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Abstract. HANA is an agent architecture suitable for multiple bilateral negoti-
ations in realistic problems involving humans. The architecture deals with pre-
negotiation and provides a new search and negotiation technique where search
and negotiation go hand in hand: the former providing offers to propose, and the
later providing commitments for pruning the search space, and information for
fine-tuning the evaluation of offers. The architecture represents graded beliefs,
dynamic desires and general intentions. It can be extended incorporating new be-
havioural models that can enrich the negotiation strategy with new information.

1 Introduction

The research field of negotiation has been studied from many different perspectives,
among them: game theory [2, 3], psychology [4], business [5], neuroeconomics [6], or
psychopharmacology [7] just to mention a few. The computational study of negotiations
is denoted by automated negotiation. Most works on automated negotiation assume ra-
tional agents and static negotiation problems. However, humans are rationally bounded,
and their negotiations are usually dynamic. It is often impossible to explore the com-
plete negotiation space due to time limitations and the dynamics of the problem. By the
time that an optimal solution is found, the solution is not optimal any more. This paper
contributes to automated negotiation defining an agent architecture suitable to negotiate
with humans.

We named our proposed architecture by the Human-Aware Negotiation Architec-
ture (HANA). It allows multiple bilateral negotiations about actions, and deals with
pre-negotiation looking for good enough sets of actions and offers. It is a modular ar-
chitecture based on an ecological model of rationality. The mental state of the agent is
represented as graded beliefs, dynamic desires and general intentions. We use a novel
search and negotiation technique where search and negotiation go hand in hand: the
former providing offers to propose, and the latter providing commitments for pruning
the search space, and information for fine-tuning the evaluation of offers. Several ne-
gotiation strategies are provided that can be dynamically combined. The architecture is
extensible, allowing the incorporation of new behavioural models.

The paper starts describing the background on multiple bilateral negotiation. Then,
it introduces the problem (Section 3), and proceeds with a general description of the
? This paper is an abridgement of [1], providing new background and discussion sections.
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architecture (Section 4). The modules composing the architecture are described next.
Those are: the interface, the world model (Section 5), the plan search (Section 6), and
the negotiation (Section 7). The paper ends with a discussion (Section 8).

2 Background

The work on automated negotiation can be classified by the type of negotiation protocol
being used. Common types are: multilateral protocols, typically organised as auctions
among more than two agents; bilateral protocols, often with alternating proposals be-
tween two agents; and multiple bilateral protocols that are not as popular as the other
two. Multiple bilateral negotiation protocols allow the negotiation of agreements among
more than two agents at the same time. The main difference between multiple bilateral
and multilateral protocols is that several agreements can be negotiated in multiple bilat-
eral protocols while only one can be negotiated in multilateral protocols.

Multiple bilateral negotiations are common in business [8], however automated ne-
gotiation research lacks of this kind of negotiations. The main problem is that many
bilateral negotiations take place in an “independent" manner, although the agreements
reached affect a common agent. Thus, controlling those bilateral negotiations is crucial
to avoid inconsistent commitments, and to reach the best possible outcome. Previous
work on multiple bilateral negotiation combines two protocols. They define a negoti-
ation process with two phases: a bilateral phase, and a multilateral phase. Examples
are [9] and [10]. An alternative is to use sequential bilateral negotiations as an approx-
imation to multiple bilateral negotiations [11]. This approach avoids the simultaneity
of negotiations and simplifies the problem. It does not negotiate concurrently, however
it takes into account a scenario with several agents, and does not consider being in
an isolated bilateral negotiation. The outcome of negotiating with an agent affects the
subsequent negotiations with that agent and others. There are works that simplify the
problem assuming that there is only one agreement as an outcome of a negotiation with
multiple opponents, [12–14].

Our interest in HANA is in domains where multiple potential agreements could be
feasible. In [15], the authors share the same interest and envisage a negotiation support
systems solution combining human judgement capabilities with autonomous agents.
Similarly, other works on automated negotiation use an agent per negotiation counter-
part and a control or management mechanism (maybe another agent) to control all those
agents. For instance, in [14], an agent is used to coordinate the negotiating agents that
conduct reasoning by using constraint-based techniques. They use two levels of strate-
gies: the individual negotiation level, and the coordination level. After each negotiation
cycle, the individual agents report back to the coordinator that evaluates their perfor-
mance and issues new instructions accordingly. The idea of a MAS performing as a
single negotiator is not new. [16] does already assume the existence of multiple agents.
The authors do not only assume one agent per negotiating counterpart and a controller,
they assume the existence of many other agents for several parts of the reasoning of the
automated negotiator. Our approach skips this tendency of using several agents to build
an automated negotiator, and use a single one with a single mental state and with the
capability to perform concurrent tasks like, for instance, searching for good possible
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agreements and sending proposals. Our alternative to the use a MAS as an automated
agent consists in executing those concurrent tasks using several threads sharing the
same information and reasoning mechanisms. This alternative can be seen also in [17,
18]. Those works use a negotiation protocol completed by a normative system where,
apart from proposing (offer), accepting (accept) and rejecting (end) agreements, agents
can confirm and decommit. Confirm is used to confirm an acceptance. This is necessary
in those works to avoid the acceptance of inconsistent agreements by the negotiating
threads. The delay between accepting and confirming an agreement can be used by the
negotiation counterpart to end the negotiation. However, when an acceptance is con-
firmed, any decommitment performed by the agents, meaning to break the agreement,
implies a penalty. Our approach uses a far simpler protocol where acceptances do not
need to be confirmed, and decommitment is not announced. The penalty of decommit-
ment is not stipulated by the protocol, it is decided and performed by the other agents,
for instance, not relying any more on the given agent.

Most negotiation models address the issues associated with the design of negotiation
protocols and negotiation strategies. However, few of them deal with the preparation
and planning for negotiation. According to [19]: “Peace requires a process of building
constructive relationships in a civil society not just negotiating, signing, and ratifying
a formal agreement." As relevant is the negotiation protocol or strategy, as is the struc-
ture of relevant information, the analysis of possible negotiating options, and the plan
to follow. This task is denoted by pre-negotiation and is studied in other works like
[20, 17, 21–23]. We do pre-negotiation in this paper with the definition of the HANA
architecture that generates negotiating options from joint possible plans.

As described in [24], pre-negotiation addresses the operational and strategic pro-
cess of preparing and planning for negotiation. This concerns the structuring of per-
sonal information, the analysis of the opponents, and the definition of the protocol and
selection of the initial strategy. HANA assumes the use of a multiple bilateral protocol.
Even though, the codification of the protocol as a normative system incorporated in the
world model makes possible the use of other protocols as the world model is extensible.
The main restriction in our architecture is on the negotiating objects that are assumed
to be sets of actions refusing the possibility to argue about the suitability of a particular
negotiation protocol. However, the rest of pre-negotiation activities are present in our
architecture.

3 Resource negotiation problem

A Resource Negotiation Problem (RNP) is a particular resource allocation problem
with negotiating agents. An RNP is a MAS problem with several agents α ∈ A control-
ling the resources r ∈ R of a common environment. Agents individually act applying
particular operators op ∈ Op to their resources, and negotiate to agree on particular
combinations of actions to be performed at the same time. An action is the application
of an operator to a resource by an agent a = 〈α, op, r〉 ∈ A. A plan is a set of action
p = {a1, a2, ...} ∈ P . A plan is complete p̄ ∈ P̄ if it contains an action for every
resource in the environment. It is complete for a given agent p̄α ∈ P̄α if it contains
an action for every resource in the environment controlled by that agent. An environ-
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ment ω ∈W is a deterministic state transition system where the state is represented by
the partition of resources among agents W = 2A×R, and the transition function deter-
mines the next state given a complete plan: ω′ = T(ω, p̄). Thus, the evolution of the
environment is given by the actions that agents execute.

The negotiation in RNPs is bilateral. The negotiation objects are denoted by ne-
gotiation options δ ∈ O ⊆ P and are plans with actions involving only two agents.
A negotiation utterance µ = 〈θ, α, β, δ〉 ∈ M represents a message containing a ne-
gotiation option, a sender, a receiver, and an illocutionary particle θ that can be: to
propose, to accept or to reject. All agents controlling resources with actions included
in the negotiation option must participate in the communication: either as the sender or
the receiver. Therefore, it is not possible to negotiate about actions to be performed by
a third party. A negotiation dialogues is a sequence of utterances Ψ = 〈µ0, µ1, ...〉. The
negotiation protocol establishes that all proposals must be replied to. It enforces this for-
bidding them to send a proposal to an agent that is waiting for our reply. Nevertheless,
the agent is allowed to send a proposal to someone else. Therefore, the protocol permits
concurrent negotiations among themselves. When a negotiation option is accepted, the
involved agents commit to perform the actions included in the negotiation option.

4 Agent architecture

HANA is a software architecture to build agents capable of participating in RNPs. We
introduce here its main modules and then we give details for each of them in subsequent
sections. We refer to the agents designed according to HANA as HANA agents.1 The
architecture is graphically represented in Figure 1.
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Fig. 1: Graphical representation of HANA. Arrows represent data flows. Coloured boxes
represent the modules that form part of the agent, and white boxes are components of
those modules.

1 HANA is an acronym for Human-Aware Negotiation Architecture. It stresses the aim of nego-
tiating with humans in realistic scenarios that motivated the design of this agent architecture.
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In an RNP, agents can execute actions and exchange private messages. Thus, the
first component of HANA is an interface module that situates the agents in their envi-
ronment, that is: it allows the observation of the environment state, observe and execute
actions, and exchange messages with other agents. In other words, this module contains
the sensors and actuators of the agent. Which actions to execute and which messages to
send are decided by the negotiation strategy.

The design philosophy behind HANA is to provide some means to negotiate as hu-
mans do, as the negotiation counterparts could be humans. In particular, there are two
capabilities that we think realistic agents should show: dealing with emotions, and deal-
ing with uncertainty [25]. The architecture incorporates emotions as this is an important
part of the non-constructivist rationality approach, we need to understand emotional re-
actions of the other negotiators. Although the environment is fully observable, the ac-
tions to be executed by the other agents can only be guessed analysing the other agents’
previous behaviour. To cope with this uncertainty, we decided to represent the world as
a graded BDI model, that is with graded beliefs, desires and intentions following the
g-BDI model [26].

The space of plans and negotiation options that an agent can execute and propose,
respectively, is potentially huge. We assume that the space is large enough and the ne-
gotiation time short enough to preclude obtaining the optimal solution. That means that
any architecture for this type of negotiation needs to give the means to look for good
enough solutions. Moreover, the longer it takes to decide what to propose, the less prob-
able is the proposal to be accepted. As time goes by, the agents reach agreements that in-
crease the amount of commitments and reduce the set of options compatible with those
commitments. Increasing acquired commitments increases, in turn, the probability that
our desired plans will not be compatible any longer. Consequently, the architecture must
allow agents to start negotiating from the very beginning of a negotiation round. Dealing
with huge solution spaces is not inconvenient for human agents, e.g. in playing Chess or
Go. Humans work with good enough solutions in their everyday lives. Time constraints,
boredom, or tiredness make humans accept good enough solutions. To start negotiating
from the very beginning, HANA proposes to perform a search and negotiation technique
that assumes the plan search to go hand in hand with the negotiation. The plan search
module executes an anytime algorithm that provides a periodically updated ranking of
good enough plans. The ranking takes into account the commitments obtained by the
negotiation module. And the negotiation module proposes options generated from the
previously found good enough plans that contain actions to be executed by other agents.
In this way, HANA agents can start the negotiation from the very beginning proposing
options that, once negotiated, will provide new information —because the option will
be accepted or rejected— to focus the search on the generation of new and better eval-
uated plans. As can be seen in Figure 1, the plan and option evaluators depend not only
on the commitments but on the whole world module. Thus, those evaluation functions
are also updated taking into account the intentions generated from new observations.
The intentions trigger the decisions of the agent.

The execution of HANA consists of several concurrent processes for: the interface
(to receive messages and observe the results of actions and the environment state), the
world model (to update the world model given the perceived changes), the plan search



6

(to continuously update the ranking of plans), and the negotiation (to generate options
from plans and determine what to do next).

5 World model

During the last decade, many successful representation models have been based on
BDI representations. BDI is based on the theory of human practical reasoning [27] and
has well-founded logical semantics [28]. The work of Casali et al. [26] on what they
denoted by g-BDI, gives a powerful generic representation for degrees of belief, degrees
of desire (preferences) and degrees of intention (active goals). We adapt this work to our
problem and incorporate the beliefs, desires and intentions as the main components of
the world model.

The most important aspect of the evolution of the world is what an agent expects
to happen in the environment due to the decisions of other agents. This is so because
the natural evolution of environments is subject to shared knowledge on physical laws,
and thus known by every agent. Therefore, the evolution of the world can be due to
either actions, A, or utterances, M , of other agents. We denote those events (actions
and utterances) by Φ = M ∪ A. The agent has at all times a belief degree assigned to
every element of Φ meaning how certain is the agent that that event will happen. We
decided to model these degrees as probabilities because the data for them comes from
the previous interactions with the other agents and thus those data can be statistically
processed. Axiomatics on how to represent probabilities are provided in [26].

Definition 1. Given Φ = M ∪A, a belief is a tuple 〈α,ϕ, ϑ〉 ∈ A×Φ× [0, 1] where ϑ
is α’s belief degree on ϕ happening. We denote by B the set of all possible beliefs and
by Bα ⊆ B the set of possible beliefs of α.2

For a given environment state ω, the belief degree of α on an action a happening
is Bα(a). Recall that plans are considered sets of actions that are to be executed at the
same time. The belief on the execution of a feasible plan p = {a1, a2, . . . , an} ∈ Pω
is thus naturally modelled according to HANA as the belief on the conjunction of the
execution of each action that is then modelled as the product. Bα(p) = Bα(a1 ∧ a2 ∧
· · · ∧ an) = Πai∈pBα(ai)

When new observations of the environment are made, HANA agents update their
beliefs. From the many possible belief review functions available in the literature [29–
31] HANA uses a recency based belief revision defined as follows.

Definition 2. Given an agent α ∈ A, a belief review function, denoted by σ : 2Bα ×
2Bα → 2Bα , is any function satisfying: (i) σ(B′,B′′) = B′′′, (ii) B′ is the original belief
set, (iii) B′′ is a new belief set, (iv) B∗ is the resulting belief set before normalisation,3

(v) B′′′ is the resulting normalised belief set, (vi) if 〈ϕ, ϑ〉 ∈ B′, 〈ϕ, ϑ′〉 ∈ B′′ and
ϑ 6= ϑ′ then 〈ϕ, ϑ′〉 ∈ B∗, (vii) if 〈ϕ, ϑ〉 ∈ B′ and 〈ϕ, _〉 /∈ B′′ then 〈ϕ, ϑ〉 ∈ B∗, and
(viii) nothing else belongs to B∗.

2 We will note 〈α,ϕ, ϑ〉 ∈ B as Bα(ϕ) = ϑ when useful.
3 To normalise, we follow the work done in [32], and compute the minimum relative entropy

probability distributions with respect to the distributions in B′ that consider the new beliefs in
B′′ as constraints to satisfy, and that satisfy the protocol.
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Desires, intentions and emotions are also updated via a similar simple update method
that we omit here. Arrows in Figure 1 show the influence between the different motives:
changes in the environment provoke updates in the belief set, that generates emotional
updates, that update the desires. The new set of beliefs and desires determines new
intentions.

Although only a few components in Figure 1 are interconnected to build up the
world model of HANA agents (beliefs, desires, intentions and emotions), other models
might be incorporated. The world model is based on multicontext systems [26] that are
modular structures that allow for an easy interconnection of different (logical) mod-
els, using transition functions between them, to build even more complex agents. For
instance, a trust model may impact on intentions, as the intention degree to satisfy a
desire via a plan with an untrustworthy agent should be low. Also, a social model might
impact on intentions, as we might want to have a higher intention degree on plans in-
volving an agent with whom we would like to increase the level of intimacy [33].

As defined in Section 3, the agents must fulfil a negotiation protocol in order to be
able to negotiate with other agents. The rules or constraints that the protocol provides
can be incorporated in the agent as internal norms to follow. This is done, according
to HANA with a high degree of desire on fulfilling the negotiation protocol, and some
transition functions between this desire, and several beliefs that modify the degree of
what we call basic intentions: reply δ (when the agent believes that it has received the
proposal δ), propose (when there is time left in the negotiation round) and executeAc-
tions (when we are approaching the end of the negotiation round).

6 Plan search

The interplay between search and negotiation is the most important contribution of
HANA. In most multi-issue negotiation problems the space of potential solutions is
determined by the admissible values of issues. That is: potential solutions are elements
of the cartesian product of the admissible values for each issue [34]. Differently, in
RNPs the space of potential solutions is defined as the combination of feasible actions
that are compatible. Only certain subsets of the space of actions constitute feasible
solutions, and finding which ones are feasible is not straightforward. Good and bad
solutions are not placed together nicely as in continuously valued attributes (e.g. if a
certain low price is good, nearby low prices will be similarly good). Sometimes a small
change in a plan makes it go from excellent to catastrophic. Moreover, the space of
potential solutions in real domains is frequently huge. What HANA brings in to address
this type of negotiation problem is a search and negotiation technique that enables the
negotiation to start as soon as possible over reasonably good solutions.

The outcome of the search process is a continuously refreshed ranking of candidate
plans. The plan ranking is made by the plan generator thanks to a utility function that
represents the preferences of the agent and that is implemented within a component of
the architecture called plan evaluator, see Figure 1. Preferences are determined by the
world model, and thus, they for instance take into consideration personality traits and
relationships between agents. They do not evaluate only their individual position.



8

Every agent α in a state transition system Ω must decide what actions to perform,
that is, what complete plan p̄α to perform. Remember that given a state ω, next state ω′

is computed by a state transition function T : W × P → W . T(ω, p̄) is defined for
complete plans, p̄ ∈ P̄ω , that are those that can be obtained from the union of complete
plans for every agent controlling resources in the current state: p̄ = ∪

β∈A
p̄β . To decide

what plan to perform, α must know what is the utility that every plan would provide.
If α knew the plans of the other agents, Q = ∪

β∈A\{α}
p̄β , it could compute the utility

of α performing the complete plan p̄α using its utility function, Uα : W → [0, 1], as:
Uα(ω, p̄α) = Uα(T(ω,Q ∪ p̄α)).

However, whilst agents may have a clear idea of their preferences, and hence can
build up a utility function, it is usually impossible to know what other agents’ plans will
be. Therefore, instead of using the deterministic transition function, T : W ×P →W ,
α must use a probabilistic state transition function.

Definition 3. Given a transition system Ω = 〈A, R,Op,W,P,T, ω0,Wf 〉, a proba-
bilistic transition function, denoted by T(ω′|ω, p) ∈ P(W ) is any conditional probabil-
ity distribution over W given ω ∈ W and p ∈ P , such that for every complete plan
p̄ ∈ P̄ω then T(T(ω, p̄)|ω, p̄) = 1 and T(ω′|ω, p̄) = 0 for all ω′ 6= T(ω, p̄).

In RNPs, the state transition function T : W × P → W is fixed and common
to all the agents. Instead, a probabilistic transition function has to be particular for
each agent as it necessarily depends on the interpretation of other agents’ past be-
haviour. Therefore, we will denote by Tα(ω′|ω, p) the probabilistic transition function
of agent α. Then, the utility of a plan, complete or not, for an agent can be estimated
as E[Uα(ω, p)] =

∑
ωi∈W Tα(ωi|ω, p) × Uα(ωi) The complexity here relies on the

evaluation of Tα(ω′|ω, p).
We can identify the problem of learning the probabilistic state transition function

for all complete plans for a given agent α ∈ A as a Markov Decision Process (MDP),
[35]. Learning T requires a wealth of data that is usually not available, and an initially
random behaviour that may produce very negative outcomes in RNPs. Moreover, there
is a required feature for any MDP problem that is not verified in our case: the Markov
property. The transition function could depend on the past as other agents could learn
from previous states and modify their decision function. Contrarily, we propose an al-
ternative that is to infer the probability state transition function from beliefs on the
execution of plans as defined in Section 5. From belief degrees on particular actions
happening, we can compute the belief degree of complete plans. Also, beliefs easily
integrate other sources of information that are missing in an MDP, such as emotions
or previous commitments. That is, the belief degree on an action happening may be
determined, for instance, by knowing that the other agent is of a revenge type or that
the other agent reached an agreement with another agent whom we trust and told us
so. Moreover, as new sources of information can be easily incorporated into the world
model this makes the architecture highly flexible and modular. For all these reasons we
define the expected utility not for a plan in particular, but for a set of beliefs hold in a
particular state as follows:
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Definition 4. We define the expected utility for α ∈ A holding the set of beliefs B′ ⊆
Bα in state ω ∈W as:

E[Uα(ω,B′)] =
∑
ωi∈W


∑

p̄∈P̄ω
T(ω,p̄)=ωi

B′(p̄)∑
p̄∈P̄ω B

′(p̄)
× Uα(ωi)

 (1)

The previous definition does not require that α has made up his decision of what
actions to perform. That is, the equation can be used at the beginning of the negoti-
ation process —when α is still uncertain on what to do, and also when all the bilat-
eral negotiation processes have been finished and α knows what to do. The expected
utility of a plan p is computed at any time assuming that the plan will be executed:
E[Uα(ω, σ(B′, {〈α, a, 1〉|a ∈ p}))]4. Actually, the richer the world model the more ac-
curate the utility functions can be. We measure the level of information in a belief set
as the average of Shannon’s entropy among the probability distributions of actions to
be operated on resources. Notice that, the higher the uncertainty the higher the entropy
and thus, the less information.

Definition 5. The uncertainty on a set of beliefs B′ ⊆ Bα given the set of predicates Φ
that partition it, is measured as:

H(B′) = − 1

|Φ|
∑
φ∈Φ

 1

ln |φ|
∑

〈α,ϕi,ϑi〉∈φ

ϑi lnϑi

 (2)

The uncertainty on actions to be executed is usually high at the beginning of a ne-
gotiation round, as an agent has not enough information about each agent decisions, to
0 when the complete plan is actually performed and observed by all agents. Negotiation
is the means to reduce the uncertainty on the belief model. By reaching agreements on
negotiation options, agents commit themselves to the execution of their actions in the
negotiating option, and thus they reduce the uncertainty by making equal to zero the
probability of executing incompatible actions on the same resource.

The task of the plan search module is to find good enough plans to be executed by
the agent, but also to provide good enough plans to negotiate with other agents. Plans
to be executed are complete plans for the agent α, that is, plans containing actions
involving all the resources controlled by the agent in the current environment state. The
plans to negotiate with other agents are extensions of those complete plans containing
actions to be performed by other agents. These plans are denoted by joint plans, p̂ ∈ P̂α.

The bilateral nature of the interactions force options to contain actions to be done
by, at least, two agents. In HANA, joint plans involving more than two agents can
be negotiated (either concurrently or sequentially) proposing several options generated
from the joint plan. As introduced before, plans can be evaluated by their expected
utility. Notice that this measure assumes that the plan will be executed. When joint
plans are evaluated, we can also assume that the HANA agent will execute its part of
the plan. Even though, we must be cautious about the actual execution of the actions in

4 Plans are executed at the end of the negotiation round when the certainty on the actions to be
executed are commonly high.
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the plan assigned to other agents. We define the confidence of a plan in order to measure
the degree of belief on the execution of a joint plan assuming that the HANA agent will
perform its part of the plan.

Definition 6. Given a set of beliefs B′ ⊂ Bα hold by agent α ∈ A, and a feasible plan
p ∈ Pω , α’s confidence on p is: Cα(B′, p) = B({〈β, op, r〉|〈β, op, r〉 ∈ p and β 6= α})

Note that for all p̄α ∈ P̄ωα , Cα(B′, p̄α) = 1 because B(∅) = B(true) = 1.

The output of the plan search is a plan ranking. The confidence measure can be
used by HANA agents to rank joint plans. HANA agents can rank the joint plans by
their utility (how good are they for the agent) filtering out those joint plans that do not
reach a minimum level of confidence (the agent does not think that other agents will
perform their actions in the plan). This minimum level of confidence may increase as
time goes by and the negotiation round deadline approximates in order to focus on joint
plans where confidence is high.

To generate plans we need a search algorithm that is: (i) capable of search in a huge
space of solutions —as required by most real scenarios, (ii) anytime —as required by
the time bounds, (iii) capable of generate several solutions instead of just one —we are
looking for several plans, and (iv) guided by a dynamic heuristic —as the set of beliefs
evolves with the agent interaction. We decided to implement HANA’s plan generator
with an evolutionary algorithm that constantly optimises the set of plans in the ranking.
Concretely, we use a genetic algorithm (GA) as these algorithms allow the efficient
exploration of large spaces of solutions and produce successive populations of solutions
that are increasingly better adapted to the environment even when it is changing along
the search process. For us, each single solution, a chromosome in the GA, represents a
complete or joint plan for the agent. The idea is to generate the plan ranking from the
current population of solutions taking all or a subset of the best ones, preferably the
latter. This population is updated generation after generation by the crossover, mutation
and selection operators. It is important to guarantee the feasibility of the generated
plans when applying crossover and mutation. The evaluation of a chromosome is done
by the fitness function that computes the expected utility of the plan represented by
the chromosome. Fitness proportionate selection is used to give more chances to good
plans to take part in crossovers. HANA’s genetic search allows the setting of the genes
mutation probability. It is used to focus the search on the joint plans looking for other
agent actions that can nicely extend the best complete plans. In fact, to represent plans
of diverse size, we use chromosomes with a size equal to the size of complete plans, and
let some genes have a void value meaning that the resource corresponding to that gene
has no assigned action. The probability of void values per gene can also be adjusted.
The initial population does not need to be randomised. We set the initial population and
stop the search at any time saving the current population. In this way, we can resume the
computation later on. It is possible to use elitism to keep the best plans alive generation
after generation. Elitism in the plan generation provides a minimum of stability needed
to avoid an erratic performance of the agent during negotiation. The idea is to keep the
plan search running all the time, however it can be stopped and restarted again.
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7 Negotiation

The negotiation module uses the ranking of plans and the world model to decide how to
negotiate, and what actions to perform. That is, what messages to send to other agents,
and what actions to execute over the environment. The world model and the plan search
have independent processes that make the world model data and the plan ranking evolve
along time. The negotiation module is controlled by another process that takes a snap-
shot of the previous modules’ data structure. The snapshot is a negotiation state.

Definition 7. A negotiation state is a tuple s = 〈α, ω, t,Btα,Dtα, Itα, P tα〉, where: α ∈
A is an agent, ω ∈ W is an environment state, t is a time instant, Btα, Dtα, and Itα
are the beliefs, desires and intentions of α at time t, and P tα : Pω 7→ [0, 1] is a plan
ranking.

We denote the set of all possible negotiation states by S. Taking a snapshot, the negoti-
ation process can use the data from the world model and the plan ranking and perform
a negotiation step while the plan search is looking for even better plans5. The workflow
of the negotiation process is as follows: (i) takes a snapshot of the negotiation state, (ii)
generates a ranking of negotiation options, (iii) executes the agent’s intentions included
in the world model, and (iv) goes to (i) to continue with a new negotiation state.

The negotiation process uses the option generator to build a ranking of negotiating
options. Options are generated from the plan ranking P tα as combinations of actions
in joint plans p̂ ∈ P̂ωα that are included in the plan ranking P tα(p̂) 6= ⊥. Options are
evaluated by the option evaluator that computes the next expected negotiation state
assuming the acceptance of a given option δ ∈ Oωα . The simplest way to generate the
ranking of options, Otα : Oωα 7→ [0, 1] is as Otα(δ) = f(next(s, δ)), where: s ∈ S is
the current negotiation state, f : S 7→ [0, 1] is a negotiation state evaluation function,
next : S × Oωα 7→ S computes the next expected negotiation state, and ∃p̂ ∈ P̂ωα such
that δ ⊆ p̂ and P tα(p̂) 6= ⊥. An alternative is to apply a filter and generate the option
ranking using only the joint plans with value over a threshold ν > 0. That is, using
every plan p̂ ∈ P̂ωα such that P tα(p̂) > ν.

HANA provides several evaluation functions for negotiation states. Other functions
can be used. In general, the richer the world model the more sophisticated the evaluation
functions can be. The following functions assume the basic world model:

– Quality of information. The higher the quality of the information that we can reach
in a negotiation state the better. A well informed state contains joint plans that can
reduce the uncertainty about the other agents’ actions. The higher the uncertainty
reduction the better. A natural way to evaluate the quality of information is to define
it as 1 minus the average uncertainty of Definition 5.

fH(s) = max
p∈P tα

(1−H(σ(Btα, {〈α, a, 1〉|a ∈ p}))) (3)

5 Note that the changes in the world model and the plan ranking that are done after taking the
snapshot are considered in the next iteration of the negotiation process.
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– Independence. The more independent an agent is the better. If an agent can reach
a high utility by its own means the better the negotiation state is. This measure
depends on the complete plans for the agent that have been found so far, P̄ tα =
{p|p ∈ P̄α and P tα(p) 6= ⊥}. A state is as good as the best state the agent can reach
by its own means, this is the maximum expected utility to be obtained by assuming
we choose one of the complete plans for agent α:

fUC(s) = max
p̄∈P̄ tα

E[Uα(ω, σ(Btα, {〈α, a, 1〉|a ∈ p̄}))] (4)

– Opportunity. The more utility to be obtained with joint plans the better. Finding
joint plans that give high utility is actually the reason of the whole negotiation
process. Any state that has joint plans with high expected utility is a good state.
This measure is similar to the previous one but using joint plans P̂ tα = {p|p ∈
P̂α and P tα(p) 6= ⊥}:

fUJ(s) = max
p̂∈P̂ tα

E[Uα(ω, σ(Btα, {〈α, a, 1〉|a ∈ p̂}))] (5)

– Confidence. The more confidence in the available plans the better. Having a high
confidence in the plans found during the search the less uncertainty on what will
happen.

fC(s) = max
p∈P tα
{Cα(Btα, p)|p ∈ Pω, P tα(p) 6= ⊥} (6)

Each of these different measures allows the evaluation of the negotiation states and
thus rank available options. When to use each measure is what determines an agent’s
negotiation strategy. The other key element of the negotiation strategy is the aspiration
level, i.e. the minimum evaluation value that the agent has for options to be acceptable.
The options above the aspiration level should be accepted. Otherwise, rejected. At the
beginning of a negotiation round, agents would request a high aspiration value. As
time goes by and the deadline approaches, agents become less demanding, and they
decrease their expectations in order to reach some agreements that improve, even in
a low amount, their negotiation state. HANA allows for the definition of the way the
aspiration level decreases as the next definition shows.

Definition 8. Given a negotiation state s, a deadline tmax, and current time t, the as-
piration level, denoted A(s, t), is defined as:

A(s, t) = gmin(s, t) +

(
tmax − t
tmax

)τ
· (1− gmin(s, t))

where τ ∈ [0, 1] is the aspiration decay rate and gmin(s, t) is the minimum value that
can be guaranteed.

The negotiation strategy is then determined by fixing values for gmin(s, t). HANA al-
lows to define these functions as linear combinations of the measures defined before.
That is, gmin(s, t) = w1(t) · g1(s) + w2(t) · g2(s) + ... + wn(t) · gn(s) where every
gi(s) ∈ [0, 1] is a measure over the state s and

∑
i<n wi(t) = 1. Next we discuss a few

negotiation strategies:
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– Conservative. An agent can guarantee a minimum utilitarian value with its own ac-
tions that corresponds to gmin(s) = fUC(s). This strategy is convenient at the end
of a negotiation round as it concedes maximally towards the guaranteed minimum.

– Informative. A convenient strategy at the beginning of a negotiation round is to
increase the agent’s information quality. This facilitates the exploration of the space
of options and reduce uncertainty in the negotiation. The more information an agent
has the more probable its future proposals will be accepted. This can be achieved
by gmin(s) = fH(s).

– Dynamic. A combination of the previous two strategies starting with informative
and ending with conservative: gmin(s, t) = w1(t) · fH(s) + w2(t) · fUC(s) where
w1(t) = tmax−t

tmax
and w2(t) = 1− w1(t).

8 Discussion

In this paper, we face the challenge of automated negotiation with humans focusing
our attention in several aspects that were not studied in depth in the past, like pre-
negotiation and multiple bilateral negotiation. We describe a negotiation problem, RNP,
with several potential applications that may benefit humans in their everyday life. The
use of a negotiation protocol allowing multiple bilateral negotiations is crucial to that
end, as they are common in business [8]. Also the fact that negotiations in this problem
are about actions, and repeat along time facilitating the establishment and evolution of
relationships among agents. Deadlines are assumed for negotiations as they take place
before actions are performed.

An architecture for agents to take part in RNP is defined. HANA follows a heuristic
approach and deals with pre-negotiation. The architecture defines how observed infor-
mation must be represented. It solves the problem of supplying the negotiation strategy
with plans and negotiating options assuming a huge space of possible solutions. To that
end, it uses an anytime algorithm that runs in parallel to the negotiation strategy pro-
viding an up to date ranking of plans and options. The architecture takes into account
the cost of exploring the space of possible solutions. Several negotiation strategies are
proposed for the HANA agents. These strategies can be combined resulting in a dy-
namic negotiation strategy adjustable to the current available information and left time
until the deadline is reached. The evolutive nature of the architecture is empowered
by a search and negotiation technique. This technique corresponds to the use of the
best ranked plans found by the plan search to generate the negotiation options being
supplied to the negotiation strategy. And also, to the use of the information obtained
from the negotiation to prune the search space and fine tune the evaluation of plans.
The architecture is extensible allowing the incorporation of behavioural models that
can trigger the agent intentions and affect the negotiation strategy that is guided by in-
tentions. In fact, the world model of the agent is based on a graded BDI to simplify
the incorporation of external models. Degrees are used to represent the uncertainty on
the world that is basically related to the future actions to be performed by the other
agents. A good usage of the search and negotiation technique reduces that uncertainty
facilitating a successful performance.
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The principal difference between HANA and other architectures is its extensibility
—facilitating the incorporation of other research models, and its applicability to the in-
dustry. This is not only a theoretical work providing a new search and negotiation tech-
nique. It is also a practical work, [24], that takes into account the complexity of search-
ing for proposals, and the uncertainty in the environment. It includes pre-negotiation
that is necessary as refers to the study of negotiation opponents, the generation of pos-
sible negotiating options, and the planning of a strategy for the negotiation. Contrarily
to other works allowing multiple bilateral negotiation, HANA is designed as a single
negotiating agent (in [14, 36] a negotiator is itself a MAS), and it is able to firmly com-
mit to the performance of actions. It does not use protocols including decommitment to
avoid possible agreement overlap like in [17]. For all those reasons we state that this is
a suitable negotiation architecture for software agents to deal with human counterparts.
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