {e1, . . . , el}. Then
there are λ1, . . . , λl ∈ [0, 1] such that

∑
i λi = 1 and τ =

∑
i λi · ei. From (b) it

follows that ei · σ ≥ β · σ, and hence
∑
λiei · σ ≥ β · σ, that is, τ · σ ≥ β ≥ σ, which

contradicts (c).

(4) See [11, Lemma 6.1 (1)]. �

Let k = 1, 2, . . . and let x = 〈n1/d1, . . . , nk/dk〉 be a rational vector in Rk with
ni and di relatively prime for all i = 1, . . . , k. Denote by den(x) the least common
multiple of d1, . . . , dk. The homogeneous correspondent of x is the vector〈

n1

d1
· den(x), . . . ,

nk
dk
· den(x),den(x)

〉
∈ Zk+1.

Let k = 1, 2, . . . and m = 0, 1, . . . , k. A rational m-simplex co(x1, . . . , xm) ⊆ Rk

is said to be regular if the set of the homogeneous correspondents of x1, . . . , xm is
part of a basis of the abelian group Zm+1 [8, Chapter V, Definition 1.10]. A regular
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complex ∆ is a simplicial complex all of whose simplexes are regular2. Unless
otherwise specified, all regular simplexes in this paper are over the n-cube [0, 1]n

(i.e., their faces constitute a unimodular triangulations of [0, 1]n, in the terminology
of [26]). Thus, we will say that ∆ is a regular complex of [0, 1]n without danger of
confusion. From the regularity of ∆ it follows that ∆ is rational. We will denote by
V (∆) the finite set of rational vertices of ∆, i.e., the union of the set of the vertices
of the simplexes in ∆.

Let Φ be a finite subset of the free n-generated MV-algebra Fn. Up to iso-
morphism, we can (and we will, throughout this paper) think of Φ as a finite set
of n-variable McNaughton functions. Further, if not otherwise specified, we will
assume that Φ has k elements, denoted f1, . . . , fk. Following [26, §3], for any Φ,
there exists a regular complex ∆ of [0, 1]n which linearizes Φ in the sense that each
fi is linear over each simplex of ∆.

Example 2.3. Let us fix n = 2 and consider Φ = {x, y, x ⊕ y}. Consider
the regular complexes ∆1 and ∆2 of Figure 1 and whose vertices are v1

1 = 〈0, 0〉,
v1

2 = 〈0, 1〉, v1
3 = 〈1, 0〉, v1

4 = 〈1, 1〉, v1
5 = 〈1/2, 1/2〉 for ∆1 and v2

1 = 〈0, 0〉,
v2

2 = 〈0, 1〉, v2
3 = 〈1, 0〉, v2

4 = 〈1, 1〉, v2
5 = 〈1/2, 1/2〉, v2

6 = 〈1/3, 1/3〉, v2
7 = 〈1/2, 0〉,

v2
8 = 〈0, 1/2〉 for ∆2. Then ∆1 is union of four maximal simplexes, while ∆2 is

union of eight simplexes, see Figure 1
Both ∆1 and ∆2 linearize Φ. Indeed, for each regular simplex T of ∆1 and

each simplex T ′ of ∆2, the restriction of each function f ∈ Φ to T and T ′ is linear.

v1
1 v1

3

v1
4v1

2

v1
5

v2
1 v2

3

v2
4v2

2

v2
5

v2
6

v2
7

v2
8

Figure 1. The two regular complexes ∆1 (on the left) and ∆2 (on the

right) of the square [0, 1]2. Every function x, y and x ⊕ y is linear over

each simplex of ∆1 and ∆2.

�

Let ∆ be a regular complex of [0, 1]n, and let vi be one of its vertices. The
normalized Schauder hat at vi (over ∆) is the uniquely determined continuous

function ĥi : [0, 1]n → [0, 1] which is linear over each simplex of ∆ and which
attains the value 1 at vi and 0 at all other vertices of ∆. The regularity of ∆ ensures

that each linear piece of each ĥi has integer coefficients and hence ĥi ∈ Fn. By

definition of normalized Schauder hat, ∆ linearizes each ĥi. Further, the following
result holds:

2Recall that a simplicial complex ∆ is a nonempty finite set of simplexes such that: the face
of each simplex in ∆ belongs to ∆ and for each pair of simplexes T1, T2 ∈ ∆ their intersection is

either empty, or it coincides with a common face of T1 and T2.
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Lemma 2.4. Let Φ be a finite subset of Fn, let ∆ be a regular complex linearizing
Φ and let v1, . . . , vt be the vertices of ∆. Then:

(1) For each i 6= j, ĥi � ĥj = 0;

(2)
⊕t

i=1 ĥi = 1;

(3) For each f ∈ Φ, f =
⊕t

i=1 f(vt) · ĥt;
(4) Let vi1 , . . . , vil ∈ V (∆), and let P = co(vi1 , . . . , vil). Then the function

p =
⊕

vj∈∆∩P ĥj is a McNaughton function whose oneset is P.

Proof. (1) (2) and (3) have been proved in [26, Lemma 3.4 (ii), (iii), (iv) and

(v)]. Let next prove (4). First of all, p =
⊕

v∈∆∩P ĥv is a McNaughton function by
definition. Further, for every vertex v ∈ ∆∩P, p(v) = 1 by definition of normalized
Schauder hat. If x ∈ P \ V (∆), let Σ be a simplex of ∆ which contains x. The

claim follows, since each ĥj is linear on Σ. �

3. A geometric characterization of strict coherence.

By Proposition 2.1, if Φ = {f1, . . . , fk} is a finite subset of Fn and β a book
on Φ, we can rephrase the definitions of coherence and strict coherence for β as
follows:

(1) β is coherent if for every σ ∈ Rk, there exists x ∈ [0, 1]n such that σ ·
〈f1(x), . . . , fk(x)〉 ≥ 0.

(2) β is strictly coherent if for every σ ∈ Rk, the existence of x ∈ [0, 1]n such
that σ · 〈f1(x), . . . , fk(x)〉 < 0, implies the existence of another x′ ∈ [0, 1]n

such that σ · 〈f1(x′), . . . , fk(x′)〉 > 0.

Notice that a book β is coherent and not strictly coherent iff for any vector σ ∈ Rk,
one has that for all x ∈ [0, 1]n, σ · 〈f1(x), . . . , fk(x)〉 ≤ 0 and for some x′ ∈ [0, 1]n,
σ · 〈f1(x′), . . . , fk(x′)〉 = 0.

Throughout we will adopt the following notation:

DΦ = {β : Φ→ [0, 1] | β is coherent}.

For any X ⊆ [0, 1]n, CΦ(X) will denote the topological closure of the convex
hull of all points of Rk of the form 〈f1(x), . . . , fk(x)〉 for ϕi ∈ Φ and x ∈ X. In
symbols,

CΦ(X) = cl co{〈f1(x), . . . , fk(x)〉 | ϕi ∈ Φ, x ∈ X}.
Whenever X is finite, CΦ(X) = co{〈f1(x), . . . , fk(x)〉 | ϕi ∈ Φ, x ∈ X}, which is a
convex polytope. For the sake of readability, we will write CΦ instead of CΦ([0, 1]n).

For every finite Φ, Mundici’s extension of de Finetti’s theorem to  Lukasiewicz
logic (see [26, Theorem 2.1]) shows that DΦ = CΦ.

Lemma 3.1. [26, Corollary 5.4] For any book β : Φ → [0, 1] the following
conditions are equivalent:

(1) β is coherent;
(2) There exists a finite X ⊂ [0, 1]n such that, for each fi ∈ Φ, β(fi) ∈ CΦ(X);
(3) There exists a finite X ⊂ [0, 1]n with |X| ≤ n + 1 such that, for each

fi ∈ Φ, β(fi) ∈ CΦ(X);
(4) For each regular complex ∆ of [0, 1]n linearizing Φ, β(fi) ∈ CΦ(V (∆)).

The next corollary is an immediate consequence of Lemma 3.1.
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Corollary 3.2. Let Φ be a finite set of  Lukasiewicz formulas. Then, for every
regular complex ∆ which linearizes Φ,

DΦ = CΦ(V (∆)).

Thus, the coherence of a book β on Φ does not depend on the particular
regular complex ∆ chosen to linearize Φ. Moreover, since for each ∆, V (∆) is
finite, CΦ(V (∆)) is a polytope coinciding with DΦ. Therefore, by the Krein-Milman
theorem [8, Theorem 1.2], CΦ(V (∆)) is the convex hull of the set of extremal points
of DΦ, i.e., for every ∆,

CΦ(V (∆)) = co ext DΦ.

The following example clarifies the claim made in Corollary 3.2.

Example 3.3. Let Φ = {x, y, x ⊕ y} together with the regular complexes ∆1

and ∆2 of Example 2.3.
Each of the five vertices v1

i of ∆1 determines a point

pi = 〈f1(v1
i ), f2(v1

i ), f3(v1
i )〉 ∈ R3

(where f1(x, y) = x, f2(x, y) = y and f3(x, y) = x⊕ y) and

DΦ = CΦ({v1
1 , . . . , v

1
5}) = co({p1, . . . , p5}).

In particular: p1 = 〈0, 0, 0〉, p2 = 〈0, 1, 1〉, p3 = 〈1, 0, 1〉, p4 = 〈1, 1, 1〉 and p5 =
〈1/2, 1/2, 1〉.

Similarly, for ∆2,

DΦ = CΦ({v2
1 , . . . , v

2
8}) = co({q1, . . . , q8}),

where: q1 = p1 = 〈0, 0, 0〉, q2 = p2 = 〈0, 1, 1〉, q3 = p3 = 〈1, 0, 1〉, q4 = p4 =
〈1, 1, 1〉, q5 = p5 = 〈1/2, 1/2, 1〉, q6 = 〈1/3, 1/3, 2/3〉, q7 = 〈1/2, 0, 1/2〉 and q8 =
〈0, 1/2, 1/2〉.

p1

p3

p4p2
p5p5

q6

q7

q8

p1

p3

p4p2
p5

q6

q7

q8

Figure 2. The convex polytope DΦ (in two perspectives) for Φ =

{x, y, x⊕ y}, and its extremal points p1, p2, p3 and p4.

Since both ∆1 and ∆2 linearize Φ,

DΦ = CΦ(V (∆1)) = CΦ(V (∆2))

(see Figure 2) and

ext CΦ(V (∆1)) = ext CΦ(V (∆2)) = ext DΦ = {p1, p2, p3, p4}.
�
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Let us write:

KΦ = {β : Φ→ [0, 1] | β is strictly coherent}.

The following theorem, which is the main result of this section, provides us
with a geometric characterization of strict coherence for books on formulas of  Lu-
kasiewicz logic.

Theorem 3.4. Let Φ be a finite subset of Fn. Then

KΦ = ri DΦ.

Proof. Since DΦ = CΦ, we will prove the equivalent claim: KΦ = ri CΦ.
Trivially, KΦ ⊆ CΦ. Let us show that KΦ ⊆ ri CΦ. Since CΦ is closed,

CΦ = ri CΦ ∪ rb CΦ and ri CΦ ∩ rb CΦ = ∅.

Assume (absurdum hypothesis) that β ∈ KΦ ∩ rb CΦ. By Lemma 2.2 (1) there
exists σ ∈ Rk such that for all γ ∈ CΦ,

σ · β ≤ σ · γ.

Thus, for all x ∈ [0, 1]n,

σ · β ≤ σ · 〈f1(x), . . . , fk(x)〉 ≤ 0.

Therefore, β is coherent but not strictly coherent. This contradicts our hypothesis.
Thus, KΦ ⊆ ri CΦ.

In order to prove the converse inclusion, assume that β ∈ ri CΦ and let σ ∈ Rk

satisfy Lemma 2.2 (2). Then

(CΦ)+
σ = {γ ∈ CΦ | γ · σ < β · σ}

and

(CΦ)−σ = {γ ∈ CΦ | γ · σ > β · σ},
are nonempty.

Moreover, by Lemma 2.2 (3), both (CΦ)+
σ and (CΦ)−σ contain an extremal point

of CΦ. Therefore, there are x, x′ ∈ [0, 1]n such that 〈f1(x), . . . , fk(x)〉 · σ < β · σ
and 〈f1(x′), . . . , fk(x′)〉 · σ > β · σ, that is, β is strictly coherent. �

Corollary 3.5. Let Φ and β be as above. Then the following conditions are
equivalent:

(1) β is strictly coherent;
(2) For each regular complex ∆ which linearizes Φ, there is λ : V (∆)→ [0, 1]

such that
∑
vi∈V (∆) λ(vi) = 1, for all vi ∈ V (∆), λ(vi) > 0 and β(fj) =∑

vi∈V (∆) λ(vi) · fj(vi);

(3) There exists a map λ : ext DΦ → [0, 1] such that
∑
e∈ext DΦ

λ(e) = 1, for

all e ∈ ext DΦ, λ(e) > 0 and β(ϕi) =
∑
e∈ext DΦ

λ(e) · fi(e).

Further, the set K Q
Φ of rational-valued strictly coherent books on Φ is decidable.

Proof. The equivalence between (1), (2) and (3) follows from Theorem 3.4,
Corollary 3.2 and Lemma 2.2 (4). To conclude the proof we will prove the de-

cidability of the set K Q
Φ . To this purpose, given Φ, the problem of determining a

regular complex ∆ which linearizes all McNaughton functions fi ∈ Φ, is computable

by a Turing machine (see [26, Theorem 7.1, Claim 3]). Therefore, by (2), K Q
Φ is
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decidable iff the following bounded mixed integer programming problem (see [14])
with unknowns λ(vi) for all vi ∈ V (∆), has a solution in [0, 1] ∩ Q:

(SKΦ
) =


λ(vi) > 0,∑
vi
λ(vi) = 1,∑

vi
λ(vi) · fϕ(vi) = β(ϕ).

Thus the decidability of K Q
Φ follows from [14, Proposition 2].

�

4. Strict coherence, infinite-valued events and faithful states.

Generalizing de Finetti’s theorem, a book on  Lukasiewicz events is coherent iff
it can be extended to a state in the sense of the following definition.

Definition 4.1 ([25]). A state of an MV-algebra A is a map s : A → [0, 1]
satisfying the following conditions:

(s1) Normalization: s(1) = 1,
(s2) Additivity: s(a⊕ b) = s(a) + s(b), for all a, b ∈ A such that a� b = 0.

A state s is said to be faithful if s(a) 6= 0 for all a 6= 0.

Kroupa and Panti independently proved that for every state s of an MV-algebra
A there exists a unique regular Borel, and hence σ-additive, probability measure
µs on the space of maximal ideals with the hull-kernel topology of A such that
s is the integral with respect to µs (see [17], [29] and [27, §10]). In particular,
for n-generated free MV-algebras, the Kroupa-Panti theorem shows that for every
state s of Fn there exists a unique regular Borel probability measure µs on [0, 1]n

such that for each f ∈ Fn,

(d) s(f) =

∫
[0,1]n

f dµs.

The correspondence between states of Fn and regular Borel probability measures
on [0, 1]n is one-one.

The next result, which to the best of our knowledge is new, represents faithful
states of Fn in a similar manner. Following [33], we say that a regular Borel measure
µ of [0, 1]n is strictly positive if for every nonempty open O ⊆ [0, 1]n, µ(O) > 0.

Proposition 4.2. For any state s of Fn the following conditions are equivalent:

(1) s is a faithful state;
(2) There exists a unique strictly positive, regular probability Borel measure

µs such that for every f ∈ Fn,

s(f) =

∫
[0,1]n

f dµs.

The correspondence between faithful states of Fn and strictly positive, regular prob-
ability Borel measures of [0, 1]n is one-one.

Proof. For every state s of Fn, let µs be the unique regular probability Borel
measure of [0, 1]n such that for every f ∈ Fn, s(f) =

∫
[0,1]n

f dµs as in the Kroupa-

Panti theorem.

(1) ⇒ (2). Assume that O is a nonempty open set in the product topology of
[0, 1]n, and µs(O) = 0. Let KO be any nonempty compact subset of O and assume,
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without loss of generality, that KO is a rational polyhedron. By [27, Corollary
2.10], there exists f ∈ Fn such that KO is the oneset of f . Since KO is contained
in O, by [18, Lemma 2.2 (i)] there exists n ∈ N such that, for all x ∈ [0, 1]n, the
n-fold �-product fn = f � . . . � f , satisfies fn(x) = 1 if x ∈ KO and fn(x) = 0
for all x 6∈ O. Therefore, fn 6= 0 and s(fn) =

∫
[0,1]n

fn dµs = 0 whence s is not

faithful.

(2) ⇒ (1). Assume that s is not faithful and in particular, let f ∈ Fn be such
that f 6= 0 and s(f) = 0. Since f is continuous and not constantly 0, its support
supp(f) = {x ∈ [0, 1]n | f(x) > 0} is nonempty and open. Thus,

0 = s(f) =

∫
[0,1]n

f dµs =

∫
supp(f)

f dµs,

whence µs(supp(f)) = 0. �

Remark 4.3. From Proposition 4.2 it follows that if A = Fn/IC is a finite-
dimensional MV-algebra, there is a one-one correspondence between faithful states
of A, strictly positive distributions on the points c1, . . . , ct of C, and points in the

relative interior of the simplex Σ∆ =
{
〈λ1, . . . , λt〉 ∈ Rt |

∑t
i=1 λi = 1

}
(see [11,

Remark 6.3]). Every finitely generated free boolean algebra A is, in particular, a
finite-dimensional MV-algebra and every faithful state s of A is a Carnap proba-
bility (recall Section 1). Therefore, Proposition 4.2 specializes on boolean events as
follows: for every n = 1, 2, . . ., a finitely additive probability P of the n-generated
free boolean algebra A is Carnap iff there exists a unique strictly positive distribu-
tion µP on {0, 1}n such that for every f ∈ A, P (f) =

∑
x∈{0,1}n µP (x) · f(x).

In [11], the authors characterized strictly coherent books on finite subsets of
a finite-dimensional MV-algebra A (recall Section 2) as those books that can be
extended to a faithful state of A. In this section, we will provide two measure-
theoretical characterizations of strict coherence for books on Fn. The first one
(Theorem 4.6) involves states satisfying a local version of faithfulness which depends
both on Φ and on the fixed regular complex linearizing its functions; the second
one (Theorem 4.8) is given in terms of faithful states of Fn.

Definition 4.4. Let Φ be a finite subset of Fn and let ∆ be a regular complex

which linearizes Φ. Then s is said to be ∆-faithful provided that s(ĥv) > 0 for all
v ∈ V (∆).

The next lemma collects some useful properties of states and ∆-faithful states.

Lemma 4.5. For each regular complex ∆ of [0, 1]n with vertices V (∆) = {v1, . . . , vt},
the following conditions hold:

(1) For each map λ : V (∆) → [0, 1] such that
∑
v∈V (∆) λ(v) = 1, the map

sλ : Fn → [0, 1] defined as

(e) sλ(f) =
∑

v∈V (∆)

f(v) · λ(v).

is a state of Fn.
(2) The set of ∆-faithful states of Fn is in one-one correspondence with the

set of faithful states of Fn/IV (∆) and hence is in one-one correspondence
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with the relative interior of the simplex

Σ∆ =

{
〈λ1, . . . , λt〉 ∈ Rt |

t∑
i=1

λi = 1

}
.

Proof. (1). Every state of Fn belongs to the closure of the convex hull of the
homomorphisms of Fn to [0, 1]MV (see [25, Theorem 2.5] and [12, Theorem 4.1.1]).
Thus the claim follows immediately from Proposition 2.1

(2). The claim easily follows from Proposition 4.2, Remark 4.3 and the definition
of ∆-faithfulness. �

The next theorem yields a characterization of strictly coherent books in terms
of ∆-faithful states.

Theorem 4.6. Let Φ be a finite subset of Fn and let β be a book on Φ. Then
the following conditions are equivalent:

(1) β is strictly coherent;
(2) There exists a regular complex ∆ which linearizes Φ and a ∆-faithful state

s which extends β;
(3) For every regular complex ∆ which linearizes Φ, there exists a ∆-faithful

state s of Fn which extends β.

Proof. (1) ⇒ (3). Let β be strictly coherent. From Corollary 3.5 (3), for
every regular complex ∆ linearizing Φ, there exists a map λ : V (∆) → [0, 1] such
that

∑
v∈V (∆) λ(v) = 1, λ(v) > 0 for all v ∈ V (∆) and for every fj ∈ Φ,

(f) β(fj) =
∑

v∈V (∆)

fj(v) · λ(v).

Let sλ be the state of Fn defined in (e).
First of all notice that, directly from (e) and (f), sλ extends β. Furthermore,

for every vertex v ∈ V (∆), the normalized Schauder hat ĥv takes value 1 on v

and 0 on any v′ 6= v. Thus, sλ(ĥv) =
∑
v′∈V (∆) ĥv(v

′) · λ(v′) = λ(v) and hence

sλ(ĥv) > 0. Therefore sλ is a ∆-faithful state of Fn which extends β.

(3)⇒ (1). Now assume that (3) holds and define λ : V (∆)→ [0, 1] by

λ(v) = s(ĥv).

From Lemma 2.4,∑
v∈V (∆)

λ(v) =
∑

v∈V (∆)

s(ĥv) = s

 ⊕
v∈V (∆)

ĥv

 = s(1) = 1.

Since s is ∆-faithful, λ(v) > 0 for each v ∈ V (∆). Further, for all fi ∈ Φ, β(fi) =
s(fi) =

∑
v∈V (∆) λv ·fi(v). Thus, β is strictly coherent by Corollary 3.5 ((2)⇒ (1)).

Finally, (3) ⇒ (2) is trivial and (2) ⇒ (3) follows from (1) ⇔ (3) above, Corollary
3.2 and Theorem 3.4 �

Lemma 4.5 (2) shows that for each regular complex ∆ which linearizes Φ, ∆-
faithful states of Fn are in one-one correspondence with faithful states of Fn/IV (∆).
In particular, for every ∆-faithful state s of Fn, let s∆ be the unique faithful state



13

of Fn/IV (∆) such that: for every f ∈ Fn, let f∆ to be the restriction of f to V (∆)
and

s∆(f∆) =
∑

v∈V (∆)

s(ĥv) · f∆(v).

Thus, if f ∈ Φ, s∆(f∆) = s(f). We then have:

Corollary 4.7. Let Φ be a finite subset of Fn and let β be a book on Φ. Then
the following conditions are equivalent:

(1) β is strictly coherent;
(2) There exists a regular complex ∆ which linearizes Φ and a faithful state

s∆ of Fn/IV (∆) such that, for all f ∈ Φ, β(f) = s∆(f∆);
(3) For every regular complex ∆ which linearizes Φ, there exists a faithful

state s∆ of Fn/IV (∆) such that, for all f ∈ Φ, β(f) = s∆(f∆).

The following construction is used in the next result which characterizes strictly
coherent books in terms of faithful states: let β be a strictly coherent book on a
finite subset Φ of Fn, fix an enumeration g1, g2, . . . of Fn \ {Φ, 0, 1} and consider
the following inductive construction:

(S1) Put Φ1 = Φ∪{g1}. Each regular complex ∆1 linearizing Φ1 also linearizes
Φ. Since β is strictly coherent, Theorem 4.6 yields a ∆1-faithful state s1

which extends β. It follows that the extended book β1 = β∪{g1 7→ s1(g1)}
is strictly coherent because s1 extends it. Further, 0 < s1(g1) < 1.

(S2) Consider Φ2 = Φ1 ∪ {g2} and fix ∆2 that linearizes Φ2 and a ∆2-faithful
state s2 which extends β1. Again, 0 < s2(g2) < 1 and β2 = β1 ∪ {g2 7→
s2(g2)} is strictly coherent by Theorem 4.6. Further, s2(e) = s1(e) for all
e ∈ Φ1.

(Si+1) At step i + 1, arguing by induction, construct a regular complex ∆i+1

which linearizes Φi ∪ {gi+1} = Φ ∪ {g1, . . . , gi+1}, a state si+1 of Fn
which is ∆i+1-faithful and a strictly coherent book βi+1 = βi ∪ {gi+1 7→
si+1(gi+1)}.

For each n, the state sn agrees with sn−1 over Φn−1. Thus, for all n0 and for all
n > n0, sn(gn0

) always attains the same value. In particular, for all n,m ∈ N,
sn(f) = sm(f) for all f ∈ Φ.

Theorem 4.8. Let Φ be a finite subset of Fn and let β be a book on Φ. Then
the following conditions are equivalent:

(1) β is strictly coherent;
(2) β extends to a faithful state of Fn.

Proof. The direction (2)⇒ (1) is trivial. Thus, let β be strictly coherent and
fix an enumeration g1, g2, . . . of Fn \ {Φ, 0, 1}. The construction above determines
subsets Φ = Φ0 ⊆ Φ1 ⊆ Φ2 ⊆ . . . of Fn and a sequence {si}i≥1 of states of Fn such
that:

(i) Each si is a ∆i-faithful state of Fn;
(ii) For all n > m, sm(e) = sn(e) for all e ∈ Φm.

By construction of the Φi’s, for every f ∈ Fn there exists an m ≥ 0 such that
f ∈ Φm and hence, by (ii), sm(f) = sn(f) for all n > m. Therefore, {si(f)}i≥0

is a Cauchy sequence. This gives that {si}i≥0 is pointwise convergent. Define
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s : Fn → [0, 1] as follows: for each f ∈ Fn,

s(f) = lim
i→∞

si(f).

Let us prove that s is a state. Clearly s(1) = 1. If a ⊕ b = 0 then, for all i ≥ 0,
si(a⊕ b) = si(a) + si(b) and by the continuity of +, s(a⊕ b) = limi→∞ si(a⊕ b) =
limi→∞ si(a) + si(b) = limi→∞ si(a) + limi→∞ si(b) = s(a) + s(b). By construction,
s extends β since so does each sn. There remains to be proved that s is faithful.
We will provide two proofs of this fact.

(Proof 1). By [11, Theorem 5.2] s is faithful iff for each finite subset Ψ of Fn
the restriction of s to Ψ is strictly coherent. Recalling the above construction,
let i0 be the minimum index such that Ψ ⊆ Φi0 . Thus, the restriction of s to Ψ
coincides with the restriction of si0 to Ψ and the restriction of si0 to Φi0 is strictly
coherent. The claim immediately follows because strict coherence is preserved for
books contained in a strictly coherent one.

(Proof 2). Let 1 > f > 0. If f ∈ Φ there is nothing to prove. Conversely,
assume that f = gi for some i. Therefore, for all j ≥ i, sj(f) = α > 0. Thus,
s(f) = limi→∞ si(f) = α > 0 and the claim is settled. �

5. Coherence, strict coherence and provability in  Lukasiewicz logic.

Propositional  Lukasiewicz logic ( L in symbols) is the logical calculus having
MV-algebras as its equivalent algebraic semantics. Formulas of  Lukasiewicz logic
will be denoted by lower case Greek letter and  L(m) will stand for the set of
formulas in a language with m propositional variables. A complete axiomatization
of  L can be found in [3, Definition 4.3.1]. A formula ϕ is said to be a theorem, in
symbols ` ϕ, if ϕ can be deduced from the axioms of  L and by its unique rule of
modus ponens. A theory Θ is a deductively closed set of formulas. A theory Θ of
 L(m) is said to be finitely axiomatizable if for some (necessarily satisfiable) formula
θ ∈  L(m), Θ is the smallest theory of  L(m) which contains θ.

By Proposition 2.1, valuations of the  Lukasiewicz language  L(m) are in one-one
correspondence with homomorphisms of Fm to [0, 1]MV as well as with points of
the m-cube [0, 1]m. Thus, a formula ϕ ∈  L(m) is a tautology if h(ϕ) = 1 for all
homomorphisms h : Fm → [0, 1]MV iff the oneset of fϕ coincides with [0, 1]m, where
fϕ is the unique McNaughton function determined by ϕ [24].

For every X ⊆ [0, 1]m and theory Θ we write

Th(X ) = {ψ ∈  L(m) | (∀x ∈X ) fψ(x) = 1}
and

Mod(Θ) = {x ∈ [0, 1]m | (∀ψ ∈ Θ) fψ(x) = 1}.
Given two (not necessarily finitely axiomatizable) theories Θ1 and Θ2, we write
Θ1 |= Θ2, if Mod(Θ1) ⊆ Mod(Θ2).

Following [27, Definition 3.9], two rational polyhedra P and Q of [0, 1]m are
said to be Z-homeomorphic (in symbols, P ∼=Z Q) if there exists a homeomorphism
η : P → Q such that both η and η−1, as maps from Rm → Rm are Z-maps, i.e., η
and η−1 are piecewise linear with integer coefficients.

Lemma 5.1 ([27, Theorem 3.20]). For every m = 1, 2, . . ., the pair (Th,Mod)
establishes a Galois connection between rational polyhedra of [0, 1]m and finitely
axiomatizable theories of  L(m). In particular:
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(1) For every finitely axiomatizable theory Θ of  L(m), there exists a unique
rational polyhedron PΘ of [0, 1]m such that Mod(Th(Θ)) ∼=Z PΘ.

(2) For each rational polyhedron P of [0, 1]m there exists a unique finitely
axiomatizable theory ΘP such that Mod(Th(ΘP)) ∼=Z P.

(3) For P1 and P2 rational polyhedra, P1 ⊆P2 iff Mod(ΘP1
) ⊆ Mod(ΘP2

)
iff ΘP1

|= ΘP2
.

In the rest of this section we will adopt the notation used in Lemma 5.1 above
with the following exception: if x ∈ ([0, 1] ∩ Q)m, we denote by Θx the finitely
axiomatizable theory Θ{x}.

Let Φ be a subset of Fn of finite cardinality k and let β be a rational-valued
book on Φ. As noted at the beginning of Section 3, {β}, CΦ and rb CΦ are rational
polyhedra of [0, 1]k. By Lemma 5.1, Θβ , ΘCΦ

and Θ(rb CΦ) are finitely axiomatiz-
able.

The following lemma provides a first characterization of coherence and strict
coherence in terms of deducibility.

Lemma 5.2. Let Φ be a finite subset of Fn and let β be a rational-valued book
on Φ. Thus the following conditions hold:

(1) β is coherent iff Θβ |= ΘCΦ
.

(2) β is strictly coherent iff Θβ |= ΘCΦ
and Θβ 6|= Θ(rb CΦ).

Proof. (1) follows from [26, Theorem 2.1], Lemma 5.1 and the definition of
|=. Indeed, β is coherent iff β ∈ CΦ iff {β} ⊆ CΦ.

As for (2), Theorem 3.4 shows that β is strictly coherent iff β ∈ riCΦ = CΦ \
rb CΘ iff β ∈ CΦ and β 6∈ rb CΘ iff Θβ |= ΘCΦ (by (1) above) and {β} 6⊆ rb CΘ. By
Lemma 5.1 (3) this condition is equivalent to Θβ 6|= Θ(rb CΦ). �

To characterize coherence and strict coherence in terms of provability in  Luka-
siewicz logic, we prepare.

Proposition 5.3. There exists an effective procedure Π to compute, for each
rational polytope P of [0, 1]k, a formula ΠP which axiomatizes ΘP .

Proof. First, compute a regular complex ∆ supporting P (see [7, Chapter

6.2.2. and Theorem 6.5]). Notice that, ext P ⊆ V (∆) and let ĥ1, . . . , ĥq be the
normalized Schauder hats at the vertices v1, . . . , vq of ∆. For j = 1, . . . , q let Πj be

the  Lukasiewicz formulas computed from ĥj (see [24]). Let further,

ΠP =

q⊕
j=1

Πj .

Since each ĥj is a member of  L(k), ΠP belongs to  L(k). There remains to be proved
that ΠP axiomatizes ΘP . To this purpose, let us prove that

x ∈P iff hx(ΠP) = 1.

As a matter of fact, by Lemma 2.4 (3) the oneset of the McNaughton function ΠP

is P. Thus the claim is settled. �

Corollary 5.4. There exists an effective procedure Π which computes, for
each Φ = {f1, . . . , fk} ⊆ Fn and for each β ∈ [0, 1]k, formulas ΠΦ, Π(rb Φ) and Πβ

of  L(k) which respectively axiomatize ΘCΦ
, Θ(rb CΦ) and Θβ.



16 T. FLAMINIO

Proof. As the reader will recall from Section 3, CΦ is a polytope. Thus,
CΦ, {β} are rational polytopes of [0, 1]k, whence ΠΦ and Πβ are computed as in
Proposition 5.3.

As for Π(rb Φ), rb CΦ is not convex. However, it can be realized as the finite
union of the faces F1, . . . , Fl of CΦ. Each face Fi is a rational polytope, whence
Proposition 5.3 yields  Lukasiewicz formulas Π1, . . . ,Πl such that x ∈ Fi iff hx(Πi) =
1. Thus, let

Π(rb Φ) =

l∨
i=1

Πi.

Finally, x ∈ rb CΦ iff exists i = 1, . . . , n such that x ∈ Fi iff hx(Fi) = 1 iff
hx(Π(rb Φ)) = 1. �

In the light of the above corollary, we may write ΠΦ, Π(rb Φ) and Πβ without
danger of confusion. In the following characterization, for every  Lukasiewicz formula
ψ, we write ψn for ψ � . . .� ψ (n-times).

Theorem 5.5. Let Φ be a finite set of Fn and let β be a book on Φ. Then the
following conditions hold:

(1) β is coherent iff there exists a non-zero n ∈ N such that ` (Πβ)n → ΠΦ.
(2) β is strictly coherent iff there exists a non-zero n ∈ N such that ` (Πβ)n →

ΠΦ and for all non-zero n ∈ N, 6` (Πβ)n → Π(rb Φ).

Proof. Both claims follow from Lemma 5.2, Corollary 5.4, the completeness
theorem of  Lukasiewicz calculus and  Lukasiewicz deduction theorem stating that
ϕ ` ψ iff there exists a non-zero n ∈ N such that ` ϕn → ψ (see [3, §4]). We will
prove (1) since the proof of (2) is essentially the same.

By Lemma 5.2, β is coherent iff Θβ |= ΘCΦ
iff (from Lemma 5.4) Πβ |= ΠΦ.

The completeness theorem of  Lukasiewicz calculus shows that Πβ |= ΠΦ iff Πβ ` ΠΦ

iff ` (Πβ)n → ΠΦ for some n > 0. �

6. Conclusion

In this paper we have presented geometrical, measure-theoretical and logical
characterizations for the strict coherence of books on  Lukasiewicz infinite-valued
events. Our first result shows that, for any finite subset Φ of a finitely generated
free MV-algebra A, the set of all strictly coherent books on Φ coincides with the
relative interior of the polytope of all coherent ones; the second characterization is a
de Finetti-like theorem: a book on Φ is strictly coherent if and only if it extends to
a faithful state of A. Finally, our last theorem gives a characterization of coherence
and strict coherence in terms of the provability relation of propositional  Lukasiewicz
logic.

We believe that this last result is interesting both from the logical and philo-
sophical perspective as it may shed a light on an intuitive reading of propositional
 Lukasiewicz logic. Specifically, it is of particular interest to put forward a compar-
ison between the role of  Lukasiewicz logic prompted by Theorem 5.5 in theories of
uncertain reasoning and the semantics proposed in [20]. There, the author, inves-
tigating the problem of artificial precision in theories of vagueness based on real
numbers as degrees of truth, presents  Lukasiewicz logic as a suitable formal system
to handle vague predicates3.

3The author wishes to thank Eduardo Barrio for pointing out this to him.
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In our future work we will mainly focus on extending the results of this paper
to more general algebraic structures. Particularly promising seems to be the class
of finitely presented MV-algebras (see [21] and [27, Theorem 6.3]). Further, we will
address the problem of determining an NP-algorithm to check strict coherence for
 Lukasiewicz events. The solution of this problem would immediately yield that for

each finite set Φ of  Lukasiewicz events, K Q
Φ is NP-complete (see [11, §7]).
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