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ABSTRACT
In scenarios that require teamwork, we usually have at hand a va-

riety of specific tasks, for which we need to form a team in order

to carry out each one. Here we target the problem of matching

teams with tasks within the context of education, and specifically

in the context of forming teams of students and allocating them to

internship programs. First we provide a formalization of the Team
Allocation for Internship Programs Problem, and show the compu-

tational hardness of solving it optimally. Thereafter, we propose

TAIP, a heuristic algorithm that generates an initial team allocation

which later on attempts to improve in an iterative process. More-

over, we conduct a systematic evaluation to show that TAIP reaches

optimality, and outperforms CPLEX in terms of time.

1 INTRODUCTION
In the context of education, it is increasingly common that students

spend some time doing practical work in a company as part of

their curriculum. This work is sometimes remunerated: companies

benefit from this program as they get motivated students that will

work for reduced wages, and students benefit from a first contact

with the labour market. It has been found that the employability

of students at the end of their studies increases thanks to these

internships. Nowadays, education authorities match students with

companies mostly by hand. This paper formalises this matching

process as a combinatorial optimization problem, proposes some

heuristic algorithms and studies their computational complexity.

Team formation with respect to skills/expertise is a well studied

topic of interest within the AI and MAS community [4]. [2] tackle

the problem of team formation considering skills, communication

costs, and tasks that progressively arrive in time. In the same di-

rection, [8] propose a heuristic algorithm for forming one team of

experts for a specific task. [7] propose several heuristic algorithms

for forming a single robust team in order to compete a given set

of tasks. The authors in [5] target the problem of partitioning a

group of individuals into equal-sized teams so that each one will

resolve the same task. Here we consider the problem of allocating

individuals into teams of different sizes in order to resolve different

tasks. In fact, our problem can be viewed as a generalization of [5].
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In this work, we present and formalise an actual-world problem,

the so-called Team Allocation for Internship Programs (TAIPP). We

characterise the complexity of the TAIPP and the search space

that an algorithm that solves it must cope with. We propose how

to encode the TAIPP as a linear program so that it can be solved

by a general purpose LP solver. Furthermore, we propose a novel,

anytime heuristic algorithm that exploits the structure of the TAIPP.

As we will show, our proposed algorithm outperforms the general

purpose optimizer IBM CPLEX in terms of time: it always reaches

the optimal solution at least 55% faster than CPLEX, and reaches

a quality of 80% in less than 20% of the time we need to construct

the input for CPLEX.

As such, in what follows, in Sec 2 we formally describe the TAIPP,

provide formal definitions of the problem’s components, and study

the complexity of the problem. In Sec 3 we provide the encoding for

a linear program solver. In Sec 4 we propose our heuristic algorithm;

while in Sec 5 we conduct a systematic evaluation and show the

effectiveness of our algorithm.

2 PROBLEM FORMALIZATION
In this section we present the individual components of the problem,

discuss their intuition, and provide formal definitions. We begin

with the formalization of internship programs and students, along
with a thorough discussion on the essential notion of competencies.
Then we proceed on presenting our notion of competence coverage,

and show how to compute it.

2.1 Basic elements of the allocation problem
An internship program is characterised by a set of requirements

on student competencies and team size constraints. For instance,

think of an internship program in a computer tech company: there

are 4 competence requirements (a) machine learning principles, (b)
coding in python, (c) web development, and (d) fluency in Spanish

language, while the required team size is 3members; as such, for this

program we need a team of three students that as a team possesses

the four required competencies.

In general we can have a large variety of other constraints, such

as temporal or spatial constraints, i.e., when and where the intern-

ship can be realised. However, within the scope of this paper, we

only focus on team size constraints. The required competencies

are often accompanied by their level and importance. Formally, an

internship program p is a tuple ⟨C, l ,w,m⟩, where C is the set of

required competencies, l : C → R+ ∪ {0} is a required competence

level function,w : C → (0, 1] is a function that weighs the impor-

tance of competences, andm ∈ N+ is the team size required. The

set of all internship programs is denoted with P , with |P | = M .
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A student is characterised by their competencies, and their com-

petence levels. Formally, a student s is represented as a tuple ⟨C, l⟩,
where C is the set of already acquired competencies, and l : C →
R+ ∪ {0} is a competence level function, and hence l(c) is the stu-
dent’s competence level for competence c . The set of all students is
denoted with S , with |S | = N . Given p ∈ P , we denote the set of all
size-compliant teams for p as Kp = {K ⊆ S : |K | =mp }.1

But size is not enough, we need that the members of a team are

suitable for the competencies requested by a company. We assume

that there is a predefined ontology that provides a fixed and finite

set of competenciesC along with relations among them. We further

assume that the ontology is a tree graph, where children denote

more specific competencies than those of their parents. Formally, an

ontology is a tuple o = ⟨C,E⟩ withC being the competencies-nodes

and E the edges. The metric over ontologies that we will use next

is the semantic similarity. The semantic similarity is given by

sim(c1, c2) =
{
1, if l = 0

e−λl e
κh−e−κh
eκh+e−κh

, otherwise

(1)

where l is the shortest path in the tree between c1 and c2, h is the

depth of the deepest competence subsuming both c1 and c2, and
κ, λ ∈ [1, 2] are parameters regulating the influence of l and h to the

similarity metric. This is a variation of the metric introduced in [9],

which guarantees the reflexive property of similarity, that is, a node

is maximally similar to itself, independently of its depth. In other

words, nodes at zero distance (l = 0) have maximum similarity.

Similarly to [12], the semantic similarity between two competence

lies in [0, 1].

2.2 Computing competence coverage for
students and teams

In order to evaluate how well a student fits with an internship we

need some notion of coverage for each competence required by

an internship by the actual competencies of a student. Thus, we

define the student coverage of competence c by a set of competencies

A ⊆ C as cvg(c,A) = maxc ′∈A{sim(c, c ′)}.
And then, naturally, given a program p with required competen-

cies Cp and a student s with acquired competencies Cs the compe-

tence coverage of program p by student s is:

cvg(s,Cp ) =
∏
c ∈Cp

cvg(c,Cs ) =
∏
c ∈Cp

max

c ′∈Cs
{sim(c, c ′)} (2)

Moving now from a single student s ∈ S to a team of studentsK ⊆ S ,
we need first to solve a competence assignment problem. That is, we

need to assign to each student s ∈ K a subset of competencies of

Cp , and assume that student s is responsible for (in charge of) their

assigned competencies. According to [5] we have that:

Definition 2.1 (Competence Assignment Function (CAF)). Given
a programp ∈ P , and a team of studentsK ⊆ S , a competence assign-

ment ηKp is a function ηKp : K → 2
Cp

, satisfying Cp =
⋃
s ∈K ηKp (s).

The set of competence assignments functions for program p
and team K is noted by ΘK

p . The inverse function ηK −1p : Cp →

1
Note: we use the subscript s to refer to the set of competencies, competence level

function, etc. of a student s ∈ S , and the subscript p to refer to the same elements of

the internship’s p ∈ P .

cvg(↓) \w(→) 0 (0, 1) 1

0 1 1 1

(0, 1) 1 ∼ cvg

1 1 ∼ (1 −w) 0

Table 1: Competence proximity truth table; cvg stands for cvg(c, Cs ), and
w forwp (c).

2
K
provides us with the set of students in K that are assigned to

competence c ∈ Cp .
However, not all competence assignments are equally accepted.

For example, consider a program p (with Cp = {c1, c2, c3, c4, c5}),
and a team K = {s1, s2, s3}. An assignment ηKp such that ηKp (s1) =
Cp and ηKp (s2) = ηKp (s3) = ∅ seems to be unfair—assigning all

competencies as student s1’s responsibility—,while assignment η̃Kp
such that η̃Kp (s1) = {c1, c3}, η̃Kp (s2) = {c2, c5} and η̃Kp (s3) = {c4} is
more fair, in terms of allocating responsibilities. In the setting of

internship programs, we prefer assignments such that all students

are actively participating, i.e., assignments such that ηKp (s) , ∅ for
each student s (the so-called inclusive assignments in [3]). At the

same time, we would prefer not to ‘overload’ a few students with ex-

cessive responsibilities, but selecting fair competence assignments.

This is captured by the following definition:

Definition 2.2 (Fair Competence Assignment Function (FCAF)).
Given a program p, and a team of students K ⊆ S , a fair compe-
tence assignment ηKp is a function ηKp : K → 2

Cp , satisfying Cp =⋃
s ∈K ηKp (s), 1 ≤ |ηKp (s)| ≤ ⌈

|Cp |
|K | ⌉ ∀s ∈ K , and 1 ≤ |ηK −1p (c)| ≤

⌊ |K ||Cp | ⌋ + 1.

Now, given a competence assignment ηKp , we define the compe-
tence proximity of a student s wrt a program p. To do so we take

into consideration the importance of each competence and the stu-

dents coverage of the assigned competencies. In the competence

proximity we want to encode the following scenarios:

• the competence proximity should be as high as possible when

the coverage of a competence by a student is maximum;

• the competence proximity should be as high as possible

when the competence is not important;

• the competence proximity should be as low as possible when

the coverage of a competence by all students is minimum.

For a competence c ∈ Cp and a student s , we can visualise the above
properties in the truth table in Table 1. If we think cvg(c,Cs ) and
wp (c), the importance of competence c in program p, as Boolean

variables, we can interpret this table as a logical formula

wp (c) ⇒ cvg(c,Cs ) ≡
(
1 −wp (c)

)
∨ cvg(c,Cs )

However, cvg(c,Cs ) andwp (c) are continuous variables in [0, 1],
so we model the ‘or’ condition of the above logical formula as

the ‘maximum’ between the two variables. As such, we define the

competence proximity of a student for an internship program as:

Definition 2.3 (Student’s Competence Proximity). Given a student
s ∈ S , an internship program p ∈ P , and a competence assignment
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ηp , the competence proximity of s for p with respect to ηp is:

cp(s,p,ηp ) =
∏

c ∈ηp (s)
max

{(
1 −wp (c)

)
, cvg(c,Cs )

}
. (3)

Moving to the competence proximity of a team of studentsK ⊆ S
for program p, we use the Nash product of the competence proxim-

ity of the individuals in K for p, with respect to some FCAF ηp . The
Nash product assigns a larger value to teams where all students

equally contribute to their program, rather than to teams where

some students have a small contribution.

Definition 2.4 (Team’s Competence Proximity). Give a team K
a program p ∈ P , and a competence assignment ηp , the competence
proximity of team K for program p is:

cp(K ,p,ηKp ) =
∏
s ∈K

cp(s, p,ηK
p
). (4)

For a team K and a program p its competence proximity varies

depending on the competence assignment at hand. We define the

best competence assignment as the fair one (Definition 2.2) that

maximizes the competence proximity:

ηK ∗p = argmax

ηKp ∈ΘKp
{cp

(
K ,p,ηKp

)
}

= argmax

ηKp ∈ΘKp

∏
s ∈K

cp(s, p,ηK
p
)

= argmax

ηKp ∈ΘKp

∏
c ∈ηp (s)

max

{(
1 −wp (c)

)
, cvg(c,Cs )

}
Finding the best competence assignment is optimization problem

itself. Even though the above is not a linear optimization problem,

it can be easily linearized by considering the logarithm of cp

(
·
)
:

ηK ∗p = argmax

ηKp ∈ΘKp
{cp

(
K ,p,ηKp

)
} ≡ argmax

ηKp ∈ΘKp
{log{cp

(
K ,p,ηKp

)
}}

= argmax

ηKp ∈ΘKp
log

{ ∏
s ∈K

cp(s, p,ηK
p
)
}
= argmax

ηKp ∈ΘKp

∑
s ∈K

log

{
cp(s, p,ηK

p
)
}

2.3 The team allocation problem as an
optimisation problem

Finding a good allocation of students to a collection of internship

programs is yet another optimization problem that tries tomaximize

the overall competence proximity of all teams for their assigned

internship program. That is, for a single program p, the best can-
didate team is the one that maximizes the competence proximity:

K∗ = argmaxK ∈Kp cp(K ,p). K∗ is the best candidate when a sin-

gle program is at hand. For a set of programs P , with |P | > 1, we

need to maximize the competence proximity of all candidate teams

with their corresponding programs. Suppose we have a team as-

signment function д : P → 2
S
, which maps each p ∈ P with a

team of students K ∈ Kp . We assume that for two programs p1
and p2 it holds that p1 = p2 ⇔ д(p1) = д(p2). In the setting of

matching internship programs with teams of students we should

consider only team assignment functions д such that д assigns each

student to at most one program. As such, we can define feasible
team assignment functions:

Definition 2.5 (Feasible Team Assignment Functions (FTAF)).
Given a set of programs P and a set of students S , a feasible team
assignment function д ∈ G is such that for each pair of programs
p1,p2 ∈ P with p1 , p2, it holds that д(p1) ∩ д(p2) = ∅; and for all
p ∈ P it holds that |д(p)| =mp .

The family of all feasible team assignments is denoted with

G
feasible

. Nowwe are ready to formalise our team allocation problem

as follows:

Definition 2.6 (Team Allocation for Internship Programs Problem
(TAIPP)). Give a set of internship programs P , and a set of students

S , the team allocation for internship programs problem is to select

the team assignment function д∗ ∈ G that maximizes the overall

competence proximity:

д∗ = argmax

д∈Gf easible

∏
p∈P

cp

(
д(p),p,ηд(p) ∗p

)
(7)

The following result establishes that the TAIPP isNP−complete
by reduction to a well-known problem in the MAS literature.

Theorem 2.7. The TAIPP, with more than one program at hand,
is NP − complete .

Proof. The problem is in NP since we can decide whether a

given solution is feasible in polynomial time (O(∑p∈P mp )). We

show that the problem is NP − complete by using a reduction

from Single Unit Auctions with XOR Constraints and Free Disposals
(referred to as BCAWDP with XOR Constraints) which is shown

to be NP − complete [13]. In the BCAWDP with XOR Constraints,

the auctioneer has N items to sell, the bidders place their bids

Bi = ⟨bi ,bi ⟩ with bi be a subset of items and bi the price. Between
two bids can exist an XOR constraint–not necessarily to every pair

of bids. The auctioneer allows free disposals, i.e., items can remain

unsold. Given an instance of BCAWDP with XOR Constraints, we

construct an instance of student-teams allocation to internship

programs problem as follows: “For each item i we create a student

si . For each program pj of sizempj we create
( |S |
mpj

)
different bids

Bjk = ⟨bjk ,bjk ⟩, where |S | is the number of items, |bjk | =mpi , and

bjk = cp

(
bjk ,pj ,η

bjk ∗
pj

)
. All bids created for program pj are XOR-

constrained bids. Moreover, each pair of bids Bj,k ,Bq,l such that

bjk ∩ bql , ∅ are also XOR-constrained.” Now the team allocation

for internship programs problem has a feasible solution if and only

if BCAWDP with XOR constraints has a solution. □

Typically, the winner determination problem for combinatorial

auctions can be cast and solved as a linear program. Along the same

lines, we propose how to solve the TAIPP by meas of LP in Sec 3.

Before that, the following section characterises the search space

with which an algorithm solving the TAIPP must cope.

2.4 Characterising the search space
The purpose of this section is to characterise the search space

defined by the TAIPP. This amounts to quantifying the number of

feasible team assignment functions inG
feasible

. For that, we start by

splitting the programs in P into k buckets of programs, where the

programs in the same bucket require teams of the same size. That is,

we have b1, · · · ,bk ⊆ P buckets where bi ∩bj = ∅, ∀i, j = 1, · · · ,k
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and

⋃k
i=1 bi = P . For each bucket bi with |bi | = ni , it holds that

mp1 = mp2 = · · · = mpni = mi for all p1,p2, · · · ,pni ∈ bi ; and
mi , mj , that characterise bi and bj respectively, for any i , j =
1, · · · ,k . Next, we will distinguish three cases when counting the

number of feasible teams in G
feasible

:

- Case I :

∑
p∈P mp =

∑k
i=1mi · |bi | = N , we have exactly as

many students as required by all programs in P . In this case,

we seek for partition functions over P . The space ofG
feasible

is
N !∏k

i=1(mi !)bi
according to Theorem 3.4.19 in [11].

- Case II :

∑
p∈P mp =

∑k
i=1mi · |bi | < N , we have more stu-

dents than the required ones by all programs in P . Following
the Example 3.4.20 in [11], we assume one more bucket bk+1
containing exactly one auxiliary program, which requires

a team of size mk+1 =
∑k
i=1mi · |bi | − N . Now there are

|G
feasible

| = N !∏k
i=1(mi !)bi ·

(
N−∑k

i=1 |bi | ·mi
)
!

different feasible

team assignment functions.

- Case III:

∑
p∈P mp =

∑k
i=1mi · |bi | > N , we have less stu-

dents than the required ones by all programs in P . In this

case, first we need to introduce cover (P , S) = {P ′ ⊂ P :∑
p∈P ′mp ≤ N ∧ � p′ ∈ P − P ′ : mp′ ≤ N − ∑

p∈P ′mp }
as the set that contains all the subsets of programs P ′ ⊂ P
such that S, P ′ leads to Case I or Case II, and by adding any

p < P ′ in p′ it will lead to Case III. The number of feasible

team assignment functions is:

|G
feasible

| =
∑

P ′∈cover (P,S )

N !∏k
i=1(mi !)bi ·

(
N −∑k

i=1 |bi | ·mi
)
!

where variables k,b1, · · · ,bk and m1, · · · ,mk changes ac-

cording to P ′. The size of set cover (P , S) depends on the

total number of students, and the team sizes required by the

programs in P .

Note that the number of feasible team assignment functions

quickly grows with the number of programs and students, hence

leading to very large search spaces.

3 SOLVING THE TAIPP AS A LINEAR
PROGRAM

In what follows we show how to solve the TAIPP in Definition 2.6

as an LP. First, for each time K ⊆ S and program p ∈ P , we will

consider a binary decision variable x
p
K . The value of x

p
K indicates

whether team K is assigned to program p or not as part of the

optimal solution of the TAIPP. Then, solving the TAIPP amounts

to solving the following non-linear program:

max

∏
p∈P

∏
k ∈Kp

(
cp

(
K ,p,ηK ∗p

) )xpK
(8)

subject to:∑
K ⊆S

x
p
K · 1K ∈Kp ≤ 1 ∀p ∈ P (9a)∑

p∈P

∑
K ⊆S

x
p
K · 1s ∈K · 1K ∈Kp ≤ 1 ∀s ∈ S (9b)

x
p
K ∈ {0, 1} ∀K ⊆ S,p ∈ P (9c)

Constraint 9a ensures that a program is allocated a single team.

Constraint 9b ensures that any two teams sharing some student

cannot be assigned to programs at the same time. Notice that the ob-

jective function (see Eq 8) is non-linear. Nevertheless, it is easy to lin-

earise it by maximising the logarithm of∏
p∈P

∏
k ∈Kp

(
cp

(
K ,p,ηK ∗p

) )xpK
. Thus, solving the non-linear pro-

gram above is equivalent to solving the following binary linear

program:

max

∑
p∈P

∑
K ∈Kp

x
p
K · log

(
1 + cp

(
K ,p,ηK ∗p

) )
(10)

subject to: equations 9a, 9b, and 9c. Therefore, we can solve this

LP and solve with the aid of an off-the-shelf LP solver such as, for

example, CPLEX, Gurobi, or GLPK. If given sufficient time, an LP

solver will return an optimal solution to the TAIPP.

At this point, it is worthmentioning that computing the objective

function in 10 to build the LP requires the pre-computation of the

values of cp

(
K ,p,ηK ∗p

)
, which amounts to solving an optimisation

problem per each pair of team and program. This is bound to lead to

large linear programs as the number of students and programs grow.

Furthermore, an LP solver is a general-purpose solver that does not

exploit the structure of the problem. Thus, in the next section we

introduce the TAIP algorithm, an anytime algorithm based on local

search that yields approximate solutions to the TAIPP. Unlike an LP

solver, TAIPP is a specialised algorithm does exploit the structure

of TAIPP instances. Section 5 will show that TAIPP manages to

outperform a general-purpose LP solver.

4 A HEURISTIC ALGORITHM FOR TAIPP
The TAIP algorithm consists of two stages: (a) finding an initial

feasible allocation of students to programs, and (b) continuously
improving the best allocation at hand by means of swaps between

team members.

4.1 Initial team allocation
During this stage the algorithm finds an initial feasible team allo-

cation. The algorithm sequentially picks a team for each program,

starting from the ‘hardest’ program to the ‘simplest’ one. Intuitively,

‘hard’ programs are more selective, i.e., there are a few students

that can cover it; as such, picking teams for the harder programs

first is easier as we have more options (students) available. In order

to evaluate the hardness of a program we will be using the notion

of fuzzy entropy.

To begin with, we first evaluate the required competences from

all programs, as to how hard is for the students to cover them.

Looking at the competence coverage metric, we can view it as a

membership function [14], i.e., a function that indicates in what

degree a competence lies in a set of competences. Thus, fuzzy

entropy [1, 10] indicates the difficulty of finding students to cover

a competence. However we need to discern two extreme cases:

- all students possess competence c , i.e. cvg(c,Cs ) = 1 ∀s ∈ S ;
- no student can cover competence c , i.e. cvg(c,Cs ) = 0 ∀s ∈ S .

Although, the above two cases result with the same fuzzy entropy

(0), their intuitive interpretation is exactly the opposite. In the for-

mer case, finding a student for covering this competence within
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Figure 1: Competence hardness.

a team it is trivial since everyone can cover it. In the latter case,

finding a student for covering this competence within a team it is

trivial since no-one can cover it. Thus, in our definition of compe-

tence hardness we exploit the notion of fuzzy entropy, but we also

embrace the intuitive interpretations above. Formally:

Definition 4.1 (Competence Hardness). Given a set of students S ,
the hardness of a competence c is defined as

h(c, S) = −K
∑
s ∈S
H

(
cvg(c,Cs )

)
(11)

where K = 1/|S | is a normalization factor,

H(x) =
{
H (x) + H (1 − x) if x ≥ 0.5

4 · H (0.5) − H (x) − H (1 − x) otherwise

,

and H (x) = x · log(x).

The hardness of a competence c coincides with its fuzzy entropy

when for all students the competence coverage is greater than 0.5.

If for all students the competence coverage is less than 0.5 the

competence hardness is the constant 4 · 0.5 · log(0.5) minus the

fuzzy entropy. The constant 4 · 0.5 · log(0.5) derives from the fuzzy

entropy of point 0.5: coverage 0.5 indicates that all students are

neither good nor bad for this competence, as such hardness in

point 0.5 shall be the median, thus the maximum of the competence

hardness is 2 ·
(
0.5 log(0.5)+(1−0.5) log(1−0.5)

)
= 2 ·2 ·0.5 log(0.5).

Graphically, the competence hardness is shown in Fig 1.

The degree of hardness of a program is determined by the avail-

able set of students’ difficulty for covering the program’s compe-

tencies. We remind the reader that each required competence is

accompanied by an importance weight (Sec 2.1). Thus, consider a

program where its most important competence cimpor tant (i.e., the

competence with the highestwp (c)) is very difficult to be covered

h(cimpor tant , S) ≃ 4 · H (0.5), then this program is extremely hard.

On the other hand, if a specific competence c is somewhat difficult

to be covered (h(cimpor tant , S) → 4 · H (0.5)), but it is not very
important (wp (c) → 0), then the program is not that hard.

Definition 4.2 (Program Hardness). Given a set of students, the

hardness of a program p is defined as the aggregation of the hard-

ness for the competences in the program weighted by the impor-

tance of each competence: h(p, S) = W · ∑c ∈Cp
1

h(c,S )+ϵ · wp (c),
whereW = 1∑

c∈Cp wp (c) is a normalization factor, and ϵ is a small

positive constant.

In words, themore important and themore difficult a competence

is to be covered, the more difficult is to find students with high

competence proximity for the program, consequently the harder the

program is considered to be. Note that bothwp (c) and h(c) are non-
negative, so the hardness of one competence cannot be counteracted

by the non-hardness of another within the same program.

Algorithm 1: Initial Team Allocation

input :Students S , programs P , (optionally) sorting order
order for P

output : team assignment function д
1 Vp ←

⋃
p∈P Cp ;

2 for c ∈ Vp do hc[c] ← h(c, S);
3 for p ∈ P do hp[p] ← h(p, S);
4 sort P in descending order wrt hp;
5 while P , ∅ do
6 p ← pop first from P ;

7 if |S | ≥ mp and hp[p] < 1 :
8 sort S maximizing coverage in benches of |Cp |;

/* assign team to program */

9 д(p) ←mp fist students in S ;

10 S ← S \ д(p);
11 update values in hc;

12 if |S | < 1 : break;
13 return д;

4.2 Improving team allocation
In the second stage we perform a number of random ‘movements’,

until convergence to a local or global maximum. The second stage

starts with the team assignment produced in the first stage. There-

after, we iteratively improve the current team assignment either

(i) by employing crossovers of students between two programs,

and/or (ii) by swapping assigned students with available ones if

they exist. Specifically, following Algorithm 2 within an iteration

we randomly pick two programs (line 4) and attempt to improve

the competence proximity of the pair by exhaustively searching

of all possible crossovers of the students assigned to these pro-

grams (line 7). However, in order not to computationally overload

our algorithm with repetitive exhaustive searches, we perform it

only if the following two conditions hold:

(1) the two programs share similar competencies; and

(2) sine student in one of the teams improves the coverage of

some competence of the other team.

In order to evaluate if two programs share similar competencies we

exploit the Hausdorff distance [6]. The Hausdorff distance between

the required competencies of two programs pk and pl is defined as:

dist(Cp1 ,Cp2 ) = max

{
min

c ∈Cp
1

{cvg(c,Cp2 )}, min

c ∈Cp
2

{cvg(c,Cp1 )}
}
.

The above two conditions encode the potentiality of finding an

improvement for these two programs, and whether it is worth

performimg an exhaustive search. In the exhaustive search, given

the students д(pk ) ∪ д(pl ) we produce all possible partitions that
contain two teams of sizesmpk andmpl . For each of these partitions

we compute the competence proximity of the pair of programs, and
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yield with the optimum one, i.e., with the partition that achieves

the greater competence proximity.

In case we did not achieved any improvements from the previous

step and there are available students, i.e. student that have not been

assigned to any program, we attempt to swap assigned students

with available ones (line 9). That is, we randomly pick a student

from either of the two programs, and try to randomly swap them

with a student in Savailable . If we achieve an improvement we keep

this alteration, otherwise we repeat this process for a fixed number

of attempts. In case we succeeded to imporove the competence

proximity of the pair, we update the team assignement д, the set of
availble students Savailable , and the current overall competence

proximity (lines 10-15).

In order to overcome the possibility of a series of unsuccessful

attempts between random programs, we force a more ‘systematic’

search, which we call local search, on the programs. This local

search is performed after a constant number of iterations (line 16).

In the local search (line 17) we go through all programs in P , swap
all members, and check whether some swap improves the overall

competence proximity–in the swaps we consider all students: both

assigned and available.

Note that Algorithm 2 is anytime algorithm that can yield a result

after any number of iterations indicated by the user. However, in its

generality, we adopt a notion of convergence in order to terminate

the algorithm. That is, we terminate the algorithm (line 3):

- after a number of iterations without no improvements; or
- if we reach an overall competence proximity close to 1.

Note that we added the latter termination condition in order to

avoid unnecessary iterations until convergence, due to the fact that

the maximum value the overall competence proximity can reach

is 1. We remind the reader that the competence proximity is the

Nash product of the individual competence proximity of the teams

to their assigned program (Eq 8), and each individual competence

proximity lies in [0, 1] (Def 2.4). However, we should make clear

that the overall competence proximity does not always reach 1, but

that it can never exceed 1.

5 EMPIRICAL ANALYSIS
The purpose of this section is to empirically evaluate the TAIP

algorithm along four directions:

• the quality of the solutions that it produces in terms of opti-

mality;

• the quality of the solutions produced by the initial stage;

• the time required by TAIP to produce optimal solutions

with respect to CPLEX, an off-the-shelf linear programming

solver; and

• the time required by TAIP to yield optimal solutions as the

number of students and programs grow.

Overall, our results indicate that TAIP significantly outperforms

CPLEX, and hence it is the algorithm of choice to solve the Team

Allocation for Internship Programs Problem introduced in this

paper. Next, in Sec 5.1 we describe the settings employed in our

experiments, whereas Sec 5.2 dissects our results.

Algorithm 2: Improve Team Allocation

input :Students S , programs P , team assignment д
output : improved team assignment д

1 S
available

= S \⋃p∈P д(p);
2 current_cp =

∏
p∈P cp

(
д(p),p

)
;

3 while non_improved and 1 − current_cp > ε do
4 pk ,pl ← randomly select two programs from P;

5 pair_cp = cp

(
д(pk ),pk

)
· cp

(
д(pl ),pl

)
;

6 if potentiality(p1,p2,д) :
7 new_cp,Kk ,Kl ← exhaustiveSearch(p1,p2,д);

8 else :
9 new_cp,Kk ,Kl ← localSwaps(p1,p2,д, Savailable);

10 if new_cp > pair_cp :
11 д(pk ) ← Kk ;

12 д(pl ) ← Kl ;

13 S
available

← S \⋃p∈P д(p);
14 current_cp← current_cp · new_cp

pair_cp
;

15 pair_cp← new_cp;

16 if time for local search :
17 д, S

available
, current_cp← localSearch(P ,д, S

available
);

18 return д;

5.1 Empirical settings
For our experimental evaluationwe used an existing competence on-

tology provided by Fondazione Bruno Kessler (https://www.fbk.eu/en/);

and generated synthetic data in the following way:

Internship program generation. For each program p

(1) select the required team sizemp ∼ U{1, 3}
(2) select the number of required competences |Cp | ∼ U{2, 5}
(3) randomly choose |Cp | competences from the ontology

(4) the required level function is set to lp (c) = 1, ∀ c ∈ Cp
(5) theweight function iswp (c) = N

(
µ = U(0, 1),σ = U(0.01, 0.1)

)
bounded in (0, 1] for all c ∈ Cp .

Student generation. For each program p

(1) generatemp new students such that for each student s : there
are competences c ∈ Cp and c ′ ∈ Cs such that c ′ is (i) identi-
cal to c; or (ii) a child-node of c in the ontology; uniformly

selected among the options.

With these generators we constructed 60 different TAIPP in-

stances, which are shown in Table 2. We solve each problem in-

stance with both TAIP and the IBM CPlex linear programming (LP)

solver. The experiments were performed on a PC with Intel Core i7

(8th Gen) CPU, 8 cores, and 8Gib RAM.Moreover, we employed IBM

ILOG CPLEX V12.10.0. For all implementations we used Python3.7.

5.2 Results
Quality analysis. Using the optimal solutions yielded by CPLEX

as an anchor, we can evaluate the quality of the solutions computed

by the TAIP algorithm. Notice that for all problem instances, TAIP

reaches the optimal solution. More precisely, for every problem

instance, TAIP achieved a solution whose value, in terms of com-

petence proximity, is the same as the value of the optimal solution
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computed by CPLEX. Fig 2 shows the average quality ratio of TAIPP
with respect to CPLEX along time for the problem instances in Ta-

ble 2. We calculate the quality ratio by dividing the competence

proximity computed by TAIP by the optimal value computed by

CPLEX, and it is depicted as a percentage (%).

Runtime analysis. The greatest advantage of TAIP is that it is way
much faster than CPLEX. As shown in Fig 3 TAIP reaches optimality

in less than half of the time required by CPLEX. Specifically, for

problem instances with 10 programs, TAIP requires on average

∼ 40% of the time CPLEX needs, i.e., is ∼ 60% faster. As to problem

instances with 15 programs, TAIP requires on average ∼ 45% of

the time employed by CPLEX (∼ 55% faster). Finally, for problem

instances with 20 programs, TAIP requires on average ∼ 29% of

the time spent by CPLEX (∼ 71% faster). Therefore, the larger the

size of the problem instances, the larger the benefits for TAIP with

respect to CPLEX. Here we should note that the time consuming

task for CPLEX is the building of the LP encoding the problem,

while solving the actual problem is done in seconds. This indicates

that the problem instances under investigation are rather large than

hard: as the number of programs increases, so does the number of

students, resulting in large linear programs.

Anytime analysis. Last but not least we present our results on
the anytime behavior of TAIP, as shown in Fig 4. We observe that

after completing the initial stage described in Sec 4.1, the solution

quality produced by TAIP reaches 80%, 70%, and 65% of the optimal

solution, for problem instances with 10,15 and 20 programs respec-

tively. Furthermore, TAIP reaches quality 80% in 0.001 × tCPLEX
for 10 programs, 70% in 0.025 × tCPLEX for 15 programs, and 65%

in 0.0002 × tCPLEX for 20 programs, where tCPLEX is the time

CPLEX needs to compute the optimal solution. Moreover, in all

investigated settings we reached 80% quality in less than 20% of the

time CPLEX needs: 0.1%, 20%, and 13.5% of CPLEX time for 10,15,

and 20 programs.

6 CONCLUSIONS AND FUTUREWORK
Here we formally defined the problem of Team Allocation for Intern-
ship Programs Problem. We first studied the problem’s complexity

and characterised its search space.Thereafter, we provided an encod-

ing to otimally solve the TAIPP by means of linear programming.

Then, we proposed a novel, heuristic anytime algorithm, TAIP. Fi-

nally, we conducted a systematic comparison of TAIP versus the

CPLEX LP solver when solving TAIPP problem instances. Our ex-

perimental evaluation showed that TAIP outperforms CPLEX in

time, mainly because of the extremely large input that the latter

requires. Moreover, TAIP always managed to reach the optimal

solution for the problem instances under investigation. Specifically

TAIP converged to the optimal in less than 40% of the time required

by CPLEX, and achieved a quality of 80% in less than 20% of the

time required by CPLEX. As future work, we itend to device more

intelligent strategies during the second state of TAIPP, instead of

our current randomized strategy. Furthermore, in the future we

will study the performance of TAIP on actual-world data.
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Figure 2: Solution quality achieved by TAIP along time.

Dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Average

N=#Students 18 20 21 19 22 19 24 18 19 20 23 20 18 19 25 21 25 20 17 13 20.5

(a) Family of datasets with 10 programs

Dataset 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Average

N=#Students 23 33 32 29 33 40 31 32 28 25 27 31 29 28 32 29 29 32 34 29 30.6

(b) Family of datasets with 15 programs

Dataset 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Average

N=#Students 44 45 44 45 38 42 42 47 41 44 37 36 42 37 47 32 40 37 44 43 41.35

(c) Family of datasets with 20 programs

Table 2: Synthetic problem instances.
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(a) 10 programs

(b) 15 programs

(c) 20 programs

Figure 3: Average Competence Proximity vs Time
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(a) 10 programs

(b) 15 programs

(c) 20 programs

Figure 4: Anytime Behavior
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