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Unsupervised Music Structure Annotation by Time
Series Structure Features and Segment Similarity
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Abstract—Automatically inferring the structural properties of
raw multimedia documents is essential in today’s digitized society.
Given its hierarchical and multi-faceted organization, musical
pieces represent a challenge for current computational systems.
In this article, we present a novel approach to music structure
annotation based on the combination of structure features with
time series similarity. Structure features encapsulate both local
and global properties of a time series, and allow us to detect
boundaries between homogeneous, novel, or repeated segments.
Time series similarity is used to identify equivalent segments,
corresponding to musically meaningful parts. Extensive tests with
a total of five benchmark music collections and seven different
human annotations show that the proposed approach is robust to
different ground truth choices and parameter settings. Moreover,
we see that it outperforms previous approaches evaluated under
the same framework.

I. INTRODUCTION

INFORMATION is very often organized into structures or
hierarchies that facilitate its transmission and understand-

ing. In general, humans are very good at identifying such
structures, a process that is sometimes unconscious and that
allows us to parse and adequately grasp the meaning of a given
message. However, considering the vast amount of digital
information available nowadays, we progressively need more
and more support from machines to select and digest relevant
information. Hence, automatically determining the structure of
such information becomes a crucial task for current content-
processing systems. Among general multimedia contents, mu-
sic is a paradigmatic and challenging example [1], [2].

Music presents us with a multi-layer and multi-faceted
structural organization of its most basic constitutive ele-
ments [3], [4]. In Western music, the main high-level structural
organization of a piece is the musical form [5], which describes
the layout of a composition as divided into sections, segments,
or parts (we loosely employ the term music structure to
refer to this high-level structure). For instance, in popular
music, compositions are usually divided into segments that
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alternate or repeat throughout the piece, commonly called
‘intro’, ‘verse’, ‘chorus’, and ‘bridge’. Structural information
of this type can be easily understood by an average music
listener [6] and, moreover, allows for several novel applica-
tions. Examples include easier intra-piece navigation in music
players, automatic generation of representative clips and mash-
ups, identification of versions of the same piece, or large-scale
musicological research (see [1], [2], [7], [8] for pointers to
these and other applications).

According to Paulus et al. [2], there are three basic princi-
ples for inferring music structure: novelty, homogeneity, and
repetition. This way, existing approaches can be classified
into three main categories. Novelty-based approaches aim at
detecting transitions between contrasting parts. This is usually
done by detecting local differences (or contrasts) based on a
moving-window analysis of a suitable feature representation
of the music recording. For example, in the seminal work by
Foote [9], a short-time checkerboard kernel is moved over the
diagonal of a self-similarity matrix to detect corners that cor-
respond to points of novelty. Homogeneity-based approaches,
on the other hand, aim at detecting passages that are consistent
with respect to some musical property such as rhythm, timbre
or harmony [10]. Approaches based on this principle usually
employ more refined techniques such as hidden Markov mod-
els [11] or dynamic texture mixtures [12]. Finally, repetition-
based approaches aim at identifying recurring patterns that
often closely correlate to the structure of the piece [7], [13]–
[15]. Few studies combine different principles within a single
framework such as the approach by Paulus & Klapuri [8],
where homogeneity and repetition properties are captured by
a single probabilistic fitness measure. Foote’s approach [9] can
also be seen as combining novelty and homogeneity. Finally,
we want to note that Peeters [16], [17] has already classified
structure analysis approaches from a more technical point of
view, where approaches based on homogeneity are coined
as “state approaches” and approaches based on repetition
as “sequence approaches”. For in-depth reviews on music
structure annotation approaches we refer to [1] and [2].

In this work we are interested in automatically annotating
the structure of a musical piece in an unsupervised way,
i.e., without employing explicit knowledge of previously an-
notated pieces. Our goal is to detect the temporal locations
of segment boundaries and to assess segment similarities and
repetitions within a single piece. Some approaches go one step
beyond and try to assign semantic labels to the segments [8],
[18] (e.g., trying to guess whether a given segment is a
‘chorus’ or just an ‘intro’). We believe that this difficult
final step needs to be grounded on the reliable assessment of
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segment boundaries and similarities, two tasks where current
approaches still offer much room for improvement.

Here we exploit a novel class of structure features [19] on
the basis of which various structure analysis principles can be
integrated within a unifying framework. The basic conceptual
idea behind structure features is to jointly consider local and
global aspects by measuring, for each frame (or window) of a
given time series, the relations to all other frames (or windows)
of the same time series. This yields a frame-wise, i.e., local,
feature representation that captures global structural charac-
teristics of a time series. The resulting structure features can
then be used in combination with standard novelty detection
procedures. Note that novelty detection is usually performed
on the basis of features that capture local characteristics of the
given music signal (e.g., MFCC or chroma features, which
capture local characteristics related to timbre or harmony,
respectively [20]). Then, applying a local kernel or a derivative
function on such feature representations often results in rather
noisy novelty curves, making novelty detection a fragile and
problematic step. In contrast, our approach goes beyond local
musical aspects such as harmony or timbre to incorporate
global structural properties of such aspects. This makes the
subsequent novelty detection step much more robust and leads,
by itself, to structural meaningful segment boundaries. Beyond
structure features, we show how to exploit the obtained seg-
ment boundaries for music structure labeling. We introduce
the use of time series similarity measures for such a task,
a dynamic thresholding operation, and a novel and simple
approach to force segment transitivity (see below).

Our structure annotation procedure works as follows
(Fig. 1). In a first stage, the music recording is converted
into a descriptor sequence. As many structure annotation ap-
proaches, we employ state-of-the-art descriptors representing
tonal/harmonic information [2]. In a second stage, descriptor
sequences are transformed into time series of structure fea-
tures, from which a novelty curve is computed by considering
a local derivative. The peak positions of this novelty curve
are taken to define segment boundaries. In a third stage,
the resulting segments are compared in a pairwise fashion,
using a standard time series similarity measure, and divided
into groups, with each group containing all segments that are
considered repetitions of each other. This procedure resembles,
e.g., [8], which also consists of a novelty detection and
a classification/grouping stage. However, there is a crucial
difference. In [8], the novelty detection stage is used as a mere
pre-processing step to cut down the number of boundary can-
didates, typically including a large number of false positives.
Then, in a second phase, an elaborate and computationally-
expensive optimization procedure is used to derive segment
boundaries and labels. In contrast to this and other approaches,
we regard the novelty and boundary detection as a key stage
of our approach, with the second classification/grouping stage
heavily relying on the obtained boundaries. Indeed, if good
segment boundaries are available, one can employ a simple
time series alignment/similarity measure to finally annotate the
structure of the piece. To obtain reliable segment boundaries
in the first stage, our structure features constitute a major
ingredient.

The proposed structure annotation approach presents several
benefits. First, extensive experiments based on a number
of benchmark data sets and evaluation measures show that
the proposed approach outperforms previous approaches as
reported in the literature. This claim is further supported by
the out-of-sample results obtained at the 2012 edition of the
Music Information Retrieval Evaluation eXchange1 (MIREX),
an international evaluation campaign for music information
retrieval algorithms [21]. Second, the proposed approach is
simple and also computationally efficient. No complex ma-
chine learning tasks nor expensive optimizations are performed
in any of the two stages outlined above (see also Fig. 1). Third,
the parameters of the approach are easy to understand and
intuitive to set, provided some basic knowledge of the data at
hand. A further quality of the proposed approach is that its
formulation is generic, in the sense that it does not exploit
specific musical knowledge (cf. [19]).

The remainder of the paper is organized as follows. Sec. II
explains our method to structure annotation. Sec. III details
our evaluation methodology, including the music collections
and evaluation measures used. Sec. IV reports and discusses
the obtained results, including an extensive assessment of the
impact of different parameter choices. Sec. V contains the
conclusions of the paper.

II. PROPOSED METHOD

A. Music Descriptor Time Series

Before detecting segment boundaries and similarities we
need to transform the audio signal into a feature representation
that captures musically relevant information (leftmost block,
Fig. 1). For that we use pitch class profile (PCP) features, also
called chroma features [22], [23]. PCP features are relevant
for many music retrieval tasks and, in particular, have been
extensively used for music structure annotation [2]. They are
usually computed using a moving window, yielding a multi-
dimensional time series that captures the harmonic content of
the audio signal.

PCPs are derived from the frequency-dependent energy in a
given range of the spectrum, e.g., between 100 and 3000 Hz.
This energy is usually mapped into an octave-independent
histogram representing the relative intensity of each of the 12
semitones of the Western chromatic scale (12 pitch classes:
C, C#, D, D#, etc.). To normalize with respect to loudness,
this histogram can be divided by its maximum value, thus
leading to values between 0 and 1. In general, PCPs are
robust against non-tonal components (e.g., ambient noise or
percussive sounds) and independent of timbre and the specific
instruments used [22], [23].

In this work we use HPCPs [22], an enhanced version of
PCPs that considers the presence of harmonic frequencies
(Fig. 2, top). In addition, HPCPs reduce the influence of
noisy spectral components and are tuning-independent. We
employ the same implementation and parameters as in [24],
[25] with 12 pitch classes, a window length of 209 ms, and a
hop size of 139 ms. Although we choose an enhanced version

1http://www.music-ir.org/mirex/wiki/MIREX HOME
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Fig. 1. Block diagram of the proposed method. The input is the audio signal of a musical piece and the output is a set of segment boundaries and labels.

of PCP features, we conjecture that the proposed approach is
rather independent of specific feature implementation details.
In fact, in preliminary analysis we also reached relatively good
accuracies with so-called CENS chroma features [23] or even
with Mel-frequency cepstral coefficients [20].

B. Segment Boundaries

Let X = [x1, . . . xN ′ ] be a time series of length N ′, with
potentially multi-dimensional samples xi (column vectors; in
our case the aforementioned HPCP descriptor values for a
given frame). We first improve the information contained in
a time series sample xi by incorporating information of its
most recent past (A1, Fig. 1). This can be easily and elegantly
done by using delay coordinates, a technique routinely em-
ployed in nonlinear time series analysis [26]. New samples
are constructed by vector concatenation as

x̂i =
[
xT
i xT

i−τ · · · xT
i−(m−1)τ

]T
, (1)

where T denotes vector transposition, m is the so-called
embedding dimension, and τ is a time delay.

Although there are recipes to estimate the optimal values
of m and τ from the information contained in a time series
X , we here leave them as parameters (see below). Note that
the value of m indicates the amount of past information being
considered for the task, which ranges a total time span of
w = (m− 1)τ . By applying Eq. 1 for i = w + 1, . . . , N ′ we
obtain a multi-dimensional time series X̂ = [x̂1, . . . , x̂N ] of
length N = N ′ − w.

The next step consists in assessing homogeneities and
repetitions (A2, Fig. 1). For that we compute a recurrence
plot [27], which consists of a square matrix R whose elements
Ri,j indicate pairwise resemblance between samples at times
i and j (Fig. 2, second row). Formally, for i, j = 1, . . . , N ,
we set

Ri,j = Θ (εi,j − ‖x̂i − x̂j‖) , (2)

where Θ(z) is the Heaviside step function (yielding 1 if z > 0
and 0 otherwise), ‖ ‖ can be any norm (we use the Euclidean
norm), and εi,j are suitable thresholds.

As done in [25], the threshold εi,j for each cell (i, j) is
dynamically computed as follows. First, for each sample x̂i,

i = 1, . . . , N , we search for its K nearest neighbors in x̂j ,
j = 1, . . . , N . Then, neighbor mutuality is enforced by setting
Ri,j = 1 only if x̂i is a neighbor of x̂j and, at the same time,
x̂j is a neighbor of x̂i. In our experience with recurrence plots
we found this restrictive strategy to be more robust against
noise than other variants outlined in [27]. To account for time
series of different lengths, we set K = κN , i.e., we set the
number of nearest neighbors to a fraction κ ∈ [0, 1] of the
length of the time series being considered.

The subsequent steps involve the creation of structure
features [19] (SF). We first represent the homogeneities and
recurrences of R in a circular time-lag matrix L (Fig. 2,
third row). Such process is similar to the typical process
of constructing a time-lag matrix [7], but incorporates the
information of future as well as past time lags. We do it by
circularly shifting the rows of R such that

Li,j = Rk+1,j (3)

for i, j = 1, . . . , N , where k equals to i+ j − 2 modulo N .
The circular time-lag matrix L can then be considered as a

sample from a bi-variate distribution P̄ along the lag and time
axes (i and j axes, respectively). This bi-variate distribution
would correspond to a probability mass function of time-lag
recurrences2. The estimate P of the underlying distribution P̄
is obtained using bi-variate kernel density estimation [28], a
fundamental data smoothing concept where inferences about a
population are made based on a finite sample of it (A3, Fig. 1).
In our case, P is estimated by convolving L with a bi-variate
rectangular Gaussian kernel G:

P = L ∗G. (4)

The kernel G is obtained by multiplying two Gaussian win-
dows gl and gt, with sizes sl and st, corresponding to the lag
and time dimensions of L, respectively. This way, G has sl
rows and st columns:

G = gl gt
T. (5)

The estimated kernel density P can be seen as a time series
along the time axis (Fig. 2, fourth row). Structure features

2Actually, it is not needed that the values of P̄ sum to 1, as normalization
only introduces a scale parameter that is eliminated in a subsequent operation.
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Fig. 2. Illustration of the structure feature computation using “All you need
is love” from The Beatles. From top to bottom we show the resulting HPCP
time series X , recurrence plot R, time-lag matrix L, structure features P ,
and novelty curve c. The novelty curve c also depicts the found boundaries
(red dash-dotted lines) and the ground truth boundaries (black solid lines).

pi are then defined to be the columns of P , i.e., P =
[p1, . . . ,pN ], where pi are column vectors. Because of the
nature of the recurrence plot, they theoretically encapsulate

both homogeneities and repetitions (cf. [19], [27]). Further-
more, by employing a Gaussian kernel, they gain robustness
against lag and time deviations, and transitions between them
become smooth.

Next, our observation is that structural boundaries of the
time series X̂ correspond to relative changes in the se-
quence of structure features P (A4, Fig. 1). To measure
these changes we compute the difference between successive
structure features pi. This yields a one-dimensional novelty
curve c = [c1, . . . , cN−1], where ci = ‖pi+1 − pi‖ (we again
use the Euclidean norm). The novelty curve c can be linearly
normalized between 0 and 1 by subtracting its minimum value
and subsequently dividing it by the resultant maximum (Fig. 2,
bottom).

Positions of prominent peaks of c are finally selected as
segment boundaries. Here, we opt for a rather simple peak
selection strategy: a sample ci is considered to be a peak if it is
above a certain threshold δ and, at the same time, corresponds
to the global maximum of a window of length λ centered at ci.
To compensate for the offset introduced by delay coordinates
in Eq. 1, the exact boundary locations of the original time
series X are set to the locations of the selected peaks plus
w/2.

Peak selection yields a set of boundary time stamps which,
sorted in increasing order, are denoted by

b = [b1, . . . , bM , bM+1, bM+2] , (6)

where M is the total number of peaks found in c and bu+1,
u = 1, . . . ,M , represents the location of the u-th peak. For
notational convenience we include b1 = 1 and bM+2 = N ′,
denoting the start and end of the time series, respectively (M
boundaries in c imply M +1 segments, which are represented
by M + 2 boundaries). Notice that, this way, boundaries bu
and bu+1 correspond to the beginning and end of the u-th
segment.

C. Segment Repetitions

Once we obtain estimates for segment boundaries we can
employ current time series similarity algorithms for computing
segment-segment similarities (B1, Fig. 1). In our case we
find it convenient to use the Qmax measure presented in [25].
First, it is a generic and configurable time series similarity
measure. Second, it has been shown to perform well with PCP
time series, outperforming other alignment-based measures in
certain tasks (compare e.g., [24] and [25]). Third, it exploits
the information contained in the traces of a recurrence plot.
Therefore, we can directly reuse R (Eq. 2) as input for the
Qmax measure.

Given two segments u and v, we express the slice of the
recurrence plot R comparing u and v as

R(uv) =

 Rbu,bv · · · Rbu,bv+1

...
. . .

...
Rbu+1,bv · · · Rbu+1,bv+1

 , (7)

where bu and bu+1 are the limits of segment u, and bv and
bv+1 are the limits of segment v (Fig. 3, top). We also define
the size of R(uv) as lu × lv , with lu = bu+1 − bu + 1 and
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Fig. 3. Example with “All you need is love” from The Beatles. From top
to bottom and left to right the plots show the recurrence plot R with the
corresponding boundary marks (axes labels and ticks are interchangeable),
the segment similarity matrix S, and the transitive binary similarity matrix Ŝ.

lv = bv+1 − bv + 1 being the lengths of segments u and v,
respectively. We then build a cumulative matrix Q(uv) of the
same size by initially setting its cells to 0 and recursively
applying

Q
(uv)
i,j = max

{
Q

(uv)
i−1,j−1, Q

(uv)
i−2,j−1, Q

(uv)
i−1,j−2

}
+R

(uv)
i,j (8)

for i = 1, . . . , lu and j = 1, . . . , lv , taking Q
(uv)
q,r = 0 for

q, r < 1. Eq. 8 is the consequence of configuring the original
Qmax algorithm so that no penalties are applied for local
disruptions or mismatches3 [25]. This way, the Qmax measure,
defined as Q(uv)

max = max
{
Q(uv)

}
, turns into a global similarity

measure considering all aligned sample matches from the
beginning to the end of the time series being compared
(i.e., more in the vein of global measures like dynamic time
warping [23] or edit distances).

To obtain a segment similarity measure between 0 and 1 we
normalize Q(uv)

max by its maximum possible value (the length
of the shortest segment), yielding

Su,v =
Q

(uv)
max

min {lu, lv}
, (9)

the similarity of segments u and v. This operation is per-
formed for all possible pairwise segment comparisons u, v =

3The reader will easily see that the formulation in Eq. 8 exactly corresponds
to the original formulation of Qmax in [25]. It directly follows from setting
the original parameters γo = γe = 0.

1, . . . ,M+1, obtaining a segment similarity matrix S (Fig. 3,
bottom left). Notice that when u = v the diagonal of R(uv) is
completely filled with ones, and hence Su,u = 1.

The next step in assessing segment repetitions is to decide
which segments are similar enough so that they can be
assigned to the same structural label (B2, Fig. 1). To do so we
simply threshold the similarity matrix S by φ = µ(S)+σ(S),
where µ(S) and σ(S) are the mean and standard deviation of
all the values in S, respectively. The definition of threshold φ
is rather arbitrary, but with the intention of discarding segment
similarities that are below or around the average segment
similarity of the time series. Notice that φ is dynamic, in
the sense that it adapts to the segment-segment similarities
of each individual time series. Notice furthermore that φ is
set automatically for each time series and, therefore, does not
need to be tuned in any way. Preliminary experiments with
a fixed threshold also worked well but, apart from adding a
new parameter to the approach, its correct value turned out
to be rather critical and inconsistent across different musical
pieces (see also Sec. IV-C for a further possible parameter-
based dynamic thresholding approach).

The simple threshold operation above does not enforce
transitivity, i.e., if a segment 1 is close (or similar) to a
segment 2, and segment 2 close to a segment 3, it does not
guarantee that segment 1 is close to segment 3. To enforce
transitivity (B3, Fig. 1), we recursively multiply S by itself
(matrix multiplication) and threshold the resulting matrix by 1
(i.e., we set its entries to 1 if they are above 1 and 0 otherwise)
until no changes are produced in S. We denote this final result
as Ŝ (Fig. 3, bottom right). The final assignment of labels is
then straightforward: the label A is given to all segments that
correspond to the 1-entries of the first row of Ŝ, the label B to
all segments that correspond to the 1-entries of the next row
that differs from the previously considered ones, and so forth
until all rows of Ŝ have been processed.

The aforementioned violations in transitivity, which typi-
cally result from noisy input data due to musical and acoustic
variations, constitute a challenge in music structure analysis,
and various strategies have been applied to compute some sort
of transitive closure [7], [13], [15], [17]. Our approach reminds
of the one by Peeters [17], where higher-order similarity
matrices are used to recover missing relations. However, [17]
applies this procedure to similarity matrices computed from
frame-wise comparisons, and before the segmentation step. At
this stage, spurious relations that are due to local deviations
in the time series may be boosted by considering higher-order
matrices, which may result in a large number of unwanted rela-
tions. In contrast, we enforce transitivity after the segmentation
stage, considering similarity matrices computed from segment-
wise comparisons. At this stage, local deviations in the time
series have a smaller impact, which makes the overall transi-
tivity computation much more robust. Furthermore, computing
transitivity on the segment level makes our approach much
more efficient than frame-based approaches. Finally, we want
to mention the audio thumbnailing approach in [29], where
separate transitivity enforcement considerations are avoided
through a unifying optimization scheme for the concurrent
extraction of local relations, segmentation, and grouping.
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D. Parameter Setting
From the previous explanations we see that a number of

parameters need to be adjusted in our approach. We perform a
detailed quantitative analysis of the role of the various param-
eters in Sec. IV-C. For the moment, we fix the parameters by
considering the nature of the time series and the characteristics
of the task. For instance, since the time series we will consider
fluctuate rapidly, we set τ = 1 samples so that no information
from the recent past of xi is lost in building x̂i (Eq. 1; cf. [26]).
Moreover, since we mostly focus on Western popular music,
we expect no dramatic speed or tempo changes in our time
series. This implies that no strong fluctuations will be present
along the lag dimension of L (i.e., diagonal traces in R will not
warp dramatically). Therefore, a relatively small value of, say
sl = 0.3 s will suffice for kernel G to track such fluctuations4

(Eq. 5). For the Gaussian windows gt and gl we follow
common practice and use a variance of 0.16, which ensures a
value close to 0 at the borders of g [28]. Finally, to select the
peaks of c, we set δ = 0.05, which corresponds to 5% of the
maximum amplitude of c (actually, values of δ ∈ [0, 0.25] turn
out to have no effect on the results, Sec. IV-C). In addition,
we set λ = 6 s, thereby forcing a minimal segment length of
3 s (Sec. II-B). A minimal segment length below 3 s would be
conflicting with the standard evaluation setting for boundary
detection, as it commonly uses a threshold of 3 s to determine
the correct placement of a boundary (Sec. III-B). Moreover,
as it has been shown elsewhere [19], [30], placing boundaries
at intervals below 3 s induces a very high recall but a low
precision, leading to quite high but unrealistic F-measures (see
also Sec. III-C). As for a minimal segment length above 3 s,
we would directly miss the boundaries of segments shorter
than that. Since in our data we find some segments whose
lengths are around or slightly above 3 s (cf. Table I), we keep
this value as our minimal segment length in all performed
experiments.

The previous setting leaves us with three important param-
eters: m (the amount of recent past we consider for xi; Eq. 1),
κ (which controls the amount of a sample’s nearest neighbors
in R; Eq. 2), and st (the length of the time dimension of the
kernel G; Eq. 5). Notice that no parameters need to be set
for segment similarity (Sec. II-C). Thus, our method based on
structure features is mostly parameterized by SF(m,κ,st).

The parameter values we try for m, κ, and st can be also
justified by the nature of the data and the characteristics of
the task. Suitable values for m lie between 0 and 5 s, the
latter value accounting for 2% of a time series of 4 min of
duration (a typical duration for a song). Going beyond 2%
of the time series may introduce irrelevant information and
dimensionality problems [26]. Suitable values for κ are found
below 0.05, i.e., below 5% of the length of the time series. If
we suppose we have K repetitions in a time series of length
N , this implies that we will have at least K black dots in the
rows of R (in fact, more than K black dots would be desirable
due to noise). Therefore, κ should be greater than K/N and,

4For ease of interpretation we express all time-related parameter values in
seconds (τ , which is better understood in samples, is the only exception here).
Parameter values in samples can be easily obtained dividing by the time series
sampling rate or, in other words, multiplying by the descriptor hop size.

Num. Length # Bound. Interval
BEATLES-A 174 158.2 (51.5) 8.2 (2.3) 17.2 (12.3)
BEATLES-B 180 162.9 (56.6) 9.2 (2.3) 16.0 (13.9)
RWC-POP-A 100 242.2 (41.5) 16.1 (4.0) 14.1 (6.8)
RWC-POP-B 100 224.1 (41.4) 16.8 (3.4) 13.7 (7.2)
MAZURKA 2792 160.2 (74.2) 9.7 (4.1) 14.9 (9.0)

TABLE I
DATA SET STATISTICS (STANDARD DEVIATIONS INTO PARENTHESIS):
NUMBER OF RECORDINGS, AVERAGE LENGTH, AVERAGE NUMBER OF

BOUNDARIES, AND AVERAGE LENGTH OF INTER-BOUNDARY INTERVAL
(THE TIME BETWEEN TWO CONSECUTIVE BOUNDARIES). TIME VALUES

ARE GIVEN IN SECONDS.

at the same time, not as high as to introduce a lot of noisy dots
in the rows of R. In the case of the considered music material
we can think of K ≈ 13 and N ≈ 1600 (as with our example
of Figs. 2 and 3), and hence use 13/1600 ≤ κ ≤ 0.05. Finally,
suitable values for st are found around 30 s. If the length of our
Gaussian kernel is 30 s, then the Gaussian shape is maximal
at 15 s and decreases by 50% at 8 and 23 s [28]. This yields
an ‘effective’ kernel length of approximately 15 s, close to
the average time between boundaries in our time series (see
Table I).

As we will see in Secs. IV-B and IV-C, the specific setting
of the parameters is often not crucial, as long as they are
fixed within suitable ranges. In particular, different parameter
combinations yield comparable results, and stable accuracies
are obtained for rather wide parameter ranges. In the above
discussion, suitable parameter values and ranges have been
motivated in a musically-informed way.

III. EXPERIMENTAL SETUP

A. Music Collections

To evaluate the proposed approach we employ three bench-
mark music collections with boundary and structure annota-
tions: Beatles, RWC-Pop, and Mazurka. The Beatles data set
corresponds to all the recordings in the 12 original albums of
the band. There are two versions for ground truth annotations
of this data set, which are denoted as BEATLES-A5 and
BEATLES-B6 (Table I). Since many works in the literature
have been evaluated using these annotations, the performance
of our approach can be compared with the current state-of-
the-art.

The second data set consists of all recordings of the Real
World Computing Popular Music Database [31]. These record-
ings represent Japanese mainstream music and, to a less extent,
American chart hits. We also use two versions of annotations
as ground truth, which are denoted by RWC-POP-A7 and
RWC-POP-B8 (Table I). At the moment RWC-POP-B only
contains boundary annotations. The RWC recordings and the
two annotations are publicly available.

The third data set, which we denote by MAZURKA,
comprises many recorded performances for 49 mazurkas
by Frédéric Chopin. This collection was assembled by the

5http://www.cs.tut.fi/sgn/arg/paulus/beatles sections TUT.zip
6http://isophonics.net/content/reference-annotations
7http://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation
8http://musicdata.gforge.inria.fr
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Mazurka Project9 and contains a total of 2792 audio recordings
(Table I). For each of the 49 Mazurkas, the musical form was
first manually annotated by a human expert on the basis of
the musical score of the piece and, later, these score-based
annotations were transferred to all performances available for
this piece using an automated procedure. To this end, the score
was first exported to a MIDI file, the MIDI file was temporally
aligned to a given audio recording using music synchronization
techniques [32], and the resulting alignment information was
used to temporally warp the score-based annotations to match
the respective audio recording.

Apart from the music collections and annotations used here,
we also submitted the proposed approach to the annual Music
Information Retrieval Evaluation eXchange [21] (MIREX).
MIREX is an international evaluation campaign for music
information retrieval algorithms, coupled with the International
Society for Music Information Retrieval conference (ISMIR),
and hosted by the University of Illinois at Urbana Champaign.
In 2012, the so-called structural segmentation task was run
with three music collections 10 : the MIREX09 collection,
the aforementioned RWC-POP collection, and the recent
MIREX12 (SALAMI) data set. The MIREX09 collection is
a mixture of part of the collections used by Paulus and by
Peiszer, including Beatles’ and other pop songs up to a total
of 220 audio recordings. The MIREX12 collection contains
over 1,000 annotated pieces collected within the SALAMI
project11, covering a range of musical styles.

B. Evaluation Measures

For comparing to existing approaches we use common
evaluation measures (see [30] for a summary). For boundary
annotation we use hit rates and median deviations. With hit
rates, segment boundaries are accepted to be correct if they
are within a certain threshold from a boundary in the ground
truth annotation. Common thresholds are 0.5 and 3 s [33], [34].
Based on the matched hits, standard precision, recall, and F-
measure are computed for each music recording and averaged
across the whole data set12. Since we observed that some
annotations were not accurate at a resolution of 0.5 s, we only
report on precision, recall, and F-measure using a 3 s threshold
(PB, RB, and FB, respectively). Additionally, two median
deviation values are computed, counting the median times
from true-to-guess and from guess-to-true [34]. However, due
to space constraints we do not show these measures here. A
full account of the average performance of our method using
all the evaluation measures, as well as the performance for
each individual piece, can be downloaded from the web13.

For label annotation we use pairwise frame clustering as
well as over- and under-segmentation measures. Handling

9http://mazurka.org.uk
10http://www.music-ir.org/mirex/wiki/2012:MIREX2012 Results
11http://ddmal.music.mcgill.ca/salami
12This specially includes the F-measure, which is also computed for each

song independently and averaged afterwards. Noticeably, if one computes it
from the averaged precision and recall measures, one obtains abnormally high
F s.

13http://www.iiia.csic.es/∼jserra/downloads/2012 TMM
StructureAnnotation Results.zip

the result and the ground truth in 0.3 s frames we compute
standard pairwise precision, recall, and F-measure as defined
in [11] (PL, RL, and FL, respectively). Additionally, we
compute over- and under-segmentation measures as proposed
in [35]. However, due to space constraints, we here only report
the former and refer to the results web document for the latter.

C. Baseline evaluations

One should be cautious with some of the aforementioned
evaluation measures, specially with boundary evaluation mea-
sures. For instance, placing a boundary every second can
already yield a boundary recall RB = 1 and a boundary F-
measure FB ≈ 0.5 [30]. For the sake of comparison with
existing approaches we revert to these measures, but provide
two additional baseline evaluations: placing a certain number
of random boundaries using the average number of boundaries
reported in Table I (Baseline 1) and placing a boundary every
3 s (Baseline 2). In all these baselines the same label is as-
signed to each segment. Additional information on evaluation
baselines can be found in [30] or [19].

One should also note that two different human annotators
could disagree in the annotation of the structure of a musical
piece (see [36] and also Table I, where we see that the numbers
for two different ground truths do not totally agree). To obtain
a reference of human performance when evaluating against
our ground truth, we propose to evaluate across different
annotations. That is, given two annotations A and B for the
same music data set, we use annotation B as a result when
evaluating with the ground truth provided by annotation A and
vice versa (e.g., using BEATLES-B as a candidate result and
BEATLES-A as a ground truth).

IV. RESULTS AND DISCUSSION

A. Illustrating Example

Before presenting the quantitative results, we first give an
illustrating example based on the HPCP time series computed
from “All you need is love” by The Beatles (Figs. 2 and 3). We
see that homogeneities (gray areas) and repetitions (straight
diagonal lines) are already visible in the recurrence matrix
R, and before computing the novelty curve c. In this case,
the majority of the detected boundaries correspond to real
boundaries (Fig. 2, bottom). Interestingly, the two false pos-
itive boundaries towards the end (samples 1408 and 1518)
correspond to a short musical quotation of the main chorus
of the song “She loves you”, which The Beatles included in
the final fade-out of this recording. These actually musically
meaningful boundaries had not been annotated by humans,
which again highlights the problems of collecting ground truth
annotations for this task.

Continuing with the same example, but focusing on segment
labeling (Fig. 3, bottom), we see that the proposed approach
makes a good distinction between verse (segments 3, 4, 6,
and 8) and chorus sections (segments 5, 7, 9, and 10). Our
approach annotates segment 2 being the same as 3, 4, 6, and
8, despite it being annotated differently by humans. However,
it turns out that segment 2 shares the same chords and instru-
mentation as those verse segments, but only incorporates the
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Approach Boundaries Labels
PB RB FB PL RL FL

Baseline 1 (8 bound.) 0.418 0.458 0.427 0.344 0.989 0.499
Baseline 2 (3 s) 0.343 0.998 0.505 0.348 0.982 0.502
Levy & Sandler [11]a 0.586 0.832 0.581 0.600 0.627 0.597
Paulus & Klapuri [8] 0.521 0.612 0.550 0.729 0.546 0.599
Peiszer [37]a 0.515 0.824 0.617 0.611 0.623 0.597
SF(2,0.01,32) 0.681 0.729 0.696 0.709 0.659 0.658
SF(2,0.02,29) 0.691 0.808 0.737 0.707 0.741 0.699
SF(2.5,0.03,32) 0.714 0.797 0.745 0.693 0.775 0.707
SF(3,0.04,35) 0.734 0.791 0.753 0.651 0.800 0.690
Human 0.889 0.937 0.911 0.902 0.870 0.876

TABLE II
RESULTS WITH BEATLES-A. BEST F-MEASURES ARE HIGHLIGHTED IN

BOLD. THE SUPERSCRIPT a DENOTES RESULTS REPORTED BY SMITH [30].

Approach Boundaries Labels
PB RB FB PL RL FL

Baseline 1 (9 bound.) 0.446 0.526 0.471 0.332 1.000 0.491
Baseline 2 (3 s) 0.355 1.000 0.516 0.338 0.995 0.495
Chen & Li [38] - - - 0.610 0.690 0.630
Mauch et al. [39]a - - - 0.610 0.770 0.660
Weiss & Bello [40] - - - 0.570 0.690 0.600
SF(2,0.01,32) 0.723 0.755 0.728 0.700 0.663 0.656
SF(2,0.02,29) 0.733 0.825 0.766 0.695 0.751 0.700
SF(2.5,0.03,32) 0.753 0.816 0.774 0.681 0.787 0.711
SF(3,0.04,35) 0.764 0.802 0.773 0.641 0.809 0.691
Human 0.937 0.889 0.911 0.870 0.902 0.876

TABLE III
RESULTS WITH BEATLES-B. BEST F-MEASURES ARE HIGHLIGHTED IN
BOLD. THE SUPERSCRIPT a DENOTES RESULTS REPORTED BY WEISS &

BELLO [40].

choirs (skipping the main voice). We also see that the proposed
approach clearly differentiates the long ostinato ending and
fade-out (segments 11 to 13) from the rest. Segment 1 is
different from the rest because it is a distinct brass band
introduction and segment 12 is different from the rest because
of the aforementioned “She loves you” quotation.

B. Accuracy Assessment

Let us now turn to some quantitative results. We start
considering the results obtained with the BEATLES collection
(Tables II and III) and then comment on the other data sets.
First, we note that our approach (SF) clearly outperforms the
random evaluation baselines. For boundaries, the highest FB
for a baseline is 0.516 (Baseline 2, BEATLES-B), whereas the
lowest FB for the proposed approach is 0.696 (SF(2,0.01,32),
BEATLES-A). For labels, the highest FL for a baseline is
0.502 (Baseline 2, BEATLES-A), whereas the lowest FL for
the proposed approach is 0.658 (SF(2,0.01,32), BEATLES-A).
Human performance is still higher than our approach’s, but
the difference gets tighter. For instance, with BEATLES-A we
get FL = 0.707 and human agreement is at FL = 0.876.

Second, we observe that, independently of the ground truth
we use (BEATLES-A or BEATLES-B), different parameter
combinations for SF yield similar results. Actually, many of
these results turned out to be not statistically significantly
different14 between them. This highlights the robustness of the

14Unless stated otherwise, statistical significance is assessed with a T-test
at p < 0.05 and assuming a Gaussian distribution of the evaluation measures.
When standard deviations are not reported in the literature, equal variances
as with our approach are assumed.

Approach Boundaries Labels
PB RB FB PL RL FL

Baseline 1 (16 bound.) 0.463 0.438 0.443 0.289 1.000 0.447
Baseline 2 (3 s) 0.411 1.000 0.576 0.293 1.000 0.451
Barrington et al. [12] - - - - - 0.620
Paulus & Klapuri [8] 0.717 0.578 0.630 0.603 0.721 0.637
Peiszer [37]a 0.613 0.807 0.680 - - -
SF(2,0.01,32) 0.827 0.730 0.766 0.755 0.659 0.691
SF(2,0.02,29) 0.817 0.773 0.785 0.728 0.665 0.680
SF(2.5,0.03,32) 0.829 0.745 0.776 0.707 0.676 0.678
SF(3,0.04,35) 0.810 0.691 0.737 0.667 0.701 0.669
Human 0.921 0.891 0.899 - - -

TABLE IV
RESULTS WITH RWC-POP-A. BEST F-MEASURES ARE HIGHLIGHTED IN

BOLD. THE SUPERSCRIPT a DENOTES RESULTS REPORTED BY SMITH [30].

Approach Boundaries Labels
PB RB FB PL RL FL

Baseline 1 (17 bound.) 0.466 0.500 0.476 - - -
Baseline 2 (3 s) 0.402 1.000 0.569 - - -
Kaiser et al. [41] 0.687 0.658 0.661 - - -
Sargent et al. [42]a 0.622 0.623 0.612 - - -
Sargent et al. [42], [43]b 0.697 0.584 0.628 - - -
SF(2,0.01,32) 0.817 0.763 0.782 - - -
SF(2,0.02,29) 0.799 0.790 0.787 - - -
SF(2.5,0.03,32) 0.827 0.782 0.797 - - -
SF(3,0.04,35) 0.807 0.732 0.762 - - -
Human 0.891 0.921 0.899 - - -

TABLE V
RESULTS WITH RWC-POP-B. BEST F-MEASURE IS HIGHLIGHTED IN
BOLD. THE SUPERSCRIPTS a,b DENOTE RESULTS REPORTED IN THE

MIREX 2011 AND 2012 CAMPAIGNS [21], RESPECTIVELY.

proposed approach against different parameter settings and,
also, against different ground truth annotations.

Third, along with the results of SF we also report the
best results found in the literature with that collection, using
the same evaluation framework. We observe that SF clearly
outperforms the other approaches, with a statistically signif-
icant difference between average performances. For instance,
Paulus & Klapuri [8] achieved FL = 0.599 with BEATLES-A
and Mauch et al. [39] were reported [40] to have FL = 0.66
with BEATLES-B. Our approach yields an FL close to 0.7 or
higher with both annotations.

Replicating our evaluation with RWC-POP and MAZURKA
collections confirms all the aforementioned statements (Ta-
bles IV, V, and VI): SF is far above the baseline, different
parameter combinations yield comparable accuracies, and SF
clearly outperforms the best results published so far under the
same evaluation framework. Achieving similar high accuracies
in such a cross-collection evaluation further highlights the
strength of the proposed approach and its robustness across
different parameter combinations. Moreover, the accuracies
achieved with BEATLES and RWC-POP seem to go beyond
popular music genres, as suggested by the comparable results
achieved with the MAZURKA collection.

The proposed approach also achieved very good results in
MIREX 2012 (Table VII). The results for RWC-POP matched
the ones reported here, with only minor differences due to
some parameter modifications (at the time of submitting our
algorithm we used τ = 1, sl = 0.33, δ = 0.1, and λ = 6).
The results for the MIREX09 collection were statistically
significantly better than the rest of participants. Specifically,
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Approach Boundaries Labels
PB RB FB PL RL FL

Baseline 1 (10 bound.) 0.479 0.472 0.461 0.330 0.999 0.482
Baseline 2 (3 s) 0.431 1.000 0.582 0.333 0.992 0.484
SF(2,0.01,32) 0.703 0.653 0.659 0.752 0.652 0.681
SF(2,0.02,29) 0.715 0.719 0.699 0.772 0.693 0.713
SF(2.5,0.03,32) 0.724 0.695 0.692 0.758 0.716 0.719
SF(3,0.04,35) 0.725 0.661 0.675 0.733 0.733 0.717

TABLE VI
RESULTS WITH MAZURKA. BEST F-MEASURES ARE HIGHLIGHTED IN
BOLD. SINCE WE ONLY HAVE ONE ANNOTATION, HUMAN ACCURACY

CANNOT BE ESTIMATED FOR THIS COLLECTION (SEC. III-C).

Approach Music collection
MIREX09 RWC-B RWC-A MIREX12

SF(2.5,0.03,32) 0.653 0.766 0.675 0.581
SF(2,0.01,32) 0.633 0.759 0.688 0.528
Kaiser et al. [41]-3 0.572 0.661 0.605 0.531
Martin et al. [44] 0.556 0.545 0.583 0.572
Kaiser et al. [41]-1 0.554 0.661 0.603 0.502
Kaiser et al. [41]-4 0.551 0.661 0.562 0.554
Kaiser et al. [41]-2 0.544 0.661 0.583 0.528
Sargent et al. [43] 0.515 0.628 0.535 0.460
Ono et al. u 0.464 0.531 0.507 0.501
Mauch et al. [39] 0.612 0.605 - -
Sargent et al. [42] 0.501 0.612 - -
Martin et al. [44] 0.555 0.486 - -

TABLE VII
RESULTS FOR MIREX COLLECTIONS AS REPORTED AT ISMIR 2012 (TOP
ROWS). FOR COMPREHENSIVENESS WE ALSO INCLUDE THE THREE BEST

ACCURACIES AMONG PREVIOUS MIREX EDITIONS (BOTTOM ROWS).
BEST FL VALUES ARE HIGHLIGHTED IN BOLD. THE SUPERSCRIPT u

DENOTES “UNPUBLISHED”.

SF obtained an FL = 0.653, whereas the best result reported
for this collection was FL = 0.612, obtained by Mauch et
al. [39] in 2010. The results for the MIREX12 collection were
more tight, with SF scoring FL = 0.581 and Martin et al. [44]
scoring FL = 0.572. In general, for many of the statistical tests
we could try, this difference is not found to be statistically
significant. However, noticeably, [44] does not perform so
well with the other MIREX test collections. Furthermore, the
accuracies for all algorithms on the MIREX12 collection are
much lower than than the ones obtained with the collections
used in this paper and the other MIREX collections, what
brings up the question of the criteria used for annotating
such collection and whether it conforms to the rest of the
annotations used elsewhere.

C. Blocks and Parameters Impact

To assess the accuracy of the proposed method (Tables II–
VI) we have made use of four fixed parameter configurations
(Table VIII). In such configurations, parameter values were
intuitively determined from the musically-informed consider-
ations of Sec. II-D. This has been useful for showing that the
proposed method can reach high accuracies with no extensive
parameter tuning (Sec. IV-B). We now go one step further and
study the impact of each parameter in each of the four studied
configurations (Table VIII). This will allow us to identify
critical steps in our method and to gain empirical knowledge
on the useful parameter ranges. In addition, for improving our
understanding of the method, we can switch off several of its
blocks (Fig. 1). This will additionally allow us to compare

Parameter Unit Meaning
m s Embedding dimension (Eq. 1)
τ s Time delay (Eq. 1)
κ % Percentage of nearest neighbors (Eq. 2)
δ - Peak picking threshold
λ s Peak picking minimal window length
sl s Smoothing length for lag dimension (Eq. 5)
st s Smoothing length for time dimension (Eq. 5)

Setting Configuration: SF(m,κ,st)
A SF(2,0.01,32)
B SF(2,0.02,29)
C SF(2.5,0.03,32)
D SF(3,0.04,35)

TABLE VIII
SUMMARY OF PARAMETERS AND PARAMETER SETTINGS.

Bypassed blocks Boundaries Labels
PB RB FB PL RL FL

Baseline 1 (8 bound.) 0.418 0.458 0.427 0.344 0.989 0.499
Baseline 2 (3 s) 0.343 0.998 0.505 0.348 0.982 0.502
A1 off 0.658 0.752 0.693 0.760 0.449 0.540
A2 off 0.645 0.554 0.575 0.552 0.705 0.591
A3 off 0.371 0.917 0.522 0.515 0.740 0.561
A1+A2 off 0.386 0.873 0.528 0.491 0.724 0.542
A2+A3 off 0.375 0.801 0.503 0.500 0.717 0.546
A1+A2+A3 off 0.372 0.866 0.514 0.464 0.792 0.542
SF(2.5,0.03,32) 0.714 0.797 0.745 0.693 0.775 0.707
Human 0.889 0.937 0.911 0.902 0.870 0.876

TABLE IX
ACCURACIES WITH BEATLES-A WHEN SWITCHING OFF STRUCTURE

FEATURE COMPUTATION BLOCKS (SEE FIG. 1). FOR COMPARISON
PURPOSES, WE ALSO SHOW BASELINE AND HUMAN ACCURACIES, AS

WELL AS A REFERENCE PERFORMANCE FROM TABLE II.

the proposed approach against simpler variants of it. In the
following, we use BEATLES-A for quantitative evaluation.
We found similar parameter behaviors with the other music
collections.

We start by looking at the accuracies obtained with parame-
ter configuration SF(2.5,0.03,32) when switching off some of
the segment boundary computation blocks (A1 to A4, Fig. 1).
In general, we observe that accuracies seriously drop when
leaving out any of the proposed steps (Table IX). Switching off
A1, we maintain a relatively high boundary detection accuracy,
FB = 0.693. However, this is not coupled with a correct
segment labeling, where we get FL = 0.540, approaching
to the random baseline. This indicates that block A1 (delay
coordinates, Eq. 3) does not strongly affect boundary place-
ment, but is crucial for segment similarity, the key ingredient
of the proposed structure labeling step. As for the remaining
switch off options, we see that they lead to results not far from
the random baseline accuracies in both boundary detection
and segment labeling (Table IX). Noticeably, these switch off
options include using the raw music descriptor time series as
features for novelty detection (A1+A2+A3 off), thus replacing
the proposed structure features by standard HPCPs, and a
smoothed descriptor time series version (A1+A2 off). Overall,
these results show that every single block, and hence all
steps of our approach, are necessary for achieving the good
accuracies reported in Sec. IV-B.

We next study the impact every single parameter has on the
overall accuracy. For that we employ the same four parameter
configurations we used in Sec. IV-B and systematically explore
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Fig. 4. Impact of different parameter values. From left to right and top to bottom these correspond to m, τ , κ, δ, λ, sl, st, and a (see Table VIII and the
text). Dashed lines correspond to FB and solid lines to FL. The four different colors/symbols correspond to the four different fixed configurations used in
Sec. IV-B (Tables II–VI), and are denoted by A, B, C, and D (see Table VIII and the legend shared by all plots). The black horizontal lines on top correspond
to human performance reference. The black horizontal lines at the bottom correspond to the random baseline reference.

the role of individual parameters within the suitable ranges
outlined in Sec. II-D (Table VIII). First, as mentioned, we
see that the embedding dimension m can affect the structural
segment labeling, but has a minor effect on boundary detection
(Fig. 4, top left). Indeed, FL values approach the random
baseline as m → 0 s, whereas FB is more or less maintained
across the entire considered range. Notice that an m = 0 s
would correspond to no embedding enhancement, i.e., using
the raw time series, and therefore switching off A1 as above.
Besides, we see that suitable values for m lie between 2 and
5 s, confirming our intuition of Sec. II-D. Noticeably, accuracy
values seem to be in a stable plateau for m > 2 s.

The next parameter we study is τ , the amount of delay
between embedding coordinates (Eq. 1). In particular, we see
that the longer the delay, the less the accuracy we get (Fig. 4,
top center). However, values of τ < 0.5 s, corresponding to

less than 4 samples, yield comparable and stable accuracies.
Next, we turn our attention to κ, the number of nearest

neighbors used in our recurrence plot (Eq. 2). We can detect a
performance peak between 0.02 ≤ κ ≤ 0.06 (Fig. 4, top right),
coinciding with our hypotheses of Sec. II-D. Considering a
larger number of neighbors, κ > 0.06, gradually decreases
accuracy, but not drastically. Regarding the peak threshold
δ (Eq. 6), we confirm that values of δ ∈ [0, 0.25] do not
affect the results (Fig. 4, middle left). The accuracies also
behave very smoothly with the peak picking window length
λ (Fig. 4, middle center), except for very small windows (we
discussed this aspect in Sec. II-D). Similarly, the kernel density
estimation parameter sl has a marginal effect, provided it is
not set to an unreasonably high value sl � 6 s (Fig. 4, middle
right). The other density estimation parameter, st, yields stable
accuracies in the range of 20 ≤ st ≤ 40 s (Fig. 4, bottom left).
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Noticeably, values of st → 0 (corresponding to switching off
A4) lead to very poor accuracies (see also Table IX).

All the previous parameters relate to the boundary detection
stage (A blocks, Fig. 1). As mentioned, the segment labeling
part is parameter-free, thus no configurable options exist (B
blocks, Fig. 1). However, one may introduce some alternatives
in order to get an impression on how different components may
affect final results. As an example, we replaced the segment
similarity threshold φ = µ(S) + σ(S) by φ = µ(S) + aσ(S),
introducing a new parameter a controlling the threshold mag-
nitude. Hence, we can now assess the impact of different
thresholds and see how critical the overall thresholding oper-
ation is (Fig. 4, bottom center). Values of a ≈ 1 yield the best
FL accuracies, with less pronounced drops for a < 1 than for
a > 1 (of course, as this newly introduced parameter does not
affect boundary placement, FB remains the same). In general,
we see that a wide range of values 0.5 ≤ a ≤ 1.2 provide good
accuracies, thus showing that the specific dynamic choice of
φ is not crucial.

V. CONCLUSION

In this paper we introduced a novel approach to structure
annotation based on structure features and segment similarity.
First, we showed that structure features measuring global
characteristics of a time series becomes a powerful tool in
combination with local measurements as usually done for
novelty detection. This local/global combination leads to a
robust estimation of segment boundaries, as confirmed by
our experimental results. Second, we showed how to com-
bine boundary estimations a labeling procedure based on
structural segment similarities. To this extent, we adapted an
existing time series similarity measure and developed suitable
thresholding and transitivity strategies. Third, we studied the
impact of each parameter under alternative settings and as-
sessed the importance of the different steps of our method.
Finally, we conducted an exhaustive empirical evaluation of
our approach with three different music collections and five
distinct structure annotations. The overall results outperformed
any results published in the literature using the same evaluation
framework (both in boundary detection and segment labeling
tasks). The MIREX 2012 evaluation results further confirmed
this aspect in an out-of-sample and non-optimized scenario,
using different collections.
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[25] J. Serrà, X. Serra, and R. G. Andrzejak, “Cross recurrence quantification
for cover song identification,” New Journal of Physics, vol. 11, no. 9,
p. 093017, 2009.

[26] H. Kantz and T. Schreiber, Nonlinear time series analysis. Cambridge,
UK: Cambridge University Press, 2004.

[27] N. Marwan, M. C. Romano, M. Thiel, and J. Kurths, “Recurrence plots
for the analysis of complex systems,” Physics Reports, vol. 438, no. 5-6,
pp. 237–329, 2007.

[28] J. S. Simonoff, Smoothing methods in statistics. Berlin, Germany:
Springer, 1996.

[29] M. Müller, P. Grosche, and N. Jiang, “A segment-based fitness measure
for capturing repetitive structures of music recordings,” in Proc. of the
Int. Soc. for Music Information Retrieval Conf. (ISMIR), 2011, pp. 615–
620.

[30] J. B. L. Smith, A comparison and evaluation of approaches to the
automatic formal analysis of musical audio. MSc thesis, McGill
University, Montreal, Canada, 2010.



12

[31] M. Goto, H. Hashiguichi, T. Nishimura, and R. Oka, “RWC music
database: popular, classical, and jazz music databases,” in Proc. of the
Int. Conf. on Music Information Retrieval (ISMIR), 2002, pp. 287–288.

[32] S. Ewert, M. Müller, and P. Grosche, “High resolution audio synchro-
nization using chroma onset features,” in Proc. of the IEEE Int. Conf.
on Acoustics, Speech and Signal Processing (ICASSP), 2009, pp. 1869–
1872.

[33] B. S. Ong, “Structural analysis and segmentation of music signals,”
Ph.D. dissertation, Universitat Pompeu Fabra, 2006.

[34] D. Turnbull, G. Lanckriet, E. Pampalk, and M. Goto, “A supervised
approach for detecting boundaries in music using difference features
and boosting,” in Proc. of the Int. Conf. on Music Information Retrieval
(ISMIR), 2007, pp. 51–54.

[35] H. Lukashevich, “Towards quantitative measures of evaluating song
segmentation,” in Proc. of the Int. Soc. for Music Information Retrieval
Conf. (ISMIR), 2008, pp. 375–380.

[36] G. Peeters and E. Deruty, “Is music structure annotation multi-
dimensional? A proposal for robust local music annotation,” in Proc.
of the Workshop on Learning the Semantics of Audio Signals (LSAS),
2009, pp. 75–90.

[37] E. Peiszer, Automatic audio segmentation: segment boundary and struc-
ture detection in popular music. MSc thesis, Vienna University of
Technology, Vienna, Austria, 2007.

[38] R. Chen and M. Li, “Music structural segmentation by combining
harmonic and timbral information,” in Proc. of the Int. Soc. for Music
Information Retrieval Conf. (ISMIR), 2011, pp. 477–482.

[39] M. Mauch, K. C. Noland, and S. Dixon, “Using musical structure to
enhance automatic chord transcription,” in Proc. of the Int. Soc. for
Music Information Retrieval Conf. (ISMIR), 2009, pp. 231–236.

[40] R. J. Weiss and J. P. Bello, “Unsupervised discovery of temporal
structure in music,” Journal of Selected Topics in Signal Processing,
vol. 5, no. 6, pp. 1240–1251, 2011.

[41] F. Kaiser, T. Sikora, and G. Peeters, “MIREX 2012 - Music structural
segmentation task: IRCAMSTRUCTURE submission,” Music Informa-
tion Retrieval Evaluation eXchange (MIREX), 2012.

[42] G. Sargent, F. Bimbot, and E. Vincent, “A regularity-constrained Viterbi
algorithm and its application to the structural segmentation of songs,”
in Proc. of the Int. Soc. for Music Information Retrieval Conf. (ISMIR),
2011, pp. 483–488.

[43] F. Bimbot, E. Deruty, G. Sargent, and E. Vincent, “Semiotic structure la-
beling of music pieces: concepts, methods and annotation conventions,”
in Proc. of the Int. Soc. for Music Information Retrieval Conf. (ISMIR),
2012, pp. 235–240.

[44] B. Martin, P. Hanna, M. Robine, and P. Ferraro, “Structural analysis of
harmonic features using string matching techniques,” Music Information
Retrieval Evaluation eXchange (MIREX), 2011.
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