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Abstract. We introduce Multimodal Logics of Normative Systems as a contribution
to the development of a general logical framework for reasoning about normative
systems over logics for Multi-Agent Systems. Given a multimodal logicL, with
standard Kripke semantics, for every modality2i and normative systemη, we
expand the language adding a new modality2

η
i with the intended meaning of2η

i φ

being "φ is obligatory in the context of the normative systemη over the logicL".
In this expanded language we define the Multimodal Logic of Normative Systems
overL, for any given set of normative systemsN , and give a sound and complete
axiomatisation for this logic, proving transfer results in the case thatL andN are
axiomatised by sets of Sahlqvist or shallow modal formulas.
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1. Introduction

Recent research on the logical foundations of Multi-Agent Systems (MAS) has centered
its attention in the study of normative systems. MAS could be regarded as a type of
dialogical system, in which interactions among agents are realized by means of mes-
sage interchanges, all these interactions taking place within an institution. The notion of
electronic institution is a natural extension of human institutions by permitting not only
humans but also autonomous agents to interact with one another. Institutions are used
to regulate interactions where participants establish commitments and to facilitate that
these commitments are upheld, the institutional conventions are devised so that those
commitments can be established and fulfilled (see [1] for a general reference of the role
of electronic institutions to regulate agents interactions in MAS). Over the past decade,
normative systems have been promoted for the coordination of MAS and the engineer-
ing of societies of self-interested autonomous software agents. In this context there is an
increasing need to find a general logical framework for the study of normative systems
over the logics for MAS.

Given a set of statesS and a binary accessibility relationR on S, a normative sys-
temη on the structure(S, R) could be understood as a set of constraintsη ⊆ R on the
transitions between states, the intended meaning of(x, y) ∈ η being "the transition from
statex to statey is not legal according to normative systemη". Several formalisms have
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been introduced for reasoning about normative systems over specific logics, two exam-
ples are worth noting: Normative ATL (NATL), proposed in [2] and Temporal Logic of
Normative Systems (NTL) in [3]. NATL is an extension to the Alternating-Time Tem-
poral Logic of Alur, Henzinger and Kupferman (see [4]), NATL contains cooperation
modalities of the form<< η : C >> φ with the intended interpretation that "C has the
ability to achieveφ within the context of the normative systemη". NTL is a conservative
generalization of the Branching-Time Temporal Logic CTL (see [5]). In NTL, the path
quantifiersA ("on all paths...") andE ("on some path...") are replaced by the indexed
deontic operatorsOη ("it is obligatory in the context of the normative systemη that...")
andPη ("it is permissible in the context of the normative systemη that...").

For our purpose of developing logical models for MAS, it would be worth to work in
a generalization to arbitrary logics of the approaches taken in [2] and [3]. The Multimodal
Logics of Normative Systems introduced in this article are a contribution to define such a
general logical framework. There are some advantages of using these logics for reasoning
about MAS: it is possible to compare whether a normative system is more restrictive
than the other, check if a certain property holds in a model of a logic once a normative
system has restricted its accessibility relation, model the dynamics of normative systems
in institutional settings, define a hierarchy of normative systems (and, by extension, a
classification of the institutions) or present a logical-based reasoning model for the agents
to negotiate over norms.

We have restricted our attention to multimodal logics with Kripke semantics, out-
lining at the end of the paper how these results could be applied to other formalisms
of common use in modelling MAS, such as Hybrid Logics. Our definition of normative
system is intensional, but the languages introduced permit to work with extensional def-
initions like the one in [3]. We present completeness and canonicity results for logics
with normative systems that define elementary classes of modal frames, we have called
themElementary Normative Systems (ENS). On the one hand, the choice of ENS seems
the more natural to start with, because elementary classes of frames include a wide range
of formalisms used in describing MAS, modelling different aspects of agenthood, some
Temporal Logics, Logics of Knowledge and Belief, Logics of Communication, etc. On
the other hand, at the moment, we are far from obtaining a unique formalism which
addresses all the features of MAS at the same time, but the emerging field of combin-
ing logics is a very active area and has proved to be successful in obtaining formalisms
which combine good properties of the existing logics. In our approach, we regard the
Logic of Normative Systems over a given logicL, as being the fusion of logics obtained
from L and a set of normative systems overL, this model-theoretical construction will
help us to understand better which properties are preserved under combinations of logics
over which we have imposed some restrictions and to apply known transfer results (for a
recent account on the combination of logics, we refer to [6]).

This paper is structured as follows. In Section 2 we introduce the notion ofEle-
mentary Normative System (ENS), a kind of normative system that defines elementary
classes of modal frames, and we study the Multimodal Logics of Elementary Normative
Systems, proving completeness, canonicity and some transfer results in the case that the
logic L and the normative systemN are axiomatised by sets of Sahlqvist or shallow
modal formulas. In section 3, we give an example to illustrate how our framework can
work in Multiprocess Temporal Structures, and we show that we can axiomatise with
elementary classes a wide range of formalisms used in describing MAS, modelling dif-



ferent aspects of agenthood: some Temporal Logics, Logics of Knowledge and Belief,
Logics of Communication, etc. and to which we can apply also our framework. In Sec-
tion 4 we present some related work and compare our results with the ones obtained by
other approaches. Finally, Section 5 is devoted to future work.

2. Elementary Normative Systems on Multimodal Languages

We begin the section by introducing the notion of First-order Normative System and its
corresponding counterpart in modal languages, Elementary Normative Systems. LetL
be a first-order language whose similarity type is a set{Ri : i ∈ I} of binary relational
symbols. Given anL-structureΩ with domainA, we denote byΩ∗ the following set of
sequences of elements ofA:

Ω∗ =
{
(a0, . . . , am) : ∀j < m,∃i ∈ I such thatajR

Ω
i aj+1

}
We say that a formulaφ(x0, . . . , xk) ∈ L is aFirst-Order Normative Systemiff for every
L-structureΩ,

{(a0, . . . , ak) : Ω |= φ[a0, . . . ak]} ⊆ Ω∗.

A modal similarity typeτ = 〈F, ρ〉 consists of a setF of modal operators and a
mapρ : F → ω assigning to eachf ∈ F a finite arityρ(f) ∈ ω. A propositional
modal language of typeτ is defined in the usual way by using propositional variables,
the operators inF and the boolean connectives∧,∨,¬,→,↔,>,⊥.

Given a set of modal formulasΣ, the frame class defined byΣ is the class of all
frames on which each formula inΣ is valid. A frame class ismodally definableif there
is a set of modal formulas that defines it, and it is said that the frame class iselemen-
tary if it is defined by a first-order sentence of the frame correspondence language (the
first-order language with equality and one binary relation symbol for each modality).
An Elementary Normative System(ENS) is a propositional modal formula that defines
an elementary class of frames and such that its translation is a First-Order Normative
System.

From now on, we assume that our modal languages have standard Kripke semantics
and its modal similarity types have only a countable infinite set of monadic modalities
{2i : i ∈ I} and a countable infinite set of propositional variables. We introduce a new
set of symbolsΘ to denote normative systems. Given a modal language of similarity type
τ , for everyη ∈ Θ, let τη be the similarity type whose modalities are{2η

i : i ∈ I}. For
every set of formulasΓ, let us denote byΓη the set of formulas of typeτη obtained from
Γ by substituting every occurrence of the modality2i by 2

η
i . We define the operators3i

in the usual way,3iφ ≡ ¬2i¬φ and we introduce the corresponding3
η
i . For the sake of

clarity from now on we will denote byη both the term which indexes the modality and
the formula that expresses the normative system.

Given a logicL and a set of normative systemsN overL, for everyη ∈ N , let us
denote byL(η) the smallest normal logic of similarity typeτη which includesLη ∪{η}.
We define theMultimodal Logic of Normative SystemsoverL andN , denoted byLN ,
as being the smallest normal logic in the expanded language which containsL, N and
everyLη. We now present a sound and complete axiomatisation and prove some transfer



results in the case thatL is axiomatised by a set of Sahlqvist formulas andN is a set of
Sahlqvist formulas.

Definition 1. (Sahlqvist formulas) A modal formula ispositive (negative)if every oc-
currence of a proposition letter is under the scope of an even (odd) number of negation
signs. ASahlqvist antecedentis a formula built up from>,⊥, boxed atoms of the form
2i1 . . .2il

p, for ij ∈ I and negative formulas, using conjunction, disjunction and dia-
monds. ASahlqvist implicationis a formula of the formφ → ϕ, whenφ is a Sahlqvist
antecedent andϕ is positive. ASahlqvist formulais a formula that is obtained from
Sahlqvist implications by applying boxes and conjunction, and by applying disjunctions
between formulas that do not share any propositional letters.

Observe that⊥ and> are both Sahlqvist and ENS formulas. Intuitively speaking,⊥
is the trivial normative system, in⊥ every transition is forbidden in every state and in>
every action is legal. In the sequel we assume that for every setN of ENS,> ∈ N .

Theorem 2. LetL be a normal modal logic axiomatised by a setΓ of Sahlqvist formulas
andN a set of ENS Sahlqvist formulas, then:

1. ΓN = Γ ∪N ∪
⋃
{Γη : η ∈ N} is an axiomatisation ofLN .

2. LN is complete for the class of Kripke frames defined byΓN .
3. LN is canonical.
4. If L and Lη are consistent, for everyη ∈ N , and P is one of the following

properties:

• Compactness
• Interpolation Property
• Halldén-completeness
• Decidability
• Finite Model Property2

thenLN hasP iff L andL(η) haveP, for everyη ∈ N .

Proof: 1 − 3 follows directly from the Sahlqvist’s Theorem. The main basic idea of the
proof of 4 is to apply the Sahlqvist’s Theorem to show first that for everyη ∈ N , the
smallest normal logic of similarity typeτη which includesΓη∪{η} isL(η), is a complete
logic for the class of Kripke frames defined byΓη ∪ {η} and is canonical (observe that
this logic is axiomatised by a set of Sahlqvist formulas). Now, since for every Elementary
Normative Systemη ∈ N we have introduced a disjoint modal similarity typeτη, we
can define the fusion of the logics

⊕
< L(η) : η ∈ N >. It is enough to check that

LN =
⊕

< L(η) : η ∈ N > (remark thatL> = L) and using transfer results for fusions
of consistent logics (see for instance [7] and [8]) we obtain thatLN is a conservative
extension and that decidability, compactness, interpolation, Hállden-completeness and
the Finite Model Property are preserved. 2

We study now the relationships between normative systems. It is interesting to see
how the structure of the set of all the ENS over a logicL (we denote it byN(L)) inherits

2For the transfer of the Finite Model Property it is required that there is a numbern such that eachL(η) has
a model of size at mostn.



its properties from the set of first-order counterparts. A natural relationship could be
defined between ENS, the relationship of being oneless restrictivethan another, let us
denote it by�. Givenη, η′, it is said thatη � η′ iff the first-order formulaφη′ → φη is
valid (when for everyη ∈ N , φη is the translation ofη). The relation� defines a partial
order onN(L) and the pair(N(L),�) forms a complete lattice with least upper bound
⊥ and greatest lower bound> and the operations∧ and∨.

Now we present an extension of the Logic of Elementary Normative Systems over a
logic L with some inclusion axioms and we prove completeness and canonicity results.
Given a set N of ENS, letIN+

be the following set of formulas:{
2i1 . . .2il

p → 2
η
i1

. . .2η
il
p : ij ∈ I, η ∈ N

}
andIN∗

the set:{
2

η′

i1
. . .2η′

il
p → 2

η
i1

. . .2η
il
p : ij ∈ I, η � η′, η, η′ ∈ N

}
Corollary 3. LetL be a normal modal logic axiomatised by a setΓ of Sahlqvist formulas
andN a set of ENS Sahlqvist formulas, then:

1. ΓN+
= ΓN∪IN+

is an axiomatisation of the smallest normal logic with contains
LN and the axiomsIN+

, is complete for the class of the Kripke frames defined
byΓN+

and is canonical. We denote this logic byLN+
.

2. ΓN∗
= ΓN ∪ IN∗ ∪ IN+

is an axiomatisation of the smallest normal logic with
containsLN and the axiomsIN∗ ∪ IN+

, is complete for the class of the Kripke
frames defined byΓN∗

and is canonical. We denote this logic byLN∗
.

3. If LN is consistent, bothLN+
andLN∗

are consistent.

Proof: Since for everyij ∈ I everyη, η′ ∈ N , the formulas2i1 . . .2il
p → 2

η
i1

. . .2η
il
p

and2
η′

i1
. . .2η′

il
p → 2

η
i1

. . .2η
il
p are Sahlqvist, we can apply Theorem 2. In the case

thatLN is consistent, consistency is guaranteed by the restriction to pairsη � η′ and for
the fact thatη andη′ are ENS. 2

It is worth to remark that Corollary 3 allows us to see that our framework could also be
applied to deal with an extensional definition of normative systems (for example like the
one presented in [3], where normative systems are defined to be subsets of the accessi-
bility relation with certain properties), takingN = L in the statement of Corollary 3,
the logicsLN+

andLN∗
have the desired properties. Observe also that for every frame

(S, Ri, R
η
i )i∈I,η∈N of the logicLN∗

,

Rη
i1
◦ . . . ◦Rη

il
⊆ Ri0 ◦ . . . ◦Ril

,

and forη � η′, Rη
i1
◦ . . . ◦Rη

il
⊆ Rη′

i1
◦ . . . ◦Rη′

i1
, where◦ is the composition relation.

We end this section introducing a new class of modal formulas defining elementary
classes of frames, the shallow formulas (for a recent account of the model theory of
elementary classes and shallow formulas we refer the reader to [9]).

Definition 4. A modal formula isshallow if every occurrence of a proposition letter is
in the scope of at most one modal operator.



It is easy to see that every closed formula is shallow and that the class of Sahlqvist
and shallow formulas don’t coincide:21(p ∨ q) → 32(p ∧ q) is an example of shallow
formula that is not Sahlqvist. Analogous results to Theorem 2 and Corollary 3 hold for
shallow formulas, and using the fact that every frame class defined by any finite set of
shallow formulas admits polynomial filtration, by Theorem 2.6.8 of [9], ifL is a normal
modal logic axiomatised by a finite setΓ of shallow formulas andN is a finite set of
ENS shallow formulas, then the frame class defined byΓN has the finite model property
and has a satisfiability problem that can be solved in NEXPTIME.

3. Multiprocess Temporal Frames and other examples

Different formalisms have been introduced in the last twenty years in order to model par-
ticular aspects of agenthood (Temporal Logics, Logics of Knowledge and Belief, Logics
of Communication, etc). Logics of ENS defined above are combinations of different log-
ics, and consequently, they reflect different aspects of agents and the agent multiplicity.
We show in this section that several logics proposed for describing Multi-Agents Sys-
tems are axiomatised by a set of Sahlqvist or shallow formulas and therefore we could
apply our results to the study of their normative systems. We introduce first the basic
temporal logic of transition systems, not because it is specially interesting in itself, but
because is the logic upon which other temporal logics are built and because it is a clear
and simple example of how the ENS framework can work.

Given a modal similarity typeτ , a τ -frame Ξ = (S, R0, . . . , Rk) is a multipro-
cess temporal frameif and only if

⋃
i≤k Ri is serial. Observe that aτ -frame Ξ =

(S, R0, . . . , Rk) is a multiprocess temporal frame if and only if the formula

30> ∨ . . . ∨3k> (MPT)

is valid in Ξ. Let us denote byMPTL the smallest normal logic containing axiom
(MPT). For every nonempty tuple(i1, . . . , il) such that for everyj ≤ l, ij ≤ k, con-
sider the formula2i1 . . .2il

⊥. Observe that every formula of this form is shallow and
ENS. We state now without proof a result on the consistency of normative systems over
MPTL that will allow us to use the logical framework introduced in the previous sec-
tion.

Proposition 5. LetX be a finite set of formulas of the form2i1 . . .2il
⊥ and letη be the

conjunction of all the formulas inX. Then, if⊥ /∈ X and the following property holds:

If 2i1 . . .2il
⊥ /∈ X, there isj ≤ k such that2i1 . . .2il

2j⊥ /∈ X.

the logic MPTLη is consistent, complete for the class of Kripke frames defined by
{MPT, η}, canonical, has the finite model property and has a satisfiability problem that
can be solved in NEXPTIME.

Now we give an example of logic to which our framework could be applied. In a
multi-agent institutional environment, in order to allow agents to successfully interact
with other agents, they share the dialogic framework (see [10]). The expressions of the
communication language in a dialogic framework are constructed as formulas of the type
ι(αi : ρi, αj : ρj , φ, τ), whereι is an illocutionary particle,αi andαj are agent terms,ρi



andρj are role terms andτ is a time term. A scene is specified by a graph where the nodes
of the graph represent the different states of the conversation and the arcs connecting the
nodes are labelled with illocution schemes that make scene state change.

Several formalisms for modelling interscene exchanges between agents have been
introduced using multi-modal logics. In [11] the authors provide an alternating offers
protocol to specify commitments that agents make to each other when engaging in per-
suasive negotiations using rewards. Specifically, the protocol details, how commitments
arise or get retracted as a result of agents promising rewards or making offers. The pro-
tocol also standardises what an agent is allowed to say or what it can expect to receive
from its opponent which, in turn, allows it to focus on making the important negotiation
decisions.

The logic introduced in [11] is a multimodal logic in which modalities2φ for ex-
pressionsφ of the communication language are introduced. The semantics are given by
means of Multiprocess Temporal Frames. Therefore, we can use our framework to anal-
yse different protocols over this multimodal logic, regarding protocols as normative sys-
tems. Some examples of those protocols are formalised by formulas of the following
form 2φ1 . . .2φl

⊥, for example with the formula2Offer(i,x)2Offer(i,y)⊥, for x 6= y

we can express that it is not allowed to agenti to do two different offers one immediately
after the other.

In general, a normal multimodal logic can be characterized by axioms that are added
to the systemKm, the class ofBasic Serial Multimodal Logicsis characterized by subsets
of axioms of the following form, requiring that AD is full:

• 2ip → 3ip AD(i)
• 2ip → p AT(i)
• 2ip → 2jp AI(i)
• p → 2i3jp AB(i,j)
• 2ip → 2j2kp A4(i,j,k)
• 3ip → 2j3kp A5(i,j,k)

An example of Kripke frame ofMPTL in which none of the previous axioms is
valid is Ξ = ({0, 1, 2} , {(0, 1), (2, 0)} , {(1, 2)}). In particular, our example shows that
the Multimodal Serial Logic axiomatised by{AD(i) : i ≤ k}, is a proper extension of
MPTL. Observe that any logic in the class BSML is axiomatised by a set of Sahlqvist
formulas, therefore we could apply the framework introduced before to compare elemen-
tary normative systems on these logics.

Another type of logics axiomatised by Sahlqvist formulas are many Multimodal
Epistemic Logics. Properties such as positive or negative introspection can be expressed
by 2ip → 2i2kp and¬2ip → 2i¬2ip respectively. And formulas like2ip → 2jp

allow us to reason about multi-degree belief.
The Minimal Temporal LogicKt is axiomatised by the axiomsp → HFp andp →

GPp which are also Sahlqvist formulas. Some important axioms such as linearityAp →
GHp ∧ HGp, or densityGGp → Gp, are Sahlqvist formulas, and we can express the
property that the time has a beginning with an ENS. By adding the nexttime modality,X,
we have an ENS which expresses that every instant has at most one immediate successor.



4. Related work

Several formalisms have been introduced for reasoning about normative systems over
specific logics: Normative ATL (NATL), proposed in [2] and Temporal Logic of Nor-
mative Systems (NTL) in [3]. NATL is an extension to the Alternating-Time Temporal
Logic of Alur, Henzinger and Kupferman (see [4]), NATL contains cooperation modal-
ities of the form<< η : C >> φ with the intended interpretation that "C has the abil-
ity to achieveφ within the context of the normative systemη". NTL is a conservative
generalization of the Branching-Time Temporal Logic CTL (see [5]). In NTL, the path
quantifiersA ("on all paths...") andE ("on some path...") are replaced by the indexed de-
ontic operatorsOη ("it is obligatory in the context of the normative systemη that...") and
Pη ("it is permissible in the context of the normative systemη that..."). In our article we
have extended these approaches to deal with arbitrary multimodal logics with standard
Kripke semantics. Our definition of normative system is intensional, but the languages
introduced permit to work with extensional definitions like the ones in [3] and [2].

A general common framework that generalizes both, the results from [3], [2] and the
results we present here can be found in [12]. There we go beyond logics with standard
Kripke semantics, defining normative systems over polyadic logics that satisfy the two
conditions below:

1. For every modalityf in the logic similarity typeF , the semantics off(p0, . . . , pρ(f))
is a monadic first-order formula build from predicatesP0, . . . , Pρ(f), the rela-
tional symbols

{
Rf : f ∈ F

}
and equality.

2. For every modalityf in the logic similarity typeF , there is a derived connective
2f such that2fp expresses∀x(tRfx → Px) and is closed under the necessita-
tion rule: If φ is a theorem of the logic, then2fφ is also a theorem of the logic.
This second condition corresponds to the notion ofnormality.

In [13], D. M. Gabbay and G. Governatori introduced a multi-modal language where
modalities were indexed. Their purpose was the logical formalization of norms of dif-
ferent strength and the formalization of normative reasoning dealing with several inten-
sional notions at once. The systems were combined using Gabbay’s fibring methodol-
ogy. Our approach is different from their, because our main purpose is the comparison
between normative systems at the same level, over a fixed logic. Our approaches also
differ in the methodologies in use. It could be interesting to combine both perspectives
to model the dynamics of norms in hierarchical systems.

5. Future work

In our paper we have dealt only with multimodal languages with monadic modalities,
but using the results of Goranko and Vakarelov in [14], on the extension of the class of
Sahlqvist formulas in arbitrary polyadic modal languages to the class of inductive for-
mulas, it is possible to generalize our results to polyadic languages. We could apply also
our results to different extended modal languages, such as reversive languages with nom-
inals (in [14], the elementary canonical formulas in these languages are characterized) or
Hybrid Logic (in [9], Hybrid Sahlqvist formulas are proved to define elementary classes
of frames).



We will proceed also to the study of computational questions for the multimodal
logics introduced, such as model checking. This kind of results will give us a very useful
tool to compare normative systems and to answer some questions, for example, about
the existence of normative systems with some given properties. It is known that, ifL is
a multimodal logic interpreted using Kripke semantics in a finite similarity type, given a
finite model and a formulaφ, there is an algorithm that determines in timeO(|M | × |φ|)
whether or notM |= φ (see [15], p. 63), using this fact, since we build our formalisms
for normative systems by means of fusions, complexity results for fusion of logics could
be applied (see for instance [16]).

Most state-of-the-art SAT solvers today are based on different variations of the
Davis-Putnam-Logemann-Loveland (DPLL) procedure (see [17] and [18]). Because of
their success, both the DPLL procedure and its enhancements have been adapted to han-
dle satisfiability problems in more expressive logics than propositional logic. In particu-
lar, they have been used to build efficient algorithms for the Satisfiability Modulo The-
ories (SMT) problem. Future work will include the study of the (SMT) problem for a
Multimodal Logic of Normative SystemsL: given a formulaφ, determine whetherφ is
L -satisfiable, i.e., whether there exists a model ofL that is also a model ofφ.

Using the framework introduced in [19] it would be possible to integrate fusions of
logics on a propositional framework. In [19], an Abstract DPLL, uniform, declarative
framework for describing DPLL-based solvers is provided both for propositional satisfi-
ability and for satisfiability modulo theories. It could be interesting to work with a Quan-
tified Boolean formulas engine instead of the usual SAT engines used by several SMT
solvers, in order to deal with formulas that axiomatise Logics for Multi-Agent Systems.

Given a normative system, it is important also to be able to efficiently check why it is
not modelling what we originally want. We could benefit from recent advances in system
diagnosis using Boolean Satisfiability and adapt it to our framework. See for instance
[20], where efficient procedures are developed to extract an unsatisfiable core from an
unsatisfiability proof of the formula provided by a Boolean Satisfiability (SAT) solver.
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