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1IIIA - CSIC, Universitat Autònoma de Barcelona, Bellaterra, Spain
2Computer Science Department, University of Massachusetts, Amherst, MA, USA
{patricia|pedro}@iiia.csic.es wyeoh@cs.umass.edu

Abstract
ADOPT and BnB-ADOPT are two optimal DCOP search
algorithms that are similar except for their search strate-
gies: the former uses best-first search and the latter uses
depth-first branch-and-bound search. In this paper, we
present a new algorithm, called ADOPT(k), that general-
izes them. Its behavior depends on the k parameter. It be-
haves like ADOPT when k = 1, like BnB-ADOPT when
k = ∞ and like a hybrid of ADOPT and BnB-ADOPT
when 1 < k < ∞. We prove that ADOPT(k) is a
correct and complete algorithm and experimentally show
that ADOPT(k) outperforms ADOPT and BnB-ADOPT
on several benchmarks across several metrics.

1 Introduction
Distributed Constraint Optimization Problems
(DCOPs) [Modi et al., 2005; Petcu and Faltings, 2005]
are well-suited for modeling multi-agent coordination
problems where interactions are primarily between subsets
of agents, such as meeting scheduling [Maheswaran et al.,
2004], sensor network [Farinelli et al., 2008] and coalition
structure generation [Ueda et al., 2010] problems. DCOPs
involve a finite number of agents, variables and binary
cost functions. The cost of an assignment of a subset of
variables is the evaluation of all cost functions on that
assignment. The goal is to find a complete assignment with
minimal cost. Researchers have proposed several distributed
search algorithms to solve DCOPs optimally. They include
ADOPT [Modi et al., 2005], which uses best-first search,
and BnB-ADOPT [Yeoh et al., 2010], which uses depth-first
branch-and-bound search.

We present a new algorithm, called ADOPT(k), that gener-
alizes ADOPT and BnB-ADOPT. Its behavior depends on the
k parameter. It behaves like ADOPT when k = 1, like BnB-
ADOPT when k =∞ and like a hybrid of ADOPT and BnB-
ADOPT when 1 < k < ∞. The main difference between
ADOPT(k) and its predecessors is the condition by which an
agent changes its value. While an agent in ADOPT changes
its value when another value is more promising by at least 1
unit, an agent in ADOPT(k) changes its value when another
value is more promising by at least k units. When k = ∞,
like agents in BnB-ADOPT, an agent in ADOPT(k) changes
its value when the optimal solution for that value is provably
no better than the best solution found so far. We prove that

ADOPT(k) is correct and complete and experimentally show
that ADOPT(k) outperforms ADOPT and BnB-ADOPT on
several benchmarks across several metrics.

2 Preliminaries
In this section, we formally define DCOPs and summarize
ADOPT and BnB-ADOPT.

2.1 DCOP
A DCOP is defined by 〈X ,D,F ,A,α〉, where X =
{x1, . . . , xn} is a set of variables; D = {D1, . . . , Dn} is a
set of finite domains, where Di is the domain of variable xi;
F is a set of binary cost functions, where each cost function
Fij : Di×Dj 7→ N∪{0,∞} specifies the cost of each combi-
nation of values of variables xi and xj ;A = {a1, . . . , ap} is a
set of agents and α : X → Amaps each variable to one agent.
We assume that each agent has only one variable mapped to
it, and we thus use the terms variable and agent interchange-
ably. The cost of an assignment of a subset of variables is the
evaluation of all cost functions on that assignment. Agents
communicate through messages, which are never lost and de-
livered in the order that they were sent.

A constraint graph visualizes a DCOP instance, where
nodes in the graph correspond to variables and edges con-
nect pairs of variables appearing in the same cost function.
A depth-first search (DFS) pseudo-tree arrangement has the
same nodes and edges as the constraint graph and satisfies
that (i) there is a subset of edges, called tree edges, that form
a rooted tree and (ii) two variables in a cost function ap-
pear in the same branch of that tree. The other edges are
called backedges. Tree edges connect parent-child nodes,
while backedges connect a node with its pseudo-parents and
its pseudo-children. DFS pseudo-trees can be constructed us-
ing distributed DFS algorithms [Hamadi et al., 1998].

2.2 ADOPT
ADOPT [Modi et al., 2005] is a distributed search algorithm
that solves DCOPs optimally. ADOPT first constructs a DFS
pseudo-tree, after which each agent knows its parent, pseudo-
parents, children and pseudo-children. Each agent xi main-
tains: its current value di; its current context Xi, which is
its assumption on the current value of its ancestors; the lower
and upper bounds LBi and UBi, which are bounds on the opti-
mal cost OPTi given that its ancestors take on their respective



values in Xi; the lower and upper bounds LBi(d) and UBi(d)
for all values d ∈ Di, which are bounds on the optimal costs
OPTi(d) given that xi takes on the value d and its ancestors
take on their respective values in Xi; the lower and upper
bounds lbci (d) and ubci (d) for all values d ∈ Di and children
xc, which are its assumption on the bounds LBc and UBc of
its children xc with context Xi ∪ (xi, d); and the thresholds
THi and thci (d) for all values d ∈ Di and children xc, which
are used to speed up the solution reconstruction process. The
optimal costs are calculated using:

OPTi(d) = δi(d)+
X

xc∈Ci

OPTc (1) OPTi = min
d∈Di

OPTi(d) (2)

for all values d ∈ Di, where Ci is the set of children of agent
xi and δi(d) is the sum of the costs of all cost functions be-
tween xi and its ancestors given that xi takes on the value d
and the ancestors take on their respective values in Xi.

ADOPT agents use four types of messages: VALUE,
COST, THRESHOLD and TERMINATE. At the start, each
agent xi initializes its current context Xi to ∅, lower and up-
per bounds lbci (d) and ubci (d) to user-provided heuristic val-
ues hci (d) and ∞, respectively. For all values d ∈ Di and
all children xc, xi calculates the remaining lower and upper
bounds and takes on its best value using:

δi(d) =
X

(xj ,dj)∈Xi

Fij(d, dj) (3)

LBi(d) = δi(d) +
X

xc∈Ci

lbci (d) (4) LBi = min
d∈Di

{LBi(d)} (5)

UBi(d) = δi(d) +
X

xc∈Ci

ubci (d) (6) UBi = min
d∈Di

{UBi(d)} (7)

di = arg min
d∈Di

{LBi(d)} (8)

xi sends a VALUE message containing its value di to its chil-
dren and pseudo-children. It also sends a COST message con-
taining its context Xi and its bounds LBi and UBi to its par-
ent. Upon receipt of a VALUE message, if its current context
Xi is compatible with the value in the VALUE message, it
updates its context to reflect the new value of its ancestor and
reinitializes its lower and upper bounds lbci (d) and ubci (d).
Contexts are compatible iff they agree on common agent-
value pairs. Upon receipt of a COST message from child xc,
if its current context Xi is compatible with the context in the
message, then it updates its lower and upper bounds lbci (d)
and ubci (d) to the lower and upper bounds in the message, re-
spectively. Otherwise, the COST message is discarded. After
processing either message, it recalculates the remaining lower
and upper bounds and takes on its best value using the above
equations and sends VALUE and COST messages. This pro-
cess repeats until the root agent xr reaches the termination
condition LBr = UBr, which means that it has found the op-
timal cost. It then sends a TERMINATE message to each of
its children and terminate. Upon receipt of a TERMINATE
message, each agent does the same.

Due to memory limitations, each agent xi can only store
lower and upper bounds for one context. Thus, it reinitial-
izes its bounds each time the context changes. If its context

changes back to a previous one, it has to update its bounds
from scratch. ADOPT optimizes this process by having the
parent of xi send xi the lower bound computed earlier as
threshold THi in a THRESHOLD message. This optimiza-
tion changes the condition for which an agent changes its
value. Each agent xi now changes its value di only when
LBi(di) ≥ THi.

2.3 BnB-ADOPT
BnB-ADOPT [Yeoh et al., 2010] shares most of the data
structures and messages of ADOPT. The main difference is
their search strategies. ADOPT employs a best-first search
strategy while BnB-ADOPT employs a depth-first branch-
and-bound search strategy. This difference in search strate-
gies is reflected by how the agents change their values. While
each agent xi in ADOPT eagerly takes on the value that mini-
mizes its lower bound LBi(d), each agent xi in BnB-ADOPT
changes its value only when it is able to determine that the op-
timal solution for that value is provably no better than the best
solution found so far for its current context. In other words,
when LB(di) ≥ UBi for its current value di.

The role of thresholds in the two algorithms is also differ-
ent. As described earlier, each agent in ADOPT uses thresh-
olds to store the lower bound previously computed for its
current context such that it can reconstruct the partial solu-
tion more efficiently. On the other hand, each agent in BnB-
ADOPT uses thresholds to store the cost of the best solution
found so far for all contexts and uses them to change its val-
ues more efficiently. Therefore, each agent xi now changes
its value di only when LBi(di) ≥ min{THi,UBi}.

BnB-ADOPT also has several optimizations that can be ap-
plied to ADOPT: (1) Agents in BnB-ADOPT processes mes-
sages differently compared to agents in ADOPT. Each agent
in ADOPT updates its lower and upper bounds and takes
on a new value, if necessary, after each message that it re-
ceives. On the other hand, each agent in BnB-ADOPT does
so only after it processes all its messages. (2) BnB-ADOPT
includes thresholds in VALUE messages such that THRESH-
OLD messages are no longer required. (3) BnB-ADOPT in-
cludes a time stamp for each value in contexts such that their
recency can be compared.1

Researchers recently observed that some of the messages
in BnB-ADOPT are redundant and thus introduced BnB-
ADOPT+, an extension of BnB-ADOPT without most of the
redundant messages [Gutierrez and Meseguer, 2010b]. BnB-
ADOPT+ is shown to outperform BnB-ADOPT in a vari-
ety of metrics, especially in the number of messages sent.
Researchers have also applied the same message reduction
techniques to extend ADOPT to ADOPT+ [Gutierrez and
Meseguer, 2010a]. However, it is not as competitive since
ADOPT has fewer redundant messages than BnB-ADOPT.

3 ADOPT(k)
Each agent in ADOPT always changes its value to the most
promising value. This strategy requires the agent to repeat-
edly reconstruct partial solutions that it previously found,

1The first two optimizations were in the implementation of
ADOPT [Yin, 2008] but not in the publication [Modi et al., 2005].



which can be computationally inefficient. On the other hand,
each agent in BnB-ADOPT changes its value only when the
optimal solution for that value is provably no better than the
best solution found so far, which can be computationally in-
efficient if the agent takes on bad values before good values.
Therefore, we believe that there should be a good trade off be-
tween the two extremes, where an agent keeps its value longer
than it otherwise would as an ADOPT agent and shorter than
it otherwise would as a BnB-ADOPT agent.

With this idea in mind, we developed ADOPT(k), which
generalizes ADOPT and BnB-ADOPT. It behaves like
ADOPT when k = 1, like BnB-ADOPT when k = ∞
and like a hybrid of ADOPT and BnB-ADOPT when 1 <
k < ∞. ADOPT(k) uses mostly identical data structures
and messages as ADOPT and BnB-ADOPT. Each agent xi in
ADOPT(k) maintains two thresholds, THAi and THBi , which
are the thresholds in ADOPT and BnB-ADOPT, respectively.
They are initialized and updated in the same way as in
ADOPT and BnB-ADOPT, respectively.

The main difference between ADOPT(k) and its predeces-
sors is the condition by which an agent changes its value.
Each agent xi in ADOPT(k) changes its value di when
LBi(di) > THAi + (k − 1) or LBi(di) ≥ min{THBi ,UBi}. If
k = 1, then the first condition degenerates to LBi(di) > THAi ,
which is the condition for agents in ADOPT. The agents use
the second condition, which remains unchanged, to determine
if the optimal solution for their current value is provably no
better than the best solution found so far. If k = ∞, then
the first condition is always false and the second condition,
which remains unchanged, is the condition for agents in BnB-
ADOPT. If 1 < k <∞, then each agent in ADOPT(k) keeps
its current value until the lower bound of that value is at least
k units larger than the lower bound of the most promising
value, at which point it takes on the most promising value.

3.1 Pseudocode
Figures 1 and 2 show the pseudocode of ADOPT(k), where
xi is a generic agent, Ci is its set of children, PCi is its set of
pseudo-children and SCPi is the set of agents that are either
ancestors of xi or parent and pseudo-parents of either xi or
its descendants. The pseudocode uses the predicate Compat-
ible(X ,X ′) to determine if two contexts X and X ′ are com-
patible and the procedure PriorityMerge(X ,X ′) to replace
the values of agents in context X ′ with more recent values,
if available, of the same agents in context X (see [Yeoh et
al., 2010] for more details). The pseudocode is similar to
ADOPT’s pseudocode with the following changes:

• The pseudocode includes the optimizations described in
Section 2.3 that was presented for BnB-ADOPT but can
be applied to ADOPT (Lines 03, 08-12, 35-36 and 40-41).

• In ADOPT, the MaintainThresholdInvariant(), Main-
tainChildThresholdInvariant() and MaintainAlloca-
tionInvariant() procedures are called after each message
is processed. Here, they are called in the Backtrack() pro-
cedure (Lines 28 and 38-39). The invariants are maintained
only after all incoming messages are processed.

• In addition to THAi , each agent maintains THBi . It is ini-

01 procedure Start()
02 Xi := {(xp, ValInit(xp), 0) | xp ∈ SCPi};
03 IDi := 0;
04 forall xc ∈ Ci and d ∈ Di InitChild(xc, d);
05 InitSelf();
06 Backtrack();
07 loop forever
08 if (message queue is not empty)
09 while (message queue is not empty)
10 popmsg off message queue;
11 When Received(msg);
12 Backtrack();

13 procedure InitChild(xc, d)
14 lbc

i (d) := hc
i (d);

15 ubc
i (d) :=∞;

16 thc
i (d) := lbc

i (d);

17 procedure InitSelf()
18 di := arg mind∈Di

{δi(d) +
P

xc∈Ci
lbc

i (d)};
19 IDi := IDi + 1;
20 THA

i := mind∈Di
{δi(d) +

P
xc∈Ci

lbc
i (d)};

21 THB
i :=∞;

22 procedure Backtrack()
23 forall d ∈ Di

24 LBi(d) := δi(d) +
P

xc∈Ci
lbc

i (d);
25 UBi(d) := δi(d) +

P
xc∈Ci

ubc
i (d);

26 LBi := mind∈Di
{LBi(d)};

27 UBi := mind∈Di
{UBi(d)};

28 MaintainThresholdInvariant();
29 if (THA

i = UBi)
30 di := arg mind∈Di

{UBi(d)}
31 else if (LBi(di) > THA

i + (k − 1))
32 di := arg mind∈Di|LBi(d)=LBi

{UBi(d)}
33 else if (LBi(di) ≥ min{THB

i ,UBi})
34 di := arg mind∈Di|LBi(d)=LBi

{UBi(d)}
35 if (a new di has been chosen)
36 IDi := IDi + 1;
37 MaintainCurrentValueThresholdInvariant();
38 MaintainChildThresholdInvariant();
39 MaintainAllocationInvariant();
40 Send(VALUE, xi, di, IDi, thc

i (di), min(THB
i ,UBi)− δi(di)

−
P

x
c′∈Ci|xc′ 6=xc

lbc′
i (di)) to each xc ∈ Ci;

41 Send(VALUE, xi, di, IDi,∞,∞) to each xc ∈ PCi;
42 if (THA

i = UBi)
43 if (xi is root or termination message received)
44 Send(TERMINATE) to each xc ∈ Ci;
45 terminate execution;
46 Send(COST, xi,Xi, LBi, UBi) to parent;

47 procedure When Received(TERMINATE)
48 record termination message received;

49 procedure When Received(VALUE, xp, dp, IDp, THA
p , THB

p )
50 X′ := Xi;
51 PriorityMerge((xp, dp, IDp),Xi);
52 if (!Compatible(X′,Xi))
53 forall xc ∈ Ci and d ∈ Di

54 if (xp ∈ SCPc)
55 InitChild(xc, d);
56 InitSelf();
57 if (xp is parent)
58 THA

i := THA
p ;

59 THB
i := THB

p ;

60 procedure When Received(COST, xc,Xc, LBc, UBc)
61 X′ := Xi;
62 PriorityMerge(Xc,Xi);
63 if (!Compatible(X′,Xi))
64 forall xc ∈ Ci and d ∈ Di

65 if (!Compatible({(xp, dp, IDp) ∈ X′ | xp ∈ SCPc},Xi))
66 InitChild(xc, d);
67 if (Compatible(Xc,Xi))
68 lbc

i (d) := max{lbc
i (d), LBc} for the unique (a′, d, ID) ∈ Xc with a′ = a;

69 ubc
i (d) := min{ubc

i (d),UBc} for the unique (a′, d, ID) ∈ Xc with a′ = a;
70 if (!Compatible(X′,Xi))
71 InitSelf();

Figure 1: Pseudocode of ADOPT(k) (1)



72 procedure MaintainChildThresholdInvariant()
73 forall xc ∈ Ci and d ∈ Di

74 while(thc
i (d) < lbc

i (d))
75 thc

i (d) := thc
i (d) + ε;

76 forall c ∈ Ci and d ∈ Di

77 while(thc
i (d) > ubc

i (d))
78 thc

i (d) := thc
i (d)− ε;

79 procedure MaintainThresholdInvariant()
80 if (THA

i < LBi)
81 THA

i = LBi;
82 if (THA

i > UBi)
83 THA

i = UBi;

84 procedure MaintainCurrentValueThresholdInvariant()
85 THA

i (di) := THA
i ;

86 if (THA
i (di) < LBi(di))

87 THA
i (di) = LBi(di);

88 if (THA
i (di) > UBi(di))

89 THA
i (di) = UBi(di);

90 procedure MaintainAllocationInvariant()
91 while(THA

i (di) > δi(di) +
P

xc∈Ci
thc

i (di))

92 thc′
i (di) := thc′

i (di) + ε for any xc′ ∈ Ci with ubc′
i (di) > thc′

i (di);
93 while(THA

i (di) < δi(di) +
P

xc∈Ci
thc

i (di))

94 thc′
i (di) := thc′

i (di)− ε for any xc′ ∈ Ci with lbc′
i (di) < thc′

i (di);

Figure 2: Pseudocode of ADOPT(k) (2)

tialized, propagated and used in the same way as in BnB-
ADOPT (Lines 21, 33-34, 40 and 59).

• The condition by which each agent xi changes its value
is now LBi(di) > THAi + (k − 1) or LBi(di) ≥
min{THBi ,UBi} (Lines 31 and 33). Thus, the agent keeps
its value until the lower bound of that value is k units larger
than the lower bound of the most promising value or the
optimal solution for that value is provably no better than
the best solution found so far.

• In ADOPT, the MaintainAllocationInvariant() procedure
ensures that the invariant THAi =

∑
xc∈Ci

THAc always
hold. This procedure assumes that THAi ≥ LBi(di) for
the current value di of agent xi, which is always true since
the agent would change its value otherwise. However, this
assumption is no longer true in ADOPT(k). Therefore, the
pseudocode includes a new threshold THAi (di), which is
set to THAi and updated such that it satisfies the invari-
ant LBi(di) ≤ THAi (di) ≤ UBi(di) in the MaintainCur-
rentValueThresholdInvariant() procedure (Lines 84-89).
This new threshold then replaces THAi in the MaintainAl-
locationInvariant() procedure (Lines 91 and 93).

3.2 Correctness and Completeness

The proofs for the following lemmata and theorem closely
follow those in [Modi et al., 2005; Yeoh et al., 2010]. We
thus only provide proof sketches.

Lemma 1 For all agents xi and all values d ∈ Di, LBi ≤
OPTi ≤ UBi and LBi(d) ≤ OPTi(d) ≤ UBi(d) at all times.

Proof sketch: We prove the lemma by induction on the depth of
the agent in the pseudo-tree. It is clear that for each leaf agent xi,
LBi(d) = OPTi(d) = UBi(d) for all values d ∈ Di (Lines 24-25
and Eq. 1). Furthermore,

LBi = min
d∈Di

{LBi(d)} (Line 26)

= min
d∈Di

{OPTi(d)} (see above)

= OPTi (Eq. 2)
UBi = min

d∈Di

{UBi(d)} (Line 27)

= min
d∈Di

{OPTi(d)} (see above)

= OPTi (Eq. 2)

So, the lemma holds for each leaf agent. Assume that it holds for all
agents at depth q in the pseudo-tree. For all agents xi at depth q−1,

LBi(d) = δi(d) +
X

xc∈Ci

LBc (Lines 24 and 68)

≤ δi(d) +
X

xc∈Ci

OPTc (induction ass.)

= OPTi (Eq. 1)

UBi(d) = δi(d) +
X

xc∈Ci

UBc (Line 25 and 69)

≥ δi(d) +
X

xc∈Ci

OPTc (induction ass.)

= OPTi (Eq. 1)

for all values d ∈ Di. The proof for LBi ≤ OPTi ≤ UBi is similar
to the proof for the base case. Thus, the lemma holds.

Lemma 2 For all agents xi, if the current context of xi is
fixed, then LBi = THAi = UBi will eventually occur.
Proof sketch: We prove the lemma by induction on the depth of
the agent in the pseudo-tree. The lemma holds for leaf agents xi

since LBi = UBi (see proof for the base case of Lemma 1) and
LBi ≤ THA

i ≤ UBi (lines 79-83). Assume that the lemma holds for
all agents at depth q in the pseudo-tree. For all agents xi at depth
q − 1,

LBi = min
d∈Di

{δi(d) +
X

xc∈Ci

lbci (d)} (Lines 24 and 26)

= min
d∈Di

{δi(d) +
X

xc∈Ci

LBc} (Line 68)

= min
d∈Di

{δi(d) +
X

xc∈Ci

UBc} (induction ass.)

= min
d∈Di

{δi(d) +
X

xc∈Ci

ubci (d)} (Line 69)

= UBi (Line 25 and 27)

Additionally, LBi ≤ THA
i ≤ UBi (Lines 79-83). Therefore, LBi =

THA
i = UBi.

Lemma 3 For all agents xi, THAi (d) = THAi on termination.
Proof sketch: Each agent xi terminates when THA

i = UBi (Line 42).
After THA

i (di) is set to THA
i for the current value di of xi (Line 85)

in the last execution of the MaintainCurrentValueThresholdInvari-
ant() procedure,

THA
i = UBi (Line 42)

= UBi(di) (Lines 29-30)
≥ LBi(di) (Lemma 1)



Thus, LBi(di) ≤ THA
i = UBi and THA

i (di) is not set to a different
value later (Lines 86-89). Then, THA

i (d) = THA
i on termination.

Theorem 1 For all agents xi, THAi = OPTi on termination.

Proof sketch: We prove the theorem by induction on the depth of the
agent in the pseudo-tree. The theorem holds for the root agent xi

since THA
i = UBi on termination (Lines 42-45), THA

i = LBi at all
times (Lines 20 and 28), and LBi ≤ OPTi ≤ UBi (Lemma 1). As-
sume that the theorem holds for all agents at depth q in the pseudo-
tree. We now prove that the theorem holds for all agents at depth
q+ 1. Let xp be an arbitrary agent at depth q in the pseudo-tree and
dp is its current value on termination. Then,X

xc∈Cp

ubcp(dp) = UBp(dp)− δp(dp) (Line 25)

= UBp − δp(dp) (Lines 29-30)

= THA
p − δp(dp) (Lines 42-45)

= THA
p (dp)− δp(dp) (Lemma 3)

=
X

xc∈Cp

thc
p(dp) (Lines 91-94)

Thus,
P

xc∈Cp
ubcp(dp) =

P
xc∈Cp

thc
p(dp). Furthermore, for all

agents xc ∈ Cp, thc
p(dp) ≤ ubcp(dp) (Lines 77-78). Combining

the inequalities, we get thc
p(dp) = ubcp(dp). Additionally, THA

c =
thc

p(dp) (Lines 57-58) and UBc = ubcp(dp) (Line 69). Therefore,
THA

c = UBc. Next,X
xc∈Cp

OPTc = OPTp − δp(dp) (Eq. 1)

= THA
p − δp(dp) (induction ass.)

= THA
p (dp)− δp(dp) (Lemma 3)

=
X

xc∈Cp

thc
p(dp) (Lines 91-94)

=
X

xc∈Cp

THA
c (Lines 57-58)

Thus,
P

xc∈Cp
OPTc =

P
xc∈Cp

THA
c =

P
xc∈Cp

UBc (see
above). Furthermore, for all agents xc ∈ Cp, OPTc ≤ UBc

(Lemma 1). Combining the inequalities, we get OPTc = UBc.
Therefore, THA

c = UBc = OPTc.

4 Experimental Results
We compare ADOPT+(k) to ADOPT+ and BnB-ADOPT+.
ADOPT+(k) is an optimized version of ADOPT(k) with the
message reduction techniques used by ADOPT+ and BnB-
ADOPT+. All the algorithms use the DP2 heuristic val-
ues [Ali et al., 2005]. We measure runtimes in (synchronous)
cycles [Modi et al., 2005] and non-concurrent constraint
checks (NCCCs) [Meisels et al., 2002], and we measure the
network load in the number of VALUE and COST messages
sent.2 We do not report the number of TERMINATE mes-
sages sent because every algorithm sends the same number,
namely |X | − 1. Also, we report the trivial upper bound

2We differentiate them because the size of VALUE messages is
O(1) and the size of COST messages is O(|X |).

UB as the sum of the maximums over cost functions. Ta-
ble 1 shows the results. Due to space constraints, we omit
ADOPT+ in Tables 1(a) and 1(b) since BnB-ADOPT+ per-
forms better than ADOPT+ across all metrics.

Table 1(a) shows the results on random binary DCOP in-
stances with 10 variables of domain size 10. The costs are
randomly chosen over the range 〈1000, . . . , 2000〉. We im-
pose n(n − 1)/2 ∗ p1 cost functions, where n is the num-
ber of variables and p1 is the network connectivity. We vary
p1 from 0.5 to 0.8 in 0.1 increments and average our results
over 50 instances for each value of p1. The table shows that
ADOPT+(k) requires a large number of messages, cycles and
NCCCs when k is small. These numbers decrease as k in-
creases until a certain point where they increase again. For
the best value of k, ADOPT+(k) performs significantly bet-
ter than BnB-ADOPT+ across all metrics.

Table 1(b) shows the results on sensor network instances
from a publicly available repository [Yin, 2008]. We use in-
stances from all four available topologies and average our re-
sults over 30 instances for each topology. We observe the
same trend as in Table 1(a) but only report the results for the
best value of k due to space constraints.

Lastly, Table 1(c) shows the results on sensor network
instances of 100 variables arranged into a chain following
the [Maheswaran et al., 2004] formulation. All the variables
have a domain size of 10. The cost of hard constraints is
1,000,000. The cost of soft constraints is randomly chosen
over the range 〈0, . . . , 200〉. Additionally, we use discounted
heuristic values, which we obtain by dividing the DP2 heuris-
tic values by two, to simulate problems where well informed
heuristics are not available due to privacy reasons. We av-
erage our results over 30 instances. The table shows that
ADOPT+ terminates earlier than BnB-ADOPT+ but sends
more messages. When k = 1, the results for ADOPT+(k)
and ADOPT+ are almoust the same. Agents in ADOPT+(k)
sends more VALUE messages because they need to send
VALUE messages when THBp changes even if THAp remains
unchanged. These additional messages then trigger the need
for more constraint checks. Agents in ADOPT+ do not need
to send VALUE messages in such a case. We observe that as k
increases, the runtime of ADOPT+(k) increases but the num-
ber of messages sent decreases. Therefore, ADOPT+(k) pro-
vides a good mechanism for balancing the tradeoff between
runtime and network load.

5 Conclusions
We introduced ADOPT(k), which generalizes ADOPT and
BnB-ADOPT. The behavior of ADOPT(k) depends on the
parameter k. It behaves like ADOPT when k = 1, like
BnB-ADOPT when k = ∞ and like a hybrid of the two
algorithms when 1 < k < ∞. Our experimental results
show that ADOPT(k) can outperform ADOPT and BnB-
ADOPT in terms of runtime and network load on random
DCOP instances and sensor network instances. Addition-
ally, ADOPT(k) provides a good mechanism for balancing
the tradeoff between runtime and network load. It is future
work to better understand the characteristics of ADOPT(k)
such that the best value of k can be chosen automatically.



p1 Trivial UB Algorithm Total Msgs VALUE COST Cycles NCCCs
0.5 45,766 BnB-ADOPT+ 262,812 131,785 131,009 23,646 5,353,423

ADOPT+(k = 1,000) 413,711 225,788 187,905 34,402 8,491,909
ADOPT+(k = 4,000) 197,342 109,111 88,212 17,100 3,969,104
ADOPT+(k = 6,000) 197,486 109,193 88,275 17,117 3,972,960

0.6 53,722 BnB-ADOPT+ 1,017,939 500,514 517,407 99,969 26,191,249
ADOPT+(k = 1,000) 1,864,165 1,019,709 844,438 160,365 45,101,673
ADOPT+(k = 4,500) 701,374 387,658 313,697 62,977 16,454,689
ADOPT+(k = 6,000) 701,529 387,742 313,768 62,994 16,459,453

0.7 63,654 BnB-ADOPT+ 3,716,766 1,825,332 1,891,416 387,744 116,050,941
ADOPT+(k = 1,000) 6,846,289 3,809,015 3,037,255 591,271 187,172,366
ADOPT+(k = 6,000) 2,558,658 1,427,249 1,131,391 241,102 71,495,744
ADOPT+(k = 10,000) 2,559,603 1,427,739 1,131,845 241,169 71,503,823

0.8 71,624 BnB-ADOPT+ 9,493,156 4,684,177 4,808,961 1,032,767 324,271,538
ADOPT+(k = 5,000) 10,911,176 6,123,650 4,787,507 1,056,531 339,276,384
ADOPT+(k = 10,000) 6,395,945 3,614,771 2,781,156 619,431 192,355,298
ADOPT+(k = 20,000) 6,484,296 3,663,938 2,820,339 628,362 195,216,439

(a) Random Binary DCOP Instances (10 variables)

Trivial UB Algorithm Total Msgs VALUE COST Cycles NCCCs
A 15,234,868,488 BnB-ADOPT+ 5,090,410 2,708,370 2,381,903 228,784 43,595,024

ADOPT+(k = 30,000,000) 2,005,732 1,230,851 774,745 88,556 24,068,428
B 15,355,044,866 BnB-ADOPT+ 23,911,475 12,979,404 10,931,932 1,024,435 249,771,051

ADOPT+(k = 30,000,000) 9,869,280 6,054,524 3,814,618 459,540 166,542,715
C 3,997,096,838 BnB-ADOPT+ 311,738 165,302 146,346 17,571 3,386,651

ADOPT+(k = 15,000,000) 178,301 104,141 74,070 10,815 2,625,136
D 15,595,397,524 BnB-ADOPT+ 10,722,499 5,714,611 5,007,746 575,613 156,019,351

ADOPT+(k = 30,000,000) 3,812,541 2,231,332 1,581,066 196,424 66,347,439

(b) Sensor Network Instances (70, 70, 50 and 70 variables)

Trivial UB Algorithm Total Msgs VALUE COST Cycles NCCCs
98,000,000 ADOPT+ 25,731 12,769 12,764 259 10,840

BnB-ADOPT+ 3,764 1,239 2,326 827 38,704
ADOPT+(k = 1) 25,915 12,953 12,764 259 12,381
ADOPT+(k = 30) 22,092 13,403 8,490 449 20,591
ADOPT+(k = 50) 10,502 5,351 4,963 550 25,196
ADOPT+(k = 100) 6,290 3,061 3,031 550 25,196
ADOPT+(k = 1,000) 5,050 2,439 2,413 827 38,441

(c) Sensor Network Instances (100 variables)

Table 1: The number of messages, cycles and NCCCs of ADOPT+, BnB-ADOPT+ and ADOPT+(k) on several benchmarks.
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