
Using MAS Technologies for Intelligent Organizations:
A Report of Bottom-Up Results

Armando Robles1,2, Pablo Noriega1, Michael Luck2, and Francisco J. Cantú3

1 IIIA - Artificial Intelligence Research Institute
Bellaterra, Barcelona, Spain

2 University of Southampton, Electronics and Computer Science
Southampton, United Kingdom
3 ITESM Campus Monterrey

Research and Graduate Studies Office, Monterrey, N.L. México
{arobles, pablo}@iiia.csic.es, mml@ecs.soton.ac.uk,

fcantu@itesm.mx

Abstract. This paper is a proof of concept report for a bottom-up approach to
a conceptual and engineering framework to enable Intelligent Organizations us-
ing MAS Technology. We discuss our experience of implementing different types
of server agents and a rudimentary organization engine for two industrial-scale
information systems now in operation. These server agents govern knowledge
repositories and user interactions according to workflow scripts that are inter-
preted by the organization engine. These results show how we have implemented
the bottom layer of the proposed framework architecture. They also allow us to
discuss how we intend to extend the current organization engine to deal with
institutional aspects of an organization other than workflows.

1 Introduction

This paper reports results on two particular aspects of our progress towards a framework
to support knowledge intensive organizations: the design of server domain agents and
the implementation of an organization engine.

We are proposing a framework for the design of systems enabled by electronic in-
stitutions that drive the operation of actual corporate information systems. This is an
innovative approach to information systems design since we propose ways of stating
how an organization is supposed to operate: its institutional prescription, and having
that prescription control the information system that handles the day to day operation
of the organization: the enactment of the organization. We are not restricting our pro-
posal to any particular domain of application but we do have in mind organizations that
are self-contained (i.e. with a boundary that separates the organization from its envi-
ronment) and have a stable character (i. e., whose mode of operation does not change
very rapidly). We should also make clear that our proposal is not intended for organi-
zational design, what we are proposing is a framework for the design and deployment
of agent-based systems that support already designed organizations. Finally, we should
point out that we are designing a framework to be applied to new information systems
but as this paper demonstrates we find it is also applicable, with some reservations, to
the conversion of traditional legacy information systems.

A. Gelbukh and C.A. Reyes-Garcia (Eds.): MICAI 2006, LNAI 4293, pp. 1116–1127, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Using MAS Technologies for Intelligent Organizations 1117

In our framework we propose a conceptual architecture and the tools to build cor-
porate information systems. The framework we propose is built around the notion of
electronic institution (EI) [2] and uses agent-based technologies intensively. Instead of
using the notion of electronic institutions to represent and harness only static procedu-
ral features —as is currently the case— we propose to extend the notion of electronic
institution to capture conveniently more flexible procedural features. In order to cap-
ture other non-procedural institutional features of an organization as well, we use the
extended notion of electronic institution and develop different sorts of agents and agent
architectures —server agents, organization agents and user agents. In addition to those
accretions we are also involved in the consequent extension of available tools in order
to handle the added expressiveness and functionality.

In previous papers we have outlined the framework [10] and discussed its compo-
nents from a top-down perspective [11] and reported the first implementation expe-
riences [13]. In this paper we recount our experience with the agentification of two
existing corporate information systems of the type we want to be able to capture with
our framework and discuss how we plan to extend that experience for the intended
framework. The experience of agentifying these industrial scale systems had two main
outcomes: a family of actual server agents that deal with the knowledge repositories and
user interfaces of the two application domains and a rough version of the organization
engine that we propose for the full-blown framework.

The paper is organized as follows: after a quick review of relevant background, we
present our basic proposal, in Section 3, and in Section 4 what we have accomplished in
the bottom-up agentification process. We then discuss why and how we intend to evolve
a workflow engine into an organizational engine in Section 5. Finally, in Section 6 we
present ongoing work and conclusions.

2 Background

2.1 Organizations

We think of an organization, a firm, as a self-contained entity where a group of indi-
viduals pursue their collective or shared goals by interacting in accordance with some
shared conventions and using their available resources as best they can [9,7,1]. This
characterization focuses on the social processes and purpose that give substance and
personality to a real entity and naturally allows to consider people, processes, informa-
tion and other resources as part of the organization. We choose to use this particular
notion in our discourse because at least for the moment we do not want to commit
to other organization-defining criteria like sustainability, fitness in its environment or
status and substitutability of personnel. We want to focus further in what have been
called knowledge-intensive or intelligent organizations whose distinguishing feature is
the explicit recognition of their corporate-knowledge and know-how as an asset [6].

The everyday operation of an organization consists of many activities that are some-
what structured and that involve personnel, clients and resources of different sorts. It
is usual for organizations to manage and keep track of those activities through on-line
information systems that are usually called corporate information systems (CIS). We
will assume that intelligent organizations have CIS and we will further assume that
corporate knowledge and know-how may be contained in the CIS.

1118 A. Robles et al.

Hotels, hospitals and other types of organizations, have conventions that structure
or institutionalize their activity in consistent ways so that employees and clients have
some certainty about what is expected of them or what to expect from each other. These
conventions are usually also a convenient way of establishing procedures that save co-
ordination and learning efforts and pinpoint issues where decision-making is regularly
needed. These institutional conventions usually take the form of organizational roles,
social structures, canonical documents, standard procedures, rules of conduct, guide-
lines, policies and records; that is, habits and objects, that participants adhere to in a
more or less strict way (cf. e.g. [14]).

Our aim is to design a framework that is fit to capture such institutional aspects of an
intelligent organization and make them operational as part of its CIS.

2.2 Electronic Institutions

We adopt the concept of electronic institution, EI, as defined in the IIIA and specified
through the following components: a dialogical framework —that defines ontology,
social structure and language conventions— and a deontological component that es-
tablishes the pragmatics of admissible illocutory actions and manages the obligations
established within the institution [8].

EI is currently operationalized as EI0 [2]. In particular, its deontological component
is specified with two constructs that we will refer to in the rest of the paper: First, a
performative structure that includes a network of scenes linked by transitions. Scenes
are role-based interaction protocols specified as finite state machines, arcs labelled by
illocutions and nodes corresponding to an institutional state. Transitions describe the
role–flow policies between scenes. Second, a set of rules of behavior that establish
role-based conventions regulating commitments. These are expressed as pre and post-
conditions of the illocutions admissible by the performative structure.

There is a set of tools (EIDE)[2] that implements EI0 electronic institutions. It in-
cludes a specification language (ISLANDER) generating an executable EI and middle-
ware (AMELI) that activates a run-time EI to be enacted by actual agents.

We want to take advantage of these developments to capture the institutional as-
pects of an organization and be able to incorporate these aspects as part of a CIS. More
precisely, we will use EI notions to represent stable institutional activities, roles, pro-
cedures and standard documents. We will also take advantage of EI as coordination
artifacts to organize corporate interactions according to the (institutional) conventions
of the organization. Finally, we will use an extended version of EI0 in order to specify
and implement an organization engine that enacts the institutional conventions of an
organization by driving the operation of the components of its CIS.

3 A Proposal for EI-Enabled Organizations

Our aim is to design a conceptual framework to deal with the design and construction
of corporate information systems. Since we intend to make such framework applicable
for knowledge-intensive CIS and we find that the notion of electronic institution is well
adapted to this purpose, we are calling it a framework for EI-enabled organizations. We
are proceeding in the following manner:

Using MAS Technologies for Intelligent Organizations 1119

Agentify the components of standard CIS with three types of agents owned and con-
trolled by the organization: server agents, user agents, and staff agents.

Encapsulate institutional knowledge as (a) agentified knowledge repositories of dif-
ferent types (business rules, workflow scripts), (b) decision-making capabilities,
guidelines or policies that are modelled as staff agents, and (c) the choice of func-
tions that are delegated in staff agents.

Extend the notion of electronic institution to describe and implement properly the sig-
nificant institutional aspects of an organization.

Build an operative environment where a prescriptive description of an organization
governs and reacts with the CIS that handles the day-to-day operation of the orga-
nization.

Figure 1 (left) outlines the functional architecture of the framework. That functional
architecture has been motivated and described elsewhere ([10], [11]), however, for the
purpose of this paper we may say that the top layer is a prescriptive definition of the
organization that the bottom layer eventually grounds on the components (users, trans-
actions, programs, data) of the business domain. The core is an organization engine
built around an EI that implements and enforces the institutional conventions through a
middleware that maps them into the agentified CIS in the bottom layer.

Fig. 1. Architectural diagram of the proposed framework (left) and the implemented work-
flow engine for the outpatient care system involving User, Business rule and Database server
agents(right)

– The electronic institution layer implements the normative specification using as
input the performative scripts produced by the EI specification language. The run-
time functionalities of this layer are similar to those of AMELI [3,2] since it runs
in close interaction with the organization middleware and it guarantees that all in-
teractions comply with the institutional conventions.

– The organization middleware layer contains a grounding language interpreter and
uses it to pass grounding language commands from the run-time EI to the CIS
components and map actions in the CIS with state transitions in the run-time EI.

1120 A. Robles et al.

Thus, the grounding language is used to specify the sequencing of instantiation
of performative scripts as well as agent behaviour in order to manage interactions
with the actual CIS elements: users, interfaces and knowledge repositories. The
basic functions of this middleware layer are:

• to log users into the organization, controlling user roles, agent resources and
security issues.

• to monitor user interaction,
• to execute the grounding language interpreter,
• to implement interaction devices1, and
• to control the actual mappings between the grounding language interpreter and

domain entities.

4 A Bottom-Up Approach

4.1 The Agentified CIS

We have approached the design of our framework from both ends. The top-down ap-
proach is centered in the theoretical and computational extensions of the EI0 develop-
ments (c.f. [11]). The bottom-up approach that we explore in this paper has consisted in
the agentification of two CIS in actual operation, and the design and implementation of
a rudimentary organization engine that is currently a workflow engine proficient enough
to drive the MAS-ified operation of those two CIS.

The systems that we have been working with are integral vertical industry systems.
One system implements the full operation of large hotels: reservations, room assign-
ment, restaurant services, accounting and billing, personnel, etc. The other implements
the full operation of a hospital: outpatient care, nurse protocols, pharmacy, inventory
control, electronic medical records and so on. They have been developed by Grupo
TCA and have been in an evolving operation for almost 20 years.2

Over the last 5 years, TCA has been modifying its hotel information system to fa-
cilitate its agentification. It is now a consolidated set of business rules available to a
middleware workflow engine that reads workflow scripts and delegates concrete tasks
and procedures to participating user and server agents. This modestly MAS-ified CIS
whose architecture is reported in [13] is already operational in 15 hotels. In the health
care domain, TCA has MAS-ified the outpatient care subsystem [12] as a first step for the
agentification of their integral hospital information system. These two MAS-ified CIS,
show how we intend to put our proposal to work and, as we report below, the experience
brought to light many issues that should be taken into account for the development of
our framework.

1 For those domain entities that need to be in contact with external agents we have developed
a special type of server agent that we call interaction device. These devices implement inter-
facing capabilities between external users and other domain elements, e.g. form handling, data
base calls, business rule triggering.

2 TCA is a medium-size privately owned information systems company that has been active in
the design and development of integral information systems since 1982 for the Latin American
market.

Using MAS Technologies for Intelligent Organizations 1121

4.2 The Workflow Engine

The workflow engine (WF-engine) is currently operational and implements a restricted
version of the main component of the organization middleware: the organization engine.
Once initiated, WF-engine reads a workflow script from a repository and interprets the
commands contained in it. The commands are executed in the sequence dictated by
the workflow conditional directives, and each command triggers the inter-operation of
server agents that control domain components —data bases, business rules, forms—
and their interaction with human users.

Figure 1 (right) illustrates how the workflow engine supervises the agents that handle
specialized domain components, such as databases or business rule repositories — a
specialized business rule server agent (Bag) fetches, from a central repository, business
rules that use data provided by another specialized database server agent (Dag), to
provide input to a user agent (Uag) that displays it in a user form.

Each workflow specification is stored in a repository as a workflow script. Since each
domain component is represented in the environment by a specialized server agent, we
have implemented commands for sending requests to the corresponding server agents
for their execution of business rules, data base accesses, reports definitions, and for
end-user interactions.

Each task specified in a protocol is implemented as one of the following domain
actions:

– a business rule, that could be as simple as a single computation or as complex as a
complete computer program;

– a data base access to add, delete, modify or retrieve information from a data base;
– a user interaction through a specialized form; or
– a reference to another workflow script.

We have built an interpreter that takes a workflow script and produces a set of actions.
This implementation involves activation of server and user agents of different types, the
sequencing of their actions and the parameter loading and passing during those actions.
The interpreter uses the following commands:

– read workflow specification script,
– initialize variables,
– load defaults for variables and data, and
– execute workflow commands.

Initially, the workflow interpreter reads the main workflow script and starts executing
the specified commands, controlling and sequencing the interaction between the inter-
vening agents as well as loading and executing other possible workflow scripts specified
in the main workflow.

Here is a workflow script segment used in the Back Office module of the Hotel
Information System to implement the task of adding a supplier.3 The script specifies
the coordination of interactions between database, business-rule and user agents (who
use specialized forms).

3 Script and business rules are taken from TCA’s hot500.wf and hot500.br repositories.

1122 A. Robles et al.

Procedure AddSupplier
begin

InitializeVariables ;
Interact(UserAgent(DefineGrid(grid01)));
Interact(UserAgent(InputFields(grid01,Supplier)));
Interact(BRServerAgent(ConsistencyCheck));
Interact(DBServerAgent(Suppliers,New));

end

WF-Engine Functional Features. Agent mediated interactions The WF-engine acts
as a link between the user interface and the data base and business rule repositories, but
all interactions are mediated by ad-hoc server agents.

Specialized server agents for domain components. The main function of the specialized
server agents is to act as a business domain components (including business rule repos-
itories and data bases) facilitators for all user agents that may be logged-in at several
client sessions.

The user interface is mediated by a user agent that is regarded as a client for the
business rule and data base server agents.

Persistent communication. Once the interaction between a user agent and a server
agent is established, the infrastructure makes sure that the communication between both
agents is persistent until one of the agents decides to terminate it.

Business rule triggering. As shown in the previous examples, workflow scripts are
currently not much more than sequences of conditional clauses that invoke, through
specialized agents, the activation of specific business rules. Business rules are special-
purpose programs, stored in a repository that may be accessed by a business rule agent
who is able to trigger rules and use the results of such triggerings. Business rule agents
(BRagents) react to workflow transitions by requesting business rule inputs either from
database server agents who query a data base or from user agents that read input from
a user form. With those inputs, the BRagent triggers a rule whose result is passed to a
data base server agent or a user agent or, more frequently, is used by the BRagent to
change the workflow state.

WF-Engine Programming Functionalities. Context of interaction. The system pro-
grammer is responsible for maintaining the context of all agent interactions because as
agent interactions evolve, they modify the context of the world, updating data and status
variables as required.

Precedence of execution. During workflow execution, event value verification takes
precedence over sequential process execution; that is, in the middle of a conditional
execution, it is possible to break the sequential flow and skip directly to the first com-
mand of another conditional clause.

Workflow scope of execution. Regarding the scope of workflow execution, once a flat
form or grid is addressed, all subsequent workflow commands will be made in the scope
of that specific flat form or grid, until another one is addressed.

Using MAS Technologies for Intelligent Organizations 1123

Scope of variables. Global variables are available in the scope of the workflow defi-
nition, that is, in the workflow specification the programmer can test for the value of
variables defined as global by any server agent. It is the programmer’s responsibility to
define and maintain the proper scope for the required variables.

WF-Engine Limitations. The WF-engine has no control over what is said between
agents. Because of the way workflow scripts are currently implemented, it deals only
with specific conditional commands that test for contextual changes represented by
changes in data and status variables. This is an important limitation whenever we want
to deal with complex interactions, because we are forced to “hardwire” the control code
for the execution of alternative procedures in the workflow script or in the business rules
it involves.

In the WF-engine we implemented in this experiment we designed specific com-
mands that deal with the transfer of data between the workflow engine and user or
server agents. While it is natural to transfer information as data, the transfer of control
data that may alter or modify agent behavior is undesirable but due to the limited ex-
pressiveness of workflow scripts we had to implement it in the WF-engine. We have
used working memory to pass control data, but this use entails the messy problem of
dealing with global variables and thus imposing severe restrictions on agent autonomy.

In the implementations described here we only use reactive agents. Such a primitive
implementation is enough for the current needs but we may readily change their speci-
fication to involve more sophisticated behavior to take advantage of more sophisticated
organization engines.

5 From WF-Engine to O-Engine

Lessons Learned. Our experience of MAS-ifing two CIS, has brought to light many
pertinent issues for an organizational engine. The main lessons are:

Complexity trade-off. Considering the agentification of systems with equivalent func-
tionalities, our experience with the MAS-ification shows that when business rules
capture much of the discretional (rational) behaviour of agents, it is enough to
use simple procedural rules to implement those procedures where the business
rules are involved. Conversely, as business rules become simpler, the procedural
requirements become more involved, the need for agent discretional behaviour is
increased, and the need for handling agent commitments arises. The more “atomic”
the business rules are, the more complexity is needed to handle them, both in the
flow of control and in the agent behavior.

Agent commitments. These two experiments have also shown that if we do not have
a structural mechanism to control the commitments generated through agent inter-
actions, we need to hard-wire the required program logic to keep track of pending
commitments inside each agent, as part of the workflow or inside some business
rules. Assume that agent a performs an action x at time t and establishes a commit-
ment to do action y at time, say t+3. If action x is implemented as a business rule,
then we must have a mechanism to send a return value to the BRagent, or some
way to set a variable in some kind of working memory.

1124 A. Robles et al.

Viable approach. We have described how we MAS-ified two CIS. In the process, we
have outlined the construction of the required server and user agents, have devel-
oped the required business rules, and specified the workflow needed for the appro-
priate sequence of execution between the intervening agents. In this sense we have
been able to implement two CIS that correspond roughly to the type of EI-enabled
CIS we want to build with our framework.

Even though the WF-engine is an embryonic version of an organizational en-
gine and workflow scripts are clumsy parodies of EI-performative scripts, we have
shown that specialized server agents, knowledge repositories and display devices
may be driven by a prescriptive specification and some intended benefits are already
available even in this rudimentary examples:

– We found considerable savings in software-development time and effort avoid-
ing duplicate code by building business rule server agents and business rule
repositories, since the same agent scheme can exploit similar repositories.

– We ensured problem separation at system design time, allowing domain ex-
perts to define the appropriate workflow and leaving to the engineer the task
of engineering server agent behaviour. By having business rules managed by
server agents, the problem is reduced to implementing some control over these
agents.

– Separating workflow and business rule definitions from business rule and
workflow control begets a considerable simplification of the system upgrad-
ing process. This simplification allows us a glimpse at the possibility of having
dynamic behavior in the CIS prescription.

Additional Functionality for the O-Engine. In our framework, we want to be able
to prescribe what the valid interactions among agents are. We have decided that the
only valid mechanism for agent interaction —to communicate requests, assertions,
results— should be illocutions. Hence, instead of using working memory, we need a
proper grounding language and a mechanism to control agent illocutions and the ensu-
ing commitments over time. This suggests us the use of production rules and an infer-
ence mechanism that will be used to define and operate the institutional conventions of
performative scripts and also to load knowledge bases of staff agents.

We need to design a proper grounding language to map the sequencing and instantia-
tion of performative scripts and server agents illocutions in order to manage interactions
with the domain components.

How to Define and Implement the O-Engine. In order to address the issues mentioned
in this section, we need to change the definition of a workflow engine into a more so-
phisticated organization engine that handles performative scripts —that capture more
information than workflows— illocutory interactions and dynamic agent commitments.

We will implement this required functionality by extending the concept of Electronic
Institution. In fact each performative script is built as an electronic institution and an
extension of the current machinery for transitions is used to intertwine the scripts. We
will also need to extend the expressiveness of ISLANDER by having sets of modal
formulae (norms) as a way of specifying performative scripts [4,5]. The grounding lan-
guage will be a gradual extension —as we increase the functionality and autonomy of

Using MAS Technologies for Intelligent Organizations 1125

server agents— of the primitive commands that we use to load WF scripts and sequence
the interaction of intervening agents and their calls to business rule and databases that
we now hide in the WF interpreter. Once the performative script is modelled and speci-
fied (using an extension of IIIA’s ISLANDER tool), it is saved in a performative scripts
repository. The organizational engine reads and instantiates each performative script as
needed.

The current EI0 operationalization of EI [2] will be taken as the starting point for
these purposes but we are extending it to have a better representation of organizational
activities, the extended functionality and a leaner execution.

6 Final Remarks

Recapitulation. In [10] we took a top–down approach for the definition of a framework
for enacting intelligent organizations. We proposed having a prescriptive specification
that drives the organization’s information system day to day operation with an organi-
zational engine based on electronic institutions. In this paper we report our experiences
with a bottom-up approach where we tested and proved adequate a rudimentary version
of the proposed framework. In this paper we also discussed how we expect to attain the
convergence of the top–down and bottom–up approaches by, on one hand, transforming
the WF-engine that is now functional in two industrial-scale CISs into an organization
engine that may deal with more elaborate organizational issues and, on the other hand,
implementing the extensions of EI0 that the organizational engine entails.

Programme. Our intention is to be able to build and support large information systems
that are effective and flexible. What we are doing is to device ways of stating how
an organization should work and, in fact, making sure that the prescribed interactions
are isomorphic with the actions that happen in the information system. We realize that
there is a tension between the detailed specification of procedures and the need to a
continuous updating of the system and since we know that the ideal functioning will be
changing, we want that the actual operation changes as well. In order to achieve this
flexibility we are following three paths:

– Making the information system agent-pervasive. This way we make sure that all
interactions in the CIS become, in fact, illocutions in the organizational engine,
and then we may profit from all the advantages that electronic institutions bring
about to express complex interaction protocols and enforce them.

– Simultaneously we are going for plug-able components —performative scripts,
business rule and knowledge repositories, server agents, user agents— that are easy
to specify, assemble, tune and update so that we can use them to deploy interaction
protocols that are stable, quickly, and thus allowing us to update these protocols
parsimoniously.

– We count on staff agents that are reliable and disciplined (since they are part of
the organization) and, because they may have better decision-making capabilities
and because we can localize their knowledge, we can build into them the flexibility
needed to accommodate less frequent interactions or atypical situations (and thus
simplify interaction protocols) and also to accommodate more volatile conventions
(and thus save us from more frequent updates).

1126 A. Robles et al.

We entertain the expectation that we will be able to incorporate autonomic features into
our systems.

Next steps. An outline. In the top-down strategy we are (a) looking into the formal
and conceptual extensions of the EI0 so that we may handle complex performative
structures and assemble them from simpler performative scripts. (b) Devising ways of
expressing deontological conventions declaratively, so that we may specify performa-
tive scripts declaratively and logically enforce them. (c) Defining the guidelines for
a grounding language that translates EI manageable illocutions into CIS components
actions.

In the bottom-up approach we will (a) start enriching server agents so they can in-
teract with EI0 performative structures, with “more atomic” business rules and with
the other application domain entities. (b) We will also develop user agents and inter-
action devices further, so that we have better access and control for external users of
the system. (c) We will also start implementing actual performative scripts, staff agents
and appropriate business rules, on one side, and a grounding language to handle their
interactions on the other. (d) We will extend the current WF-engine to handle (c).

In the implementational front we foresee (a) a prototype organization engine, built
on top of EIDE, to handle the bottom-up developments. (b) An extension to the IS-
LANDER (ISLAplus) tool to handle the new expressiveness of the organizational en-
gine. (c) A leaner version of EIDE that instantiates an ISLAplus specification into an
organization engine and enacts it on a CIS.

Acknowledgments

This research is partially funded by the Spanish Ministry of Education and Science
(MEC) through the Web-i-2 project (TIC-2003-08763-C02-00) and by private funds of
the TCA Research Group.

References

1. Howard E. Aldrich, editor. Organizaions and Environments. Prentice Hall, 1979.
2. Josep Lluis Arcos, Marc Esteva, Pablo Noriega, Juan A. Rodrı́guez-Aguilar, and Carles

Sierra. Environment engineering for multiagent systems. Engineering Applications of Arti-
ficial Intelligence, (submitted), October 2004.

3. Marc Esteva, Juan A. Rodriguez-Aguilar, Bruno Rosell, and Josep Lluis Arcos. AMELI: An
agent-based middleware for electronic institutions. In Third International Joint Conference
on Autonomous Agents and Multi-agent Systems (AAMAS’04), pages 236–243, New York,
USA, July 19-23 2004.

4. Andres Garcia-Camino, Pablo Noriega, and Juan Antonio Rodriguez-Aguilar. Implementing
norms in electronic institutions. In Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, 2005.

5. Andres Garcia-Camino, Juan Antonio Rodriguez-Aguilar, Carles Sierra, and Wamberto Vas-
concelos. A Distributed Architecture for Norm-Aware Agent Societies. In Fourth Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems. Declarative Agent
Languages and Technologies workshop (DALT’05), 2005. (forthcoming).

Using MAS Technologies for Intelligent Organizations 1127

6. Jay Liebowitz and Tom Beckman. Knowledge Organizations. Saint Lucie Press, Washington,
DC, 1998.

7. James G. March and Herbert A. Simon. Organizations. John Wiley and sons, New York,
USA., 1958.

8. Pablo Noriega. Agent Mediated Auctions: the Fishmarket Metaphor. PhD thesis, Universitat
Autònoma de Barcelona (UAB), Bellaterra, Catalonia, Spain, 1997. Published by the Institut
d’Investigaci en Intelligncia Artificial. Monografies de l’IIIA Vol. 8, 1999.

9. Douglas C. North. Institutions, Institutional change and economic performance. Cambridge
Universisy press, 40 west 20th Street, New York, NY 10011-4211, USA, 1990.

10. Armando Robles and Pablo Noriega. A Framework for building EI–enabled Intelligent
Organizations using MAS technology. In M.P. Gleizes, G. Kaminka, A. Nowé, S. Ossowski,
K. Tuyls, and K. Verbeeck, editors, Proceedings of the Third European Conference in Multi
Agent Systems (EUMAS05), pages 344–354., Brussel, Belgium, December 2005. Koninklijke
Vlaamse Academie Van Belgie Voor Wetenschappen en Kunsten.

11. Armando Robles, Pablo Noriega, Francisco Cantú, and Rubén Morales. Enabling Intelligent
Organizations: An Electronic Institutions Approach for Controlling and Executing Problem
Solving Methods. In Alexander Gelbukh, Álvaro Albornoz, and Hugo Terashima-Marı́n, ed-
itors, Advances in Artificial Intelligence: 4th Mexican International Conference on Artificial
Intelligence, Proceedings ISBN: 3-540-29896-7, pages 275 – 286, Monterrey, NL, MEX,
November 2005. Springer-Verlag GmbH. ISSN: 0302-9743.

12. Armando Robles, Pablo Noriega, Michael Luck, and Francisco Cantú. Multi Agent approach
for the representation and execution of Medical Protocols . In Fourth Workshop on Agents
Applied in Healthcare (ECAI 2006), Riva del Garda, Italy, Aug 2006.

13. Armando Robles, Pablo Noriega, Marco Robles, Hector Hernandez, Victor Soto, and Edgar
Gutierrez. A Hotel Information System implementation using MAS technology. In Industry
Track – Proceedings Fifth International Joint Conference on AUTONOMOUS AGENTS AND
MULTIAGENT SYSTEMS (AAMAS 2006), pages 1542–1548, Hakodate, Hokkaido, Japan,
May 2006.

14. Pamela Tolbert and Lynn Zucker. chapter The Institutionalization of Institutional Theory,
pages 175–190.

	Introduction
	Background
	Organizations
	Electronic Institutions

	A Proposal for EI-Enabled Organizations
	A Bottom-Up Approach
	The Agentified CIS
	The Workflow Engine

	From WF-Engine to O-Engine
	Final Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

