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Abstract

‘If you go to Ferran Adria’s restaurant you will have the time of your life!’ ‘If you study everyday for two hours you will get

very good marks next semester.’ These are examples of advice. We say an advice has two components: a plan to perform and

a goal to achieve. In dynamic logic, an advice could be formalised as: [Pη]G. That is, if η performs plan P, then goal G will

necessarily be achieved. An adviser is an entity which provides such advice. An adviser may be an agent, a planner, or a complex

recommender system. This paper proposes a novel trust model for assessing the trustworthiness of advice and advisers. It calculates

the expectation of an advice’s outcome by assessing the probabilities of the advised plan being picked up and performed, and the

goal being achieved. These probabilities are learned from an analysis of similar past experiences using tools such as semantic

matching and action empowerment.
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1. Introduction

Advice is what one relies on when making decisions on fu-

ture actions. As such, advice is crucial in directing actions and

interactions. Advice may be provided by a physician to a pa-

tient on what they can do to lead a healthier life. It could be

provided by a tutor, suggesting the best exercises to solve in or-

der to pass an exam. It could be provided by a personal assistant

agent, suggesting an itinerary for a fabulous vacation. It could

be provided by recommender systems, suggesting what would

be the best movie one can rent.

But how can one choose which advice to follow and which

advice to discard? This paper proposes a computational trust

model, CONSUASOR, that assesses the trustworthiness of ad-

vice and their advisers. We say an advice has two components:

a plan to perform and the goal intended to be achieved. In dy-

namic logic, this may be formalised as [Pη]G, where P is the
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recommended plan for η in order to fulfil goal G. That is, if η

performs plan P, then goal G will necessarily be achieved. We

note that the adviser may be a human, an agent, or a recom-

mender system. The proposed model is based on the concept

that an adviser is a good adviser if it is knowledgable about

three main issues: (1) compliance, which describes how much

compliant is the person being advised with following recom-

mendations; (2) honour, which describes how much honourable

is the person being advised in performing a recommended plan

that he has accepted, and (3) goal realisation, which describes

whether the recommended plan actually causes the goal to be

fulfilled. Compliance is important, because good advisers are

those that are knowledgable about who is willing to accept what

advice, and personalising their plans accordingly. Honour is

also important, because knowledge about whether the one be-

ing advised actually performs the recommended plan is funda-

mental. Finally, goal realisation is crucial, since a good adviser

should be an adviser whose recommended plans can actually

fulfil the intended goals.
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The proposed model then computes the trustworthiness of

advice and advisers based on predicting the outcome of advice.

The model calculates the expectation of an advice’s outcome by

assessing the probabilities of the advised plan being picked up

and performed, and the goal being realised. These probabilities

are learned from an analysis of similar past experiences using

tools such as semantic matching and action empowerment.

The remainder of this paper is divided as follows. Section 2

presents our proposed trust model, CONSUASOR. Section 3

presents our experimental platform, benchmarks and evalua-

tion. Finally, Section 4 provides a brief comparison to related

work, before concluding with Section 5.

2. The CONSUASOR Model

The question that this section addresses is: How much should

one trust a recommender’s advice? In other words, how much

should Γ trust ρ when ρ recommends a plan [Pη]G? We get in-

spiration from previous work (Osman et al., 2014), where trust

was based on the expectation of a particular observation given a

commitment, which was specified as a conditional probability:

p(Observe(Γ, φ′) | Commit(ρ, φ))

where the term Commit had two arguments — the one mak-

ing the commitment (ρ) and the action he was committing to

(φ) — and the term Observe had two arguments — the one ob-

serving the outcome of the commitment (Γ) and the outcome

of the commitment describing what ρ actually performed (φ′).

The idea was that past commitments helped in assessing the

expected outcome of similar current commitments. For exam-

ple, if a seller has always delivered good quality goods, then

one may expect the seller’s next delivered goods to be of good

quality as well.

In this section, we adopt the basic idea that a trust measure

is based on the expectation of observing the possible outcomes

of a commitment. When assessing the trustworthiness of ad-

vice, this expectation is specified as a conditional probability of

observing an advice [Pη]G realising its goal:

p(Observe(Γ, [Pη]G) | Commit(ρ, [Pη]G)) (1)

where P is the plan recommended by ρ for η in order to fulfil

goal G, and Γ represents the party that observes the realisation

of the advice [Pη]G’s goal.

The remainder of this section is divided as follows. Sec-

tion 2.1 presents the preliminaries needed for understanding

the proposed model, Section 2.2 presents how the probability

p(Observe(Γ, [Pη]G) | Commit(ρ, [Pη]G)) may be computed by

relying on similar past experiences, Section 2.3 illustrates how

the probability distribution is used to compute a final trust mea-

sure, and Section 2.4 closes with a trust algorithm that provides

one example of a concrete implementation of the model.

2.1. Preliminaries

CONSUASOR is an experience-based trust model that relies

on past experiences to predict future outcomes. As such, cal-

culating the similarity between experiences is crucial. In this

section, we present the preliminaries of our proposed model by

defining experiences (Section 2.1.1), similarity measures (Sec-

tions 2.1.2), and the update of probabilities and probability dis-

tributions (Section 2.1.3) in the light of new experiences. Ad-

ditionally, we also presents the general concept of information

decay (Section 2.1.4), which is a basic notion that underlies our

work, as it describes how information loses its value over time.

2.1.1. Experiences

A Single Experience. The advice that we are interested in as-

sessing are conditional statements of the form: ‘if the recom-

mended plan is performed, then the intended goal will be re-

alised’. As such, past experiences should not only keep track

of advice and their realised goals, but of the fulfilment of the

conditional part of the advice as well. This is because the ad-

viser might give good advise, but the one being advised might

not fulfil its duties in carrying out the recommended plan. As

such, an experience should keep note of several issues:

• The advice. We interpret an advice as a commitment made

by the adviser ρ that the goal G will be realised if η per-

forms plan P. An advice is specified as Commit(ρ, [Pη]G)t,

where t specifies the time at which the advice [Pη]G was

recommended by ρ.
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• The accepted plan. We interpret η accepting an advice as

a commitment made by η to actually perform P′. This is

specified as Commit(η, P′)t′ , where t′ describes the time at

which η accepts plan P′.

• The performed plan. When η performs a plan P′′, some

entity β needs to observe (or verify) this performance,

which is specified as Observe(β, P′′η )t′′ , where t′′ describes

the time at which β observed P′′η , or η’s performed plan.

• The realised goal. The realised goal G′ needs to be ob-

served by some entity α, and this observation is specified

as Observe(α,G′)t′′′ , where t′′′ describes the time at which

α observed the goal G′ being realised.

A single experience µ is then recorded as follows:

µ = 〈Commit(ρ, [Pη]G)t,Commit(η, P′)t′ ,

Observe(β, P′′η )t′′ ,Observe(α,G′)t′′′〉t<t′<t′′<t′′′

Note that η may commit to a variation of the plan: P′ , P. For

example, assume an advice stating that one should “practice his

piano twice a day”, the one being advised may decide to commit

to a variation of this plan, say “practicing his piano once a day”.

We also say that what may be observed may also be a variation

of what has been committed to: P′′,P′ and G′,G.

In the general case, observers will be different from each

other, and different from the adviser and the one being advised.

Although it is possible to have particular cases where β = α, or

ρ = β, or η = α, and so on.

Each element of the experience should have a different time-

stamp. An integrity constraint is then needed to check that a

plan is accepted (by committing to it) after it has been recom-

mended by an adviser, and that the plan has been performed

(and observed) after it has been accepted, and that the goal

has been realised (and observed) after the plan has been per-

formed. This integrity constraint is specified by the condition

t < t′ < t′′ < t′′′.

History of Experiences. Numerous and different histories of

experiences may exist, and we use the notation Hα = {µ, µ′, . . .}

to describe α’s history of experiences.

Populating the history of experiences needs to address nu-

merous issues. For instance, how is information collected? In

other words, when an adviser makes an advice, or when one

accepts an advice, how is this information recorded? Also, who

is trusted to observe a plan being performed or a goal being re-

alised, and how are such observations carried out? How is the

relation between elements recognised? For example, recognis-

ing that observing goal G′ being realised is the result of plan P′′

being performed, or that observing plan P′′ being performed is

the result of ρ honouring its commitment to P′, or that commit-

ting to P′ is the result of ρ’s compliance with the advice [Pρ]G.

In this paper, we do not dwell much on how a history of ex-

periences is populated, as this could be context dependent. For

instance, the entity maintaining a given history of experiences,

whether this history is centralised or not, will need to specify

who is trusted to record elements of an experience, and how are

these elements recorded. The entity maintaining the history of

experiences may also specify how experiences may be shared,

and how reliable are shared experiences. As an example, con-

sider an online classroom where the history is maintained by

the online system. The tutor may advise its student to “focus on

hand posture when playing the piano to improve performance”.

It is then the student’s duty to confirm its willingness to follow

the advice. An “Okay” from the student could signal its com-

mitment to the advice. The student should also confirm whether

they performed the recommended plan or not. For example, the

student may say “I had troubles focusing on hand posture”. The

teacher may then assess the student’s performance by listening

and marking their uploaded performance. The marks may pro-

vide an indication on goal realisation. As such, different sig-

nals may be considered for recording experiences in different

scenarios, and each system will need to define its own.

2.1.2. Similarity Measures

When assessing the level of similarity between a past expe-

rience and a current one, we need to take into consideration a

number of similarity measures, such as the similarity of plans,

or the similarity of goals, which we define next.
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Plan and Goal Similarity. We assume there is a set of actions

A that form the taxonomy of actions TA. Plans are sets of ac-

tions and the set of all possible plans is P = 2A.1 We assume

that there is a semantic similarity relationship between actions

S : A × A → [0, 1] that shows the degree of relationship be-

tween actions. We also assume there is a set of propositional

terms T that form the taxonomy of propositional terms TT .

Goals are sets of propositional terms and the set of all possible

goals is G = 2T . We assume that there is a semantic similar-

ity relationship between propositional terms describing goals

(overloading symbol S ) S : T × T → [0, 1] that shows the

degree of relationship between goals.

Plan similarity and goal similarity are then computed in the

same manner accordingly:

Sim(Q,Q′)=
1
2
·

(
min
φ∈Q
{max
φ′∈Q′
{S (φ,φ′)}}+min

φ∈Q′
{max
φ′∈Q
{S (φ,φ′)}}

)
(2)

where φ ∈ Q describes either an action of plan Q (if Q was a

plan), or it describes a propositional term in goal Q (if Q was a

goal), and S describes the semantic similarity between actions,

or propositional terms.

In other words, Equation 2 states that to calculate the seman-

tic similarity between two plans (goals), we first measure the

semantic similarity between each action of the first plan (propo-

sitional terms of the first goal) with all the actions of the second

plan (propositional terms of the second goal), and only the ac-

tions of the second plan (propositional terms of the second goal)

that result with maximum similarity are then considered. This

provides the maximum similarity measure that each action of

the first plan (propositional term of the first goal) can have with

the second plan (second goal). To aggregate those maximum

similarity measures, we then take the minimum of those simi-

larity measures. This describes the similarity between the first

1A plan is usually understood as a temporal set of actions, describing the

detailed steps (along with their conditions) needed for achieving a given goal.

In this paper, we simplify the notion of a plan by reducing it to a set of actions.

The only impact of this simplification is keeping the definition of plan similarity

relatively straightforward. Adopting the definition of a plan as a temporal set

of actions and redefining plan similarity accordingly is left for future work.

plan (goal) and the second plan. Then, to ensure that the func-

tion Sim is symmetric, we repeat the same process but in reverse

order of plans (goals) — that is, we calculate the similarity be-

tween the second plan (goal) and the first — and we take the

average of the two similarity measures between the two plans

(goals). We note that the range of Sim is [0, 1].

But what is the motivation behind choosing the min operator

when calculating Sim? The basic idea behind this approach is

that when considering the similarity of two entities, we need to

consider how do the elements composing each entity relate to

that entity. In our case, we say the entity (whether a plan or a

goal) may be viewed as a set composed of a conjunction of ele-

ments. In mathematical terms (see Figure 1), there are a number

of conjunctive operators that may be used, such as the prod-

uct operator (
∏

) and the minimum operator (min). We adopt

the minimum operator, which describes an optimistic approach.

For instance, if we are comparing a ∧ b to c and S (a, c) = 0.3

and S (b, c) = 0.2, then we have min{S (a, c), S (b, c)} = 0.2.

For a more pessimistic approach, one can replace the minimum

operator (min) with the product operator (
∏

). In this case,∏
{S (a, c), S (b, c)} = 0.06, which is drastically smaller than

considering the minimum. We note that the choice of operator

will be domain dependent. Alternative methods for calculating

Sim may be used as long as symmetry is maintained.

averaging
operators

disjunctive
operators

conjunctive
operators

product
(∏)

minimum
(min)

maximum
(max)

arithmetic average
(∑n / |n|)

probabilistic sum
(sum)

Figure 1: Classification of conjunctive, average, and disjunctive operators

Finally, we adopt the following definition of semantic simi-

larity for S (Li et al., 2003):

S (φ, φ′) = e−κ1l ·
eκ2h − e−κ2h

eκ2h + e−κ2h (3)

where e is Euler’s number, l is the length (i.e. number of hops)

of the shortest path between the terms φ and φ′ in a taxonomy,

h is the depth of the deepest concept subsuming both concepts,

and κ1 and κ2 are parameters scaling the contribution of shortest
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path length and depth, respectively. Essentially, κ1 and κ2 are

parameters that α could use to customise the weight given to l

and h, respectively. The function S is symmetric (i.e. S (φ, φ′) =

S (φ′, φ)), and its range is [0, 1].

The basic idea of semantic similarity is that the concepts

within a taxonomy are closer, semantically speaking, depend-

ing on how far away are they in the taxonomy’s graph. Equa-

tion 3 calculates the semantic similarity between two concepts

based on the path length (more distance in the graph means

less semantic similarity), and the depth of the subsumed con-

cept (common ancestor) in the shortest path between the two

concepts (the deeper in the hierarchy, the closer the meaning of

the concepts). We note, however, that we provide Equation 3

just as an example. As such, we refer the interested reader

to the work by Li et al. (2003) for further details on Equa-

tion 3, and we stress that alternative approaches can be used

to replace this equation. There is no universal measure for se-

mantic similarity, and it usually depends on the structure of the

taxonomy, amongst other things. Different contexts and differ-

ent taxonomies may require different approaches and equations.

Similarly, different systems may also prefer different equations

for their own taxonomies.

Plan Empowerment. When the capability of performing sim-

ilar actions is relevant, we say measures of empowerment are

needed, as opposed to semantic similarity measurements. For

example, driving a truck and driving a car may be similar. How-

ever, if α is capable of driving a truck then it will be capable of

driving a car, but not vice versa. As such, when considering the

capabilities of performing actions we are not only interested

in similar actions, but whether one action empowers another.

As illustrated by the truck/car driving example, empowerment

measures need not be symmetric. We say, while similarity mea-

sures are computed by considering taxonomies (based on the

is-a relation), empowerment measures are computed by con-

sidering meronomies (based on the empowered-by relation).

To compute the empowerment measure between two nodes

of a meronomy, we make use of the OpinioNet algorithm (Os-

man et al., 2010). OpinioNet highlights the importance of the

structural relations (based on the part-of relation) linking re-

lated entities and their use in indicating the flow of opinions

from one entity to another. OpinioNet’s mechanism allows a

single agent, after it has formed opinions about a few entities

(nodes) in a structural graph, to be able to infer its opinion con-

cerning unfamiliar related entities. For example, say a new cof-

fee machine is now out in the market and it has not been rated

yet. What can an interested customer infer about this new item’s

reputation? Clearly, the reputation of other coffee machines of

the same brand, or even other products of this brand in general,

could be of help here. Hence, OpinioNet highlights the need

for representing the structural relations linking those entities to-

gether. A structural graph may then be used, and the brand may

be represented as one node in this graph, the brand’s coffee ma-

chines as a child node to the former, the new coffee machine

model as a child node to the latter, and so on. Such a repre-

sentation will not only facilitate the flow of opinions amongst

related entities, but also permit raters to choose the granularity

level at which they would prefer to leave their opinions at. For

instance, while one agent might be interested in rating this spe-

cific model in the future, it might also be interested in providing

a rating for the brand’s coffee machines in general.

Now consider, for example, the simple meronomy of ac-

tions on music performance presented by Figure 2. The ar-

rows describe the empowered-by relations. For instance, “Prac-

tice Scales” may be thought of as empowered by “Practice Pi-

ano”. In other words, for one to practice their piano, they should

already know how to practice the scales (or if one is capable

of practicing the piano, then they are capable of practicing the

scales). In general, we say the child node is empowered by the

parent node.

In this paper, we map the empowered-by relation to the part-

of relation in order to make use of OpinioNet when working

with meronomies, and we interpret the opinions of OpinioNet

to describe the capability of performing an action, specified as

a node in a meronomy. In other words, if a node in a meron-

omy receives the best opinion possible (specified as the proba-
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Figure 2: A meronomy describing actions about music practice

bility distribution B), this is interpreted as the full capability of

performing that node, or action. The propagation of an opin-

ion from a node φ to a node φ′ is then interpreted as deducing

what the capability of performing φ′ is, given the capability of

performing φ. We then say the difference between the origi-

nal opinion at φ (describing capability of performing φ) and the

propagated opinion at φ′ (describing the deduced capability of

performing φ′, given the capability of performing φ) specifies

the empowerment of φ on φ′. For example, if the full capabil-

ity of φ implies a strong capability of φ′ (where the distance

between those two capabilities would be very small), then this

describes that φ greatly empowers φ′.

Let us say “Practice Piano” of Figure 2 receives the best opin-

ion possible (describing the full capability of practicing the pi-

ano). Propagating this opinion to other nodes in the meronomy,

OpinioNet can help us deduce that one is also very much ca-

pable of practicing the scales (the distance between the best

opinion possible at “Practice Piano” and the propagated opin-

ion to “Practice Scales” is 0.1), but only half as capable when it

comes to practicing band improvisation (the distance between

the best opinion possible at “Practice Piano” and the propagated

opinion to “Practice Band Improvisation” is 0.5).

Formally, we say the empowerment of φ on φ′ is:

φB φ′ = 1 −
∣∣∣emd(B, opinioNet(M,B, φ, φ′)

∣∣∣ (4)

where opinioNet is a function that returns the propagated opin-

ion at φ′ (describing the capability of performing φ′) by prop-

agating the best opinion possible B from φ (describing the

full capability of performing φ) in meronomy M following

the OpinioNet propagation algorithm of Osman et al. (2010);

and emd is the earth mover’s distance that calculates the dis-

tance (whose range is [1, 0]) between two probability distribu-

tions (Rubner et al., 1998).2

We note that as long as a meronomy does not change, em-

powerment measures remain fixed. Empowerment measures

between terms may then be computed in advance (or when the

meronomy changes) for every pair of nodes.

Based on Equation 4, we define the empowerment of plan P

on plan P′ accordingly:

Emp(P, P′) = min
a′∈P′
{max

a∈P
{a B a′}} (5)

Note that we use the ‘min-max’ operators, following the same

reasoning as that of Equation 2.

2.1.3. Probability Distribution Update

Our proposed trust model is based on the idea that the in-

formation provided by past experiences can help us assess the

outcome, or expectation, of a current experience. We say, given

an experience µ, we need to update the probabilities of expec-

tations according to the information presented by µ. To do so,

we first update the probability of at least one single expectation

(X = x) with respect to µ. Then, we update the probability distri-

bution over all possible expectations in a single step, following

the minimum relative entropy approach. We explain these two

steps in further detail below.

Updating the probability of a single expectation X = x. We say,

if the information provided by experience µ suggests the in-

crease in the probability of expectation X = x, then the amount

by which this probability is increased should be dependent on

the relevance of the experience µ in the context of updating the

probabilities of expectations. Furthermore, we design this in-

crease in such a way that avoids unstable behaviour: that is,

2If probability distributions are viewed as piles of dirt, then the earth

mover’s distance measures the minimum cost for transforming one pile into

the other. This cost is equivalent to the ‘amount of dirt’ times the distance by

which it is moved, or the distance between elements of the probability distri-

bution’s support. The range of emd is [0, 1], where 0 represents the minimum

distance and 1 represents the maximum possible distance.
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even if an experience is fully relevant, a single experience can-

not result in considerable change in the probability in question.

In other words, considerable changes in expected behaviour can

only be the result of information learned from an accumulation

of experiences (as opposed to information learned from a single

experience). As such, we update the probability of expectation

X = x accordingly:

ptµ (X = x) = ptlast (X = x) + (1 − ptlast (X = x)) · ε · Rµ(P(X)) (6)

where ptlast (X = x) specifies the probability of expectation x at

time tlast (the time when the probability of x was last updated),

ptµ (X = x) specifies the probability of expectation x after consid-

ering the information provided by µ at time tµ (the time of expe-

rience µ), ε specifies the maximum percentage of increase that

a probability is allowed (which controls unstable behaviour),

and Rµ(P(X)) specifies the relevance of the experience µ in the

context of updating the probabilities of expectations (P(X)).

Equation 6 states how to calculate the probability of ex-

pectation X = x after considering experience µ, whose rele-

vance in this context is Rµ(P(X)). The update is based on in-

creasing the latest probability ptlast (X = x) (or the probability

of the expectation x that was calculated at an earlier point in

time, tlast < tµ, and that did not consider the experience µ)

by a fraction (ε · Rµ(x)) of the maximum potential increase

(1 − ptlast (X = x)). This fraction is defined by a fixed percentage

(ε) tuned by the relevance of µ (Rµ(P(X))). In other words, if

Rµ(P(X)) = 1, or if µ was maximally relevant, then ptlast (X = x)

is increased by ε percent of 1 − ptlast (X = x). For instance, if

the probability of x was 0.6, the maximum percentage of in-

crease is 0.1, and the experience µ updating the probability of

x has a relevance of 1, then the new probability of x becomes

0.6 + (1 − 0.6) · 0.1 · 1 = 0.64. We note that ε ∈ [0, 1] and

Rµ(P(X)) ∈ [0, 1]. We also note that the ideal value of ε should

be closer to 0 than to 1 so that even if an experience is very

relevant, a single experience does not result in considerable

changes in expected behaviour.

Updating the probability distribution over all possible expec-

tations. With the probability of one (or more) expectation(s),

we update the probability distribution over all possible expecta-

tions in one single and simple step, following the entropy-based

approach of Sierra and Debenham (2005). The entropy-based

approach updates a distribution Ptlast (X) (where tlast describes

the time when the probability has been updated last) into Ptµ (X)

(where tµ describes the time of the experience µ resulting in

this update) such that: (1) the new distribution satisfies the con-

straint(s) imposed by the new point(s) (that is, if the probability

of expectation X = x was updated to ptµ (X = x), then the new dis-

tribution’s value at x should be equivalent to ptµ (X = x)), and (2)

the new distribution’s relative entropy with respect to Ptlast (x) is

minimal. In other words, we look for distributions that satisfy

the updated probabilities of expectations and are at a minimal

distance from the original distribution Ptlast (X) (as the relative

entropy is a measure of the difference between two probability

distributions). This is described accordingly:

Ptµ (X) = arg min
P(X)

∑
i

ptlast (X = i) log
ptlast (X = i)

p(X = i)

such that {p(X = x) = ptµ (X = x), . . .}
(7)

where {p(X = x) = ptµ (X = x), . . .} specifies that one or more

constraints of the form p(X = x)= ptµ (X = x) need to be satisfied.

2.1.4. Decay of Information

An important notion in our proposal is the notion of informa-

tion decay. We say the integrity of information decreases with

time. That is, the information provided by a probability distri-

bution should lose its value over time and decay towards a de-

fault value. We refer to this default value as the decay limit dis-

tribution. Calculating the decay limit distribution is outside the

scope of this paper, although we argue that one may have back-

ground knowledge concerning the expected integrity of a pre-

cept as t→∞. Such background knowledge may be expressed

in terms of an individual’s knowledge, and is represented as a

decay limit distribution Dx, where x describes the context.3

3For example, when calculating the probability distribution of the expected

outcome for the goal of submitting one’s work on time, one might expect the

default probability of submitting on time to be very high for computer science

conferences, whereas the default probability of submitting on time will be much

lower for an internal technical report, for instance.
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In summary, given a distribution, P, and a decay limit distri-

bution Dx, P decays from one point in time (t′) to a later point

in time (t, where t > t′) by:

Pt′ t = Λ(Dx,Pt′ ) (8)

where Λ is the decay function satisfying the property:

lim
t→∞

Pt′ t = Dx.

One possible definition for Λ could be:

Pt′ t = ν∆t,t′ · Pt′ + (1 − ν∆t,t′ )Dx (9)

where ν is the decay rate, and:

∆t,t′ =


0 , if t − t′ < ω

1 +
t − t′

tmax
, otherwise

The definition of ∆t,t′ above serves the purpose of establish-

ing a minimum grace period, determined by the parameter ω,

during which the information does not decay, and that once

reached the information starts decaying. The parameter tmax,

which may be defined in terms of multiples of ω, controls the

pace of decay. The main idea behind this is that after the grace

period, the decay happens very slowly; in other words, ∆t,t′ de-

creases very slowly.

Of course, one might also think of either the decay function

or the decay limit distribution to be also a function of time, if

the context requires this.

2.2. Probability of an Advice Realising its Goal

To help assess the trustworthiness of an advice, CON-

SUASOR calculates the expectation of the advice’s outcome,

specified as the probability of an advice realising its goal:

p(Observe(Γ,[Pη]G) | Commit(ρ,[Pη]G)). Note that we are in-

terested in the probability of the advice being the responsible

of the fulfilment of the goal; that is, we rule out accidental ful-

filment’s of the goal. As such, CONSUASOR considers that

an advice, which recommends plan P for η, fulfils its goal G if

three things happen:

1. Compliance: η agrees to perform P, specified as

Commit(η, P). This describes η’s compliance with follow-

ing ρ’s recommended advice [Pη]G.4

2. Honour: η performs P, specified as Observe(β, Pη). This

describes η’s honour in following its own commitment to

perform the plan it has agreed to.5

3. Goal Realisation: Plan P realises goal G, specified as

Observe(α,G).

Accordingly, a good adviser is then one who not only knows

the causal relation between plans and goals, but also knows

about the advisee’s compliance and honour (that is, it can cor-

rectly guess what plan will the advisee agree to and perform). In

other words, a good adviser becomes one who modifies his ad-

vice, taking into consideration its knowledge about the the ad-

visee’s compliance and honour in order to ensure the intended

goal is fulfilled.

Given that we define an advice realising its goal as a con-

junction of three events where the advisee agrees to and per-

forms the recommended plan and the performed plan realises

the intended goal, the probability of an advice realising its goal

becomes:

p(Observe(Γ,[Pη]G) | Commit(ρ,[Pη]G)) =

p(Observe(α,G) and Observe(β,Pη) and Commit(η,P)

| Commit(ρ,[Pη]G))

(10)

4While CONSUASOR does not dwell on the motivation behind one be-

ing compliant with an advice, we note that compliance may be influenced by

willingness, capabilities, and/or obligations. Social commitments, for instance,

may result in obligations, and hence compliance. One may be obliged to accept

their superior’s advice. Personal interest in the intended goal and the trustwor-

thiness in the adviser may also result in the willingness to accept the recom-

mended plan. In such a case, the probability of compliance will depend on the

trust on the adviser, although the probability of compliance will also be used

for computing the trustworthiness of advice, and hence, the adviser. This could

result in non-linear equations, which will require alternative computational ap-

proaches, such as following fixed point methods. We leave this for future work.
5While CONSUASOR does not dwell on the motivation behind one hon-

ouring its commitments, we note that honour may again be influenced by will-

ingness, capabilities, and/or obligations. For instance, one may be willing to

perform a given plan, and hence accept it, only to discover later on that they are

in fact incapable of performing the accepted plan. Social commitments may

also force one to accept a plan that they are in fact not to willing to perform.
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where Γ = {α, β}. In other words, Γ is the coalition that ob-

serves that the advise fulfills its goal. Note that Γ’s observation

is deduced from α and β’s observations. If β observes the plan

being performed and α observes the goal being realised, then

we can say that the coalition Γ observes the advice fulfilling its

goal. This is similar to coalition logic (Ågotnes et al., 2008),

a special type of modal logic. Properties in coalition logic can

describe what a coalition, or a group of agents, may achieve as

a whole. In other words, it can describe what the group is ca-

pable of. In Equation 10, the observation on the left hand side

describes what the coalition Γ = {α, β} observes, and it is de-

duced from the individual observations on the right hand side

of the equation.

Given Equation 10 for the probability of an advice fulfilling

its goal, we can derive the following proposition:6

Proposition 1 (Probability of an advice realising its

goal I). The probability of an advice [Pη]G realising

its goal is the product of the probability of compliance

(p(Commit(η,P) | Commit(ρ,[Pη]G))), the probability of hon-

6The proof for Proposition 1, which is presented below, is a straightfor-

ward proof that makes use of the conditional probability definition (or axiom):

p(A|B) = p(A and B)/p(B).

Proof.

p(Commit(η,P) | Commit(ρ,[Pη]G)) ·

p(Observe(β,Pη) | Commit(η,P) and Commit(ρ,[Pη]G)) ·

p(Observe(α,G) | Observe(β,Pη) and Commit(η,P) and Commit(ρ,[Pη]G))

=
p(Commit(η,P) and Commit(ρ,[Pη]G))

p(Commit(ρ,[Pη]G))
·

p(Observe(β,Pη) and Commit(η,P) and Commit(ρ,[Pη]G))
p(Commit(η,P) and Commit(ρ,[Pη]G))

·

p(Observe(α,G) and Observe(β,Pη) and Commit(η,P) and Commit(ρ,[Pη]G))
p(Observe(β,Pη) and Commit(η,P) and Commit(ρ,[Pη]G))

=
p(Observe(α,G) and Observe(β,Pη) and Commit(η,P) and Commit(ρ,[Pη]G))

p(Commit(ρ,[Pη]G))

=p(Observe(α,G) and Observe(β,Pη) and Commit(η,P) | Commit(ρ,[Pη]G))

our (p(Observe(β,Pη) | Commit(η,P) and Commit(ρ,[Pη]G))),

and the probability of goal realisation (p(Observe(α,G) |

Observe(β,Pη) and Commit(η,P) and Commit(ρ,[Pη]G))).

That is:

p(Observe(γ,[Pη]G) | Commit(ρ,[Pη]G)) =

p(Commit(η,P) | Commit(ρ,[Pη]G)) ·

p(Observe(β,Pη) | Commit(η,P) and Commit(ρ,[Pη]G)) ·

p(Observe(α,G) | Observe(β,Pη) and Commit(η,P) and

Commit(ρ,[Pη]G))

Of course, when ρ recommends P to η for realising goal G, η

may agree to a variation of the recommended plan (P′,P), per-

form a variation of what it has agreed upon (P′′,P′), and even-

tually, a variation of the intended goal (G′,G) may be realised.

As such, the probability distribution that describes all possible

expectations of the advice [Pη]G is defined accordingly, by con-

sidering all possible plans agreed upon and performed, as well

as all possible realised goals:

P(Observe(γ,[Pη]X) | Commit(ρ,[Pη]G)) =

{p(Observe(γ,[Pη]X=G′) | Commit(ρ,[Pη]G)), . . .}∀G′∈G

(11)

where X is a variable and the range over which X varies is G,

which describes the set of all possible goals that may be re-

alised.

2.2.1. Assumptions

Two assumptions are made by CONSUASOR. First, we say

the plan that is performed is independent of the original recom-

mended plan, yet dependent on the accepted (or committed to)

plan. For example, if the tutor recommends the plan “practice

three times a week”, and the student commits to “practicing two

times a week”. Then what the student actually performs will not

be dependent on what the tutor has recommended, but on what

it has committed to.

Second, we say the goal that is realised is independent of the

original recommended plan and independent of the accepted (or

committed to) plan, yet dependent on the performed plan. This

is because the realised goal is the outcome of a causal relation

that links the performed plan to the realised goal. For example,
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assume that the plan “do not submit assignment” results in the

goal “fail course”. Then whatever the tutor recommended, and

whatever the student accepted (or committed to do), if the stu-

dent eventually does not submit his assignment then he will fail

the course.

We formally define these two assumptions next.

Assumption 1 (Conditional Independence I). The events

Observe(β,Pη) and Commit(ρ,[Pη]G) are conditionally inde-

pendent given Commit(η,P). That is:

p(Observe(β,Pη) | Commit(η,P) and Commit(ρ,[Pη]G)) =

p(Observe(β,Pη) | Commit(η,P))

Assumption 1 states that, given knowledge that η agreed to P

(Commit(η,P)), knowledge of whether ρ recommended [Pη]G

(Commit(ρ,[Pη]G)) provides no information on the likelihood

of η performing P (p(Observe(β,Pη)), and the knowledge of

η performing P (p(Observe(β,Pη)) provides no information on

the likelihood of ρ recommending [Pη]G (Commit(ρ,[Pη]G)).

We note that, depending on the context or the character of β,

Assumption 1 might not always hold. For example, if ρ sug-

gested that β should practice his piano three times a week, β

might commit to practicing twice a week, and later on try to

follow ρ’s advice by practicing three times a week. In this pa-

per, we keep the CONSUASOR model simple by making this

assumption (Assumption 1), and we present a brief discussion

(see Footnotes 12 and 16 of Section 2.2.4) that illustrate how the

model may be adapted to consider situations when Assump-

tion 1 does not hold.

Assumption 2 (Conditional Independence II). The events

Observe(α,G) and (Commit(η,P) and Commit(ρ,[Pη]G)) are

conditionally independent given Observe(β,Pη). That is:

p(Observe(α,G) | Observe(β,Pη) and Commit(η,P) and

Commit(ρ,[Pη]G)) =

p(Observe(α,G) | Observe(β,Pη))

Assumption 2 states that, given knowledge that η performed

P (Observe(β,Pη)), knowledge of whether ρ recommended

[Pη]G and η agreed to P (Commit(η,P) and Commit(ρ,[Pη]G))

provides no information on the likelihood of goal G being

realised (Observe(α,G)), and the knowledge of goal G be-

ing realised (Observe(α,G)) provides no information on the

likelihood of ρ recommending [Pη]G and η agreeing to P

(Commit(η,P) and Commit(ρ,[Pη]G)).

Given Assumptions 1 and 2, the probability of an advice re-

alising its goal may then be simplified accordingly:7

Proposition 2 (Probability of an advice realising its goal II).

The probability of an advice realising its goal, under Assump-

tions 1 and 2, is:

p(Observe(γ,[Pη]G) | Commit(ρ,[Pη]G)) =

p(Commit(η,P) | Commit(ρ,[Pη]G)) ·

p(Observe(β,Pη) | Commit(η,P)) ·

p(Observe(α,G) | Observe(β,Pη))

2.2.2. Notation

For simplification, in the remainder of this paper we will

use the notation Pt
C(X|[Pρ

η]G) to describe the probability dis-

tribution of η committing to a plan X at time t given that the

advice [Pη]G has been recommended by ρ. In other words,

Pt
C(X|[Pρ

η]G) = Pt(Commit(η, X) | Commit(ρ, [Pη]G)). We re-

fer to this as the probability distribution on compliance, which

describes the compliance of η with ρ’s recommended advice

[Pη]G.

Similarly, we use the notation Pt
H(X|Pη) to describe the prob-

ability distribution of η performing plan X at time t given that

it has committed to the plan P. In other words, Pt
H(X|Pη) =

Pt(Observe(β, Xη) | Commit(η, P)). We refer to this as the prob-

ability distribution on honour, which describes η’s honour in

performing the plan it has committed to perform.

We also use the notation Pt
R(X|P) to describe the prob-

ability distribution of realising goal X at time t given

that P has been performed. In other words, Pt
R(X|P) =

Pt(Observe(α, X) | Observe(β, Pη)). We refer to this as the

probability distribution on goal realisation, which describes the

realisation of goal G as a result of performing plan P.

7The proof for Proposition 2 is straightforward: By applying the rules of

Assumptions 1 and 2, Proposition 1 is reduced to Proposition 2.
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Finally, we will use the notation Pt
C|H|R(X|Y) to refer to any

of the probability distributions on compliance, honour, or goal

realisation.

2.2.3. Initialisation

In this paper, we provide a method that calculates a prob-

ability distribution Pt
C|H|R(X|Y) incrementally, by updating the

probability distributions on compliance, honour, and goal re-

alisation for every experience in the history of experiences H.

However, whether the update of the probability distributions is

triggered every time a new experience is recorded, whether it

is triggered on demand every time a trust measure needs to

be calculated, or whether it is executed periodically is an im-

plementation detail that we do not discuss in our presentation

of the model (although Section 2.4 does provide one approach

that we implement and use in our evaluation). What is impor-

tant though, is that when a probability distribution is updated, it

is updated by considering the oldest experiences first. In other

words, the temporal order of the experiences decides which ex-

perience needs to be considered first for updating the probabil-

ity distributions.

At the initial time tI when no experiences have been con-

sidered yet in calculating the distribution, the initial value of

the probability distribution may be domain dependent. Alter-

natively, for domain independent values, one can choose the

uniform distribution F = {p(x1) 7→ 1/n, . . . , p(xn) 7→ 1/n}8 to

describe ignorance. That is, PtI
C|H|R(X|Y) = F. As new experi-

ences are considered, the probability distribution gets reshaped,

or updated, by incorporating the information learned from these

experiences. We note that the support of PC(X|[Pρ
η]G) and

PH(X|Pη) is the set of all plans P, and the support of PR(X|P) is

the set of all possible goals G.9

8n is the number of elements in the support of the distribution.
9There are drawbacks to setting the support of the distributions to the set of

all plans or goals. For example, in some cases, the set of all possible goals/plans

might be dynamic. In other cases, the set of all possible goals/plans might be

massive in size, which would result in an extremely inefficient algorithm. One

approach to address such issues is to have the sets of plans and goals learned

from experiences. As such, the initial set of goals would be G = {unknown}

2.2.4. Update of the probability distributions on compliance,

honour, and goal realisation

To calculate the expected outcome of an advice, as defined by

Equation 11, CONSUASOR needs to keep track of the prob-

abilities on compliance, honour, and goal realisation. While

the previous section presented the initial values of the proba-

bility distributions on compliance, honour, and goal realisation,

this section illustrates how these distributions are updated when

considering new experiences, as these distributions are learnt

from similar past experiences.

Every time an experience µ is considered for updating a prob-

ability distribution Ptlast
C|H|R(X|Y), the following steps are taken:

1. The relevance of µ w.r.t. PC|H|R(X|Y) is calculated.

The relevance is calculated differently for each context:

a) Compliance: Relevance of µ with respect to PC(X|[Pρ
η]G).

Given a past experience where η committed to P′′ when

[P′η]G
′ was advised, the question then is: how much relevant

is this past experience in informing us about the possible com-

mitment of η given the current advice [Pη]G? To define this

measure of relevance, we use analogical reasoning by stating

that η might behave similarly to how it behaved in experience

µ if µ’s advice ([P′η]G
′) is similar to the current advice ([Pη]G).

As an advice is composed of both a plan and a goal, we compute

the similarity between advice [P′η]G
′ and [Pη]G by relying on

the semantic similarity between the advice’s goals (Sim(G′,G))

and plans (Sim(P′, P)). For instance, if η has been accepting

or rejecting plans that have been recommend for a given goal

G, the it will most likely behave similarly when a plan for a

similar goal is recommended. Similarly, if η accepts or rejects

a plan in the past (whether the reason to accept or reject was

based on its willingness or capability of performing the plan),

and the initial set of plans would be P = {unknown}, where the probability of

unknown is initially 1. This describes that with the lack of any experience, one

can expect some unknown thing to happen (specified as unknown). Then, as

experiences are formed, they add their own accepted and/or performed plans to

P, and their realised goals to G. In other words, the sets of possible plans and

goals are updated by learning from experiences. We note that while this is the

implementation of our choice, this paper assumes fixed sets of plans and goals

to keep the presentation of the CONSUASOR model relatively simple.
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then it will most likely behave similarly when a similar plan is

recommended in the future.

As PC(X|[Pρ
η]G) describes the expectation of η’s compliance

with ρ’s recommended advice [Pη]G, we only consider experi-

ences where η has been given advice in the past by similar ad-

visers (where the similarity of advisers is specified by SA(ρ, ρ′),

and is defined shortly), in order to learn from η’s compliances

in similar past scenarios.

We say, given a new experience µ = 〈Commit(ρ′, [P′η]G
′)t,

Commit(η, P′′)t′ , , 〉,10 such that SA(ρ, ρ′) ≥ ζr, we calculate

µ’s relevance to PC(X|[Pρ
η]G) as follows:

Rµ(PC(X|[Pρ
η]G)) =

ζg · Sim(G′,G) + ζp · Sim(P′, P)
ζg + ζp

(12)

where ζg, ζp ∈ [0, 1] are parameters that specify the importance

of each similarity measure, and ζr of the condition SA(ρ, ρ′) ≥

ζr describes the similarity threshold for advisers.

The similarity between two advisers is calculated by com-

paring their past advice, and it is based on the rationale that

two advisers ρ and ρ′ are similar if they recommend similar

plans for similar goals.11 As such, we aggregate the similarity

of ρ and ρ′’s recommended plans, where the weight given to

the similarity of each pair of plans is defined by the similarity

10In this paper, we use the underscore symbol ‘ ’, as in Prolog, to refer to an

anonymous variable and it means “any term”.
11Of course, alternative methods that consider additional information, such

as roles and context, may be used for calculating the similarity of advisers. One

alternative approach would be to calculate the similarity between the advisers’

roles. For instance, if two advisers are music teachers, then they should be con-

sidered much more similar than a music teacher and a mechanic. Alternatively,

the context may also be informative. For example, someone may be consid-

ered a good tutor at one of the top conservatoires, but a poor tutor for children

in less-developed countries as the adviser may not be capable of taking into

consideration the needs and constraints of those children. To keep this paper

simple, however, we define adviser’s similarity through the similarity of their

past plans and goals only. Although we confirm that Equation 13 may be mod-

ified to consider additional information, such as role and/or context similarity.

One approach for considering role (or context) similarity is to define a role (or

context) ontology and then use semantic similarity for calculating the similarity

of roles (or contexts) in that ontology, which we leave for future work.

of the goals for which these plans were recommended:

SA(ρ, ρ′) =

∑
∀[Pη′ ]G∈A(ρ),[P′

η′′
]G′∈A(ρ′)

Sim(P, P′) · Sim(G,G′)

∑
∀[Pη′ ]G∈A(ρ),[P′

η′′
]G′∈A(ρ′)

Sim(G,G′)
(13)

where A(ρ) = {[Pη]G | 〈Commit(ρ, [Pη]G)t, , , 〉 ∈ H} de-

scribes the set of advice that ρ has given in the past. Note that

following Equation 13, it is sufficient for one pair of advice to

share very similar goals for the similarity of their advisers to be

dominated by the similarity of the plans of that specific pair of

advice. Alternative approaches for calculating the similarity of

advisers may also be adopted, such as the collaborative filtering

techniques of recommender systems Linden et al. (2003).

In the general case, we say that if the similarity between the

current adviser ρ and the adviser ρ′ of µ is greater than a certain

threshold ζr, specified as SA(ρ, ρ′) ≥ ζr, then the experience µ

is considered. If ζr = 1, then we are only considering experi-

ences where advice has been suggested to η by ρ, which means

that the probability will describe the compliance of η with ρ’s

advice. If ζr = 0, then we are considering experiences where

advice has been suggested to η by any adviser, which means

that the probability will describe the compliance of η in gen-

eral. If 0 ≤ ζr ≤ 1, then we are considering experiences where

advice have been suggested to η by advisers that share with ρ a

similarity level of ζr.

b) Honour: Relevance of µ with respect to PH(X|Pη).

Given a past experience where η committed to P′ and then

performed P′′, the question then is: how much relevant is this

past experience in informing us about what η will perform if it

has committed to P? To define this measure of relevance, we

again use analogical reasoning by stating that η might behave

similarly to how it behaved in experience µ if the plan it com-

mitted to in µ (P′) is similar to the plan it currently committed

to (P). However, the similarity between P′ and P is not based

on semantic similarity as above, but on a measure of empow-

erment. This is because a necessary condition for performing

a plan is to be capable of performing the plan. As such, it is

relevant to know how η behaved when it committed to a plan
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that empowers the plan under consideration. For instance, if

it diverted much from it, then it is highly possible that it will

divert from its current plan.

As PH(X|Pη) describes the expectation of η’s honour in ful-

filling what it has committed to, we only consider experi-

ences where η has committed and performed plans in order to

learn from η’s past honour. We say given a new experience

µ = 〈 ,Commit(η, P′)t,Observe(β, P′′η )t′ , 〉, we define µ’s rele-

vance to PH(X|Pη) as follows:12,13

Rµ(PH(X|Pη)) = Emp(P′, P) (14)

c) Goal realisation: Relevance of µ with respect to PR(X|P).

Given a past experience where G′ was realised as a result

of performing plan P′, the question then is: how much rele-

vant is this past experience in informing us about what will be

realised if the current plan P is performed? To define this mea-

sure of relevance, we again use analogical reasoning by stating

that the higher the similarity of the plan that was performed in

experience µ (P′) to the currently performed plan (P), then the

higher the probability of G′. Note that unlike the case on hon-

our above, we now use the semantic similarity between plans

(Sim(P′, P)) as opposed to plan empowerment. This is because

the capability of performing a plan is no longer an issue as plans

have already been performed (and observed).

12If Assumption 1 does not hold — that is, if the probability of perform-

ing a plan is dependent on the recommended plan — then the relevance of

an experience on the probability of honour should take into consideration

the recommended plan. One suggested approach to achieve this is to have:

Rµ(PH(X|Pη)) = Emp(P′′′, P) · Emp(P′, P), where P′′′ is the recommended

plan of experience µ. In other words, if β’s performance will be influenced by

both the recommended plan P′′′ and the committed to plan P′, then it is im-

portant to assess the empowerment of both P′′′ and P′ on the current plan in

question, P.
13Alternative approaches may be followed when considering the capability of

performing a plan, such as having Rµ(PH(X|Pη)) = Emp(P′′, P). This approach

is based on the idea that past actions (where P′′ is the plan that was performed

in the past) provide a more accurate indication of capability. Note that in such a

case, Assumption 1 has no impact on this relevance measure, as this measure is

only affected by past actions (depicted through P′′) as opposed to recommended

and committed to plans. Whereas the impact of Assumption 1 on the relevance

measure of Equation 14 was discussed above in Footnote 12.

As PR(X|P) describes the expectation of realising a goal

given that plan P was performed, we need to focus on the goals

that may be realised as a result of an already performed plan.

We assume the identity of who performed the plan is irrele-

vant. As such, and unlike the cases on compliance and hon-

our above, we look at all experiences and not just those where

η has performed the plan.14 We say given a new experience

µ = 〈 , ,Observe(β, P′η′ )t,Observe(α,G′)t′〉, we calculate its

relevance to PR(X|P) as follows:

Rµ(PR(X|P)) = Sim(P′, P) (15)

2. The distribution Ptlast
C|H|R(X|Y) is retrieved and decayed.

If PC|H|R(X|Y) has not been updated by any experiences

yet, then the initial distribution is retrieved (Ptlast
C|H|R(X|Y) =

PtI
C|H|R(X|Y)). Otherwise, the latest probability distribution is

retrieved (Ptlast
C|H|R(X|Y)) and the distribution is decayed accord-

ing to the decay approach of Section 2.1.4. This allows us to

take into consideration how the information represented by a

probability distribution loses its value over time. Note that we

use the notation tlast to refer to the time when the distribution

in question has been updated last, tµ to refer to the time the ex-

perience µ occurred, and Ptlast tµ
C|H|R (X|Y) to refer to the decayed

distribution. Also note that Ptlast
C|H|R(X|Y) is not decayed to the

current time, but to the time that the experience µ occurred (tµ),

since the objective of this update is to update PC|H|R(X|Y) with

respect to µ.

Concerning the time the experience µ occurred, which we

refer to as tµ, recall that an experience µ has four timestamps,

as illustrated earlier in Section 2.1.1. The timestamp that rep-

resents the time µ occurred depends on the probability distri-

14We assume that the causal relationship between performed plans and re-

alised goals to be independent of who performs the plan. In other words, the

same plan always results in the same goal, regardless of who performs the plan.

This might not always be true, however. For example, one student may need to

study one hour a day to pass the exam, while another might need to study much

more than that. To address such cases, and in order to learn from similar past

experiences, we need to look for experiences where advisees with similar pro-

files were observed performing some plans. This, however, requires a measure

of similarity for advisees’ profiles, whose definition is left for future work.
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bution in question. In the case of updating the probability dis-

tribution on compliance (PC(X|[Pρ
η]G)), tµ is the timestamp of

the second element of µ, or the time η committed to a plan.

In the case of updating the probability distribution on honour

(PH(X|Pη)), tµ is the timestamp of the third element of µ, or the

time η performed a plan. In the case of updating the probability

distribution on goal realisation (PR(X|P)), tµ is the timestamp

of the fourth element of µ, or the time a goal was realised.

3. The probability ptµ
C|H|R(X = x|Y) is calculated.

The experience µ is used to decide which expectation needs

to have its probability updated and how is this new probability

calculated. The decision of which expectation should have its

probability updated is based on analogical reasoning, as moti-

vated earlier. For instance, if η committed to a very different

plan than what was recommended in experience µ, and µ is

highly relevant to the current scenario, then one can expect η

to commit to a very different plan than what is currently recom-

mended. Similarly, if η strongly diverted from the plan that it

has committed to in µ, and µ is highly relevant to the current

scenario, then one can expect η to strongly divert from the cur-

rently committed plan too, following a similar behaviour to µ.

Similarly, if a goal was realised in experience µ, and the per-

formed plan in µ is very similar to the plan under consideration,

then the probability of that goal being realised now becomes

higher. We implement this analogical reasoning next.

How a probability of an expectation X = x is updated follows

a similar approach for all three distributions on compliance,

honour, and goal realisation. The probability of an expectation

X = x is updated based on the relevance of the experience µ, by

applying the probability update of Equation 6 (Section 2.1.3):15

ptµ
C|H|R(X = x|Y) =

ptlast tµ
C|H|R (X = x|Y) + (1 − ptlast tµ

C|H|R (X = x|Y)) · ε · Rµ(PC|H|R(X|Y))

15The value of ε may be based on considering factors that are not related

to the experience µ, and yet they may influence the probability in question.

For example, when calculating the probability on compliance, ε may depend

on social commitments. In other words, the stronger the social commitment

between η and the current recommender ρ then the higher the probability that η

will commit to ρ’s current advice.

where, following the analogical reasoning presented above, the

probability update is carried out for an expectation X = x if:

a) |Sim(P, x)−Sim(P′, P′′)| ≤ χC, when updating the probabil-

ity of committing to a plan (ptµ
C(X = x|[Pη]G)) given an ex-

perience µ = 〈Commit(ρ′, [P′η]G
′)t,Commit(η, P′′)tµ , , 〉.

That is, we consider an expectation X = x based on its se-

mantic distance to the recommended plan P in such a way

that this distance is approximately equivalent (or less than

a threshold χC) to the semantic distance between the plan

that was recommended in experience µ and the plan that η

committed to then.

b) |Sim(P, x) − Sim(P′, P′′)| ≤ χH, when updating the proba-

bility of performing a plan (ptµ
H(X = x|Pη)) given an expe-

rience µ = 〈 ,Commit(η, P′)t,Observe(β, P′′η )tµ , 〉. That

is, we consider an expectation X = x based on its seman-

tic distance to the committed plan P in such a way that

this distance is approximately equivalent (or less than a

threshold χH) to the semantic distance between what η has

committed to in experience µ and what it has performed

then.16

c) x = G′, when updating the probability of a goal be-

ing realised (ptµ
R(X = x|P)) given an experience µ =

〈 , ,Observe(β, P′η′ )t, Observe(α,G′)tµ〉. Note that since

goal similarity and plan similarity cannot be compared (as

goals and plans are two distinct concepts), we cannot state

that the semantic distance between the realised goal G′ of

µ and the currently expected goal need to be approximately

16If Assumption 1 does not hold — that is, if the probability of performing

a plan is dependent on the recommended plan — then finding the relevant ex-

pectation X = x should take into consideration the recommended plan. One

suggested approach to achieve this is to modify the similarity condition accord-

ingly: |Sim(P′′′′, x)−Sim(P′′′, P′′)| · |Sim(P, x)−Sim(P′, P′′)| ≤ χH, where P′′′′

is the currently recommended plan and P′′′ is the recommended plan of experi-

ence µ. In other words, we consider the conjunction of: (1) the distance between

what was committed to and performed in the past to what was committed to and

may be performed now, and (2) what was recommended and performed in the

past to what was recommended and may be performed now. The conjunction

of these distances should then be less than the threshold χH.
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equivalent to the semantic distance between the performed

plan P′ of µ and the plan P under consideration. Accord-

ingly, we simply state that the higher the relevance of an

experience µ (which was based on the similarity between

the performed plan P′ of µ and the plan P under consider-

ation – Equation 15), the higher the probability of the goal

G′ of µ.

Note that more than one expectation may satisfy the condition

of semantic equivalence, and as a result, the probability of more

than one expectation may be updated.

4. The probability distribution Ptµ
C|H|R(X|Y) is calculated.

Given the probability ptµ
C|H|R(X = x|Y) (or a set of probabili-

ties {ptµ
C|H|R(X = x|Y), . . .}) , we calculate the new probability dis-

tribution Ptµ
C|H|R(X|Y) by applying Equation 7 of Section 2.1.3,

which follows the minimum relative entropy approach:

Ptµ
C|H|R(X|Y) = arg min

P(X)

∑
i

ptlast tµ
C|H|R (X = i|Y) log

ptlast tµ
C|H|R (X = i|Y)

p(X = i)

such that {p(X = x) = ptµ
C|H|R(X = x|Y), . . .}

A note on learning from past experiences. CONSUASOR

is a trust model that calculates the probability of accepting a

plan, the probability of executing a plan, and the probability of

a goal being realised by learning from past experiences. It is

true that things may change over time. For example, if η ac-

cepted a plan in the past, it may change its mind in the future

and reject it. While many actions may be possible, some actions

will be more probable than others. Learning from past experi-

ence entails that the probability of a given action (whether it

was accepting a plan, executing a plan, or having a goal re-

alised) should increase with the number of times that this same

or similar action has occurred in the past. In fact, the proposed

CONSUASOR model has been designed in such a way that the

probability of an action (say accepting a plan) would increase

a ‘teeny-tiny bit’ if that same action (say the same person has

accepted the plan) has occurred ‘once’ in the past, and it will

increase more as the number of times that the action occurred

in the past increases. Furthermore, we note that the model also

incorporates the notion of decay. In other words, if an action oc-

curred ‘a very long time ago’, then that action will have much

less impact than an action occurring more recently. This allows

change to happen with time, such as accommodating for peo-

ple changing their mind over time and starting to reject a plan

they used to accept. The proposed model is designed to adjust

to such situations. Additionally, if the action is more random

(say the person is more random in accepting and rejecting a

plan, that is, he sometimes accepts and sometimes rejects), then

the model will learn this information as well from those past

experiences, and all possible outcomes (such as accepting and

rejecting a plan) will have more or less equal probabilities.

2.3. Trust Computation

With updated probability distributions on compliance, hon-

our, and goal realisation, the main probability distribution

Pt(Observe(γ,[Pη]X) | Commit(ρ, [Pη]G)) is calculated via

Equation 11, which we simply refer to as Pt(X|[Pρ
η]G) for sim-

plification. The question now is: How do we interpret such

expectations? In other words: How do we calculate a trust mea-

sure given an expectation specified as a probability distribution?

Different trust equations can be implemented, depending on

the particular context or interest. For example, a trust measure

may be based on the preference of outcomes: given the pref-

erences of possible outcomes, the trust measure will be higher

when preferred outcomes are more likely to happen than less

preferred outcomes. A trust measure may be based on the cer-

tainty of the expected outcomes, where entropy may be used

to measure uncertainty: the higher the certainty of outcomes,

then the higher the trust measure is, and vice versa. Sierra and

Debenham (2006) presents a few approaches for calculating

trust, including those that are based on preferences or certainty

of outcomes.

One alternative straightforward approach, which we present

next, is based on the distance between what the advice promised

(PP(X|[Pρ
η]G) = {1, if X = G; 0, otherwise}) and what is ex-

pected to be achieved (Pt(X|[Pρ
η]G)). The trustworthiness of

an advice [Pη]G is then calculated accordingly:

trustt([Pρ
η]G) = 1 − emd(PP(X|[Pρ

η]G),Pt(X|[Pρ
η]G)) (16)
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where the function emd, whose range is [0, 1], calculates the

earth mover’s distance between two probability distributions.

Concerning the trustworthiness of an adviser ρ, we say a

good adviser is one who provides good advice. As such, the

trustworthiness of an adviser is defined in terms of the trust-

worthiness of his advice. That is, the trustworthiness of ρ on

giving advice becomes an aggregation of trustt([Pρ
η]G) for ev-

ery advice [Pη]G that ρ has given in the past:

trustt(ρ) =

∑
∀[Pη]G∈A(ρ)

trustt([Pρ
η]G)

|A(ρ)|
(17)

where A(ρ) = {[Pη]G | 〈Commit(ρ, [Pη]G)t′ , , , 〉 ∈ H} de-

scribes the set of advice that ρ has given in the past (t′ < t).

The trust equations presented above may be adapted to com-

pute different trust measures. For instance, the trustworthiness

of an adviser ρ with respect to a specific goal G may be com-

puted in a similar fashion to Equation 17, where the only differ-

ence is in considering ρ’s past advice on goal G as opposed to

considering ρ’s past advice in general. That is:

trustt(ρ,G) =

∑
∀[Pη]G∈A(ρ,G)

trustt([Pρ
η]G)

|A(ρ,G)|
(18)

where A(ρ,G) = {[Pη]G | 〈Commit(ρ, [Pη]G)t′ , , , 〉 ∈ H}

describes the set of advice that ρ has given in the past (t′ < t)

on goal G.

2.4. Trust Algorithm

In this section, we present one approach for calculating the

trustworthiness of advice. To calculate the trustworthiness of

ρ’s advice [Pη]G, the relevant probability distributions on com-

pliance, honour, and goal realisation should first be updated in

order to update the probability distribution describing the out-

come of ρ’s advice: Ptnow (X|[Pρ
η]G), where tnow describes current

time. Every time the trustworthiness of the advice needs to be

calculated, the relevant probability distributions are updated by

calling Algorithm 1. After updating the necessary distributions

and calculating Ptnow (X|[Pρ
η]G), the final trust measure on ρ’s

advice (trusttnow ([Pρ
η]G)) is calculated following Equation 16.

In our proposed approach, trust is calculated on demand.

Other implementations that call Algorithm 1 to precompute

probability distributions are possible. For example, Algo-

rithm 1 may be executed periodically for all possible advice

to ensure that when the trustworthiness of a specific advice is

requested, minimal time and effort is spent on updating the rel-

evant probability distributions.

To help update a probability distribution P(X|[Pρ
η]G), orig-

inally specified as P(Observe(γ,[Pη]X) | Commit(ρ, [Pη]G)),

Algorithm 1 updates the relevant probability distributions on

compliance, honour, and goal realisation. In Algorithm 1, the

similarity between advisers follows Equation 13, the similarity

between plans or goals follows Equation 2, and plan empower-

ment follows Equation 5. Updating the probability of a single

expectation follows Equation 6, updating a probability distribu-

tion follows Equation 7, the decay follows Equation 9, and the

relevance of an experience follows Equations 12, 14, and 15. It

also assumes that both the initial distributions as well as the de-

cay limit distributions are equiprobable distributions (i.e. they

are equivalent to the uniform distribution F).

The implementation of Algorithm 1 follows an incremental

approach were we use ‘memoization’ techniques, as in dynamic

programming, to improve the efficiency of the algorithm. We do

this by saving the latest probability distributions and updating

older computations. In this way, when a probability distribution

needs to be calculated and it has already been calculated in the

past, the distribution is modified considering new experiences

only.

The algorithm uses parameters ξC, ξH, and ξR to specify the

thresholds for considering an experience relevant. By fixing the

values of these parameters to high values, we can improve the

efficiency of the algorithm even further by saying that experi-

ences that would result in ‘small’ modifications to past proba-

bility distributions are not to be considered. By reducing the

values of these parameters progressively, we can have more re-

alistic and fine grained implementations.
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Algorithm 1 update([Pρ
η]G)

Require: H, which specifies the history (or set) of past experiences.

Require: P and G, which represent the sets of all plans and goals, respectively.

Require: D, which specifies the set of probability distributions that have been

updated. Initially, we haveD = ∅.

Require: PtI
C = PtI

H = PtI
R = F, which describe the initial value of the proba-

bility distributions on compliance, honour, and goal realisation, respectively,

and sets them all to the uniform distribution F.

Require: DC = DH = DR = F, which describe the decay limit distributions

for the probability distributions on compliance, honour, and goal realisation,

respectively, and sets them all to the uniform distribution F.

Require: ξC, ξH, ξR ∈ [0, 1], which describe the thresholds for considering an

experience relevant when updating the probabilities on compliance, honour,

and goal realisation, respectively.

Require: SA : R × R → [0, 1], which describes the similarity between two

advisers, where R is the set of all advisers. (See Equation 13)

Require: Sim : T × T → [0, 1], which describes the similarity between two

plans or goals, respectively, where T = P ∨ G is either the set of all plans P

or the set of all goals G. (See Equation 2)

Require: Emp : P × P → [0, 1], which describes how much does one plan

empower another. (See Equation 5)

Require: ζg, ζp ∈ [0, 1], which describe the weights for goal and plan sim-

ilarity when calculating the relevance of an experience with respect to the

probability on compliance.

Require: ζr ∈ [0, 1], which describes the threshold for considering two advis-

ers similar.

Require: εC , εH , εR ∈ [0, 1], which describe the percentages by which the prob-

abilities on compliance, honour, and goal realisation may increase.

Require: ν ∈ [0, 1], which describes the decay rate.

Require: ∆t,t′ : T × T → [0, 1], which describes the pace of decay, where T

represents time. (See Section 2.1.4)

Require: tnow ∈ T , where tnow represents current time.

Require: 	 and ⊕, which describe functions that remove elements from a set

and append elements to a set, respectively. For example, X 	 x removes the

element x from the set X, whereas X ⊕ x adds the element x to the set X.

. First, the probability distribution on compliance is updated.

. Get the experiences that have not been taken into account yet.

if Ptlast
C (X|[Pρη]G) ∈ D then

H∗ = {µ | µ ∈ H and µ = 〈 ,Commit(x, y)tµ , , 〉 and tµ > tlast}

else

H∗ = H

Ptlast
C (X|[Pρη]G) = PtI

C

end if

for all µ∈H∗and µ= 〈Commit(ρ′,[P′η]G′)t ,Commit(η,P′′)tµ , , 〉 and SA(ρ, ρ′)>

ζr do

. The relevance of µ with respect to compliance is calculated.

Rµ(PC(X|[Pρη]G)) =
ζg · Sim(G′,G) + ζp · Sim(P′, P)

ζg + ζp
if Rµ(PC(X|[Pρη]G)) > ξC then

. Ptlast
C (X|[Pρη]G) is decayed to tµ

Ptlast tµ
C (X|[Pρη]G) = ν∆tµ,tlast · Ptlast

C (X|[Pρη]G) + (1 − ν∆tµ,tlast )DC

for all x ∈ {y | |Sim(P, y) − Sim(P′, P′′)| ≤ χC} do

. The probability of the expectation x is calculated.

ptµ
C (X = x|[Pρη]G) = ptlast tµ

C (X = x|[Pρη]G)+

(1 − ptlast tµ
C (X = x|[Pρη]G)) · εC · Rµ(PC(X|[Pρη]G))

end for

. The probability distribution is updated

Ptµ
C (X|[Pρη]G) = arg min

P(X)

∑
i

p
tlast tµ
C (X = i|[Pρη]G) log

p
tlast tµ
C (X = i|[Pρη]G)

p(X = i)

such that {p(X = x) = p
tµ
C (X = x|[Pρη]G), ...}

.D is updated to contain the latest distribution Ptµ
C (X|[Pρη]G).

D = D	 Ptlast
C (X|[Pρη]G) ⊕ Ptµ

C (X|[Pρη]G)

end if

end for

. Second, the relevant probability distributions on honour are updated in a

similar manner to that on compliance.

for all P′ ∈ P do

if Ptlast
H (X|P′η) ∈ D then

H∗ = {µ | µ ∈ H and µ = 〈 , ,Observe(x, y)tµ , 〉 and tµ > tlast}

else

H∗ = H

Ptlast
H (X|P′η) = PtI

H

end if

for all µ ∈ H∗ and µ = 〈 ,Commit(η, P′′)t ,Observe(α, P′′′η )tµ , 〉 do

Rµ(PH(X|P′η)) = Emp(P′, P′′)

if Rµ(PH(X|P′η)) > ξH then

Ptlast tµ
H (X|P′η) = ν∆tµ,tlast · Ptlast

H (X|P′η) + (1 − ν∆tµ,tlast )DH

for all x ∈ {y | |Sim(P′, y) − Sim(P′′, P′′′)| ≤ χH} do

ptµ
H (X = x|P′η) = ptlast tµ

H (X = x|P′η)+

(1 − ptlast tµ
H (X = x|P′η)) · εH · Rµ(PH(X|P′η))

end for

Ptµ
H (X|P′η) = arg min

P(X)

∑
i

ptlast tµ
H (X = i|P′η) log

ptlast tµ
H (X = i|P′η)

p(X = i)

such that {p(X = x) = ptµ
H (X = x|P′η), ...}

D = D	 Ptlast
H (X|P′η) ⊕ Ptµ

H (X|P′η)

end if

end for

end for
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. Third, the relevant probability distributions on goal realisation are updated

in a similar manner to those on compliance and honour.

for all P′ ∈ P do

if Ptlast
R (X|P′) ∈ D then

H∗ = {µ | µ ∈ H and µ = 〈 , , ,Observe(x, y)tµ 〉 and tµ > tlast}

else

H∗ = H

Ptlast
R (X|P′) = PtI

R

end if

for all µ ∈ H∗ and µ = 〈 , ,Observe(α, P′′
η′

)t ,Observe(β,G′)tµ 〉 do

Rµ(PR(X|P′)) = Sim(P′, P′′)

if Rµ(PR(X|P′)) > ξR then

Ptlast tµ
R (X|P′) = ν∆tµ,tlast · Ptlast

R (X|P′) + (1 − ν∆tµ,tlast )DR

x = G′

ptµ
R (X = x|P′) = ptlast tµ

R (X = x|P′)+

(1 − ptlast tµ
R (X = x|P′)) · εR · Rµ(PR(X|P′))

Ptµ
R (X|P′) = arg min

P(X)

∑
i

ptlast tµ
R (X = i|P′) log

ptlast tµ
R (X = i|P′)

p(X = i)

such that p(X = x) = ptµ
R (X = x|P′)

D = D	 Ptlast
R (X|P′) ⊕ Ptµ

R (X|P′)

end if

end for

end for

. Finally, update the probability distribution Ptnow (X|[Pρη]G).

for all x ∈ G do

ptnow (X = x|[Pρη]G) = 0

for all y ∈ P do

for all z ∈ P do

if Ptlast
H (Y |zη) ∈ D and Ptlast

R (X|y) ∈ D then

ptnow (X = x|[Pρη]G) = ptnow (X = x|[Pρη]G)+(
ptlast tnow

C (Z=z|[Pρη]G)·ptlast tnow
H (Y=y|zη)·ptlast tnow

R (X=x|y)
)

end if

end for

end for

end for

3. Evaluation

In this Section we provide an empirical evaluation based on

a simulation of the interaction between advisers and advisees.

We refer to advisers and advisees as recommenders and users,

respectively. In the following, we describe our experimental

platform, define benchmarks for a music learning domain, and

show a comparison between our CONSUASOR algorithm, the

well-known EigenTrust algorithm (Kamvar et al., 2003), and a

random method. We note that, to our knowledge, CONSUA-

SOR is the only model that takes into consideration the partic-

ularities of an advice — plans and goals — instead of consider-

ing advice as a single unit — a black box. As such, it is really

difficult to compare it to an existing trust model. Neverthe-

less, for the sake of a more meaningful evaluation, we compare

CONSUASOR with EigenTrust, as opposed to other existing

and more recent models, as EigenTrust is the most renowned

model in terms of its application to real life scenarios (for in-

stance, it has been used in eBay and Amazon).

3.1. Experimental platform

The following sets and functions determine a benchmark:

• A set of actionsA, from which plans are composed, and an

action meronomyMA used to define particular similarity

functions (based on the semantic similarity measure of Li

et al. (2003)) and empowerment functions (based on the

OpinioNet algorithm of Osman et al. (2010)).

• A set of propositional terms G to define goals and a term

ontology TG used to define particular similarity functions

(based on the semantic similarity measure of Li et al.

(2003)).

• The set of all plans P and the set of all goals G.

• A causality function f : P → G, which describes whether

a plan achieves a goal.

• A set of usersU where every η ∈ U is defined by the tuple

〈Gt, d1, d2, cη, hη〉 such that d1, d2 ∈ [0, 1] and:

– Gt ⊆ G is the set of η’s goals at every time instant t.

– cη : P → P and hη : P → P are functions describing

η’s compliance and honor, therefore: when a plan P

is recommended to η, η commits to cη(P); and when

η commits to P, η executes hη(P).

– d1 and d2 describe the level of compliance and honor

of η satisfying the following conditions:
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∀P ∈ P: S im(cη(P), P) ≥ 1 − d1

S im(hη(P), P) ≥ 1 − d2

Notice that when d1 = d2 = 0 a user is fully compliant

and honourable. When d1 > 0 or d2 > 0, then the user

may not commit to the recommended plan or execute its

commitment, respectively.

• A set of recommenders R where every ρ ∈ R is defined by

the tuple 〈d3, d4, d5, {cη−1}η∈U , {hη−1}η∈U , f −1}〉 such that

d3, d4, d5 ∈ [0, 1] and:

– cη−1 : P → P describes ρ’s knowledge about η’s

compliance, and ρ believes that for η to commit to

plan P, cη−1(P) should be recommended to η.

– hη−1 : P → P describes ρ’s knowledge about η’s

honor, and ρ believes that for η to execute plan P, η

should have commited to hη−1(P).

– f −1 : P → G describes ρ’s knowledge about the

causality between a plan and a goal (that is, if the

plan achieves the goal), and ρ believes that for goal

G to be achieved, plan f −1(G) must be executed.

– d3, d4 and d5 describe the level of knowledge of ρ

about compliance, honor and causality, respectively,

satisfying the following conditions:

∀P ∈ P: S im(cη−1(P), P′) ≥ 1 − d3 and cη(P′) = P

S im(hη−1(P), P′) ≥ 1 − d4 and hη(P′) = P

S im( f (G)−1, P) ≥ 1 − d5 and f (G) = P

Notice that when d3 = 0, ρ is accurate about what plan P′

must be recommended to η so that η commits to P. When

d3 > 0, ρ’s knowledge is not accurate and cη−1(P) may not

lead to η committing to P. The same reasoning follows for

d4, d5 on honor and causality. A competent recommender

is one with d3 = d4 = d5 = 0.

We assume determinism and that Assumptions 1 and 2 are

satisfied. A recommender ρ suggests a plan P for user η for

goal G as follows:

P = cη−1(hη−1( f −1(G)))

If the recommended plan P is accepted, a new experience µ is

generated and added to the history of experiences H. The new

generated experience would then be:

µ = 〈[Pη]Gt′ , cη(P)t′′ , hη(cη(P))t′′′ , f (hη(cη(P))t′′′′ )〉

where time instants t′ < t′′ < t′′′ < t′′′′ are generated with

a difference of one (simulation) time-step between each time

instant and the following one.

The success of a recommendation [P]G for user η is defined

as:

S uccη(P,G) = S im(G, f (hη(cη(P))))

And the success of a user η at time t is defined as:

S ucct
η =

∑
µ=〈[Pη]Gt′ , t′′ , t′′′ , t′′′′ 〉t′<t′′<t′′′<t′′′′<t∈H

S uccη(P,G)
|µ|

where [Pη]G is a recommendation selected by user η at time

t′ < t. A trust strategy is used to decide which recommenda-

tion to select from the set of all recommendations suggested

by all recommenders. A trust strategy will be considered good

for user η if S uccη(·, ·) increases over time. That is, if a time

frame of size n is considered, then (S ucct
η − S ucct−n

η )/n should

approach the maximum success possible, where the maximum

success is determined by the user’s compliance and honour (the

less compliant and honourable a user is, the lower the maximum

possible success is).

3.2. Benchmarks

In our benchmarks we consider an action meronomyMA and

goal ontology TG of 10 terms related with music composition,

improvisation and instrument performance (Figure 3).

Our set of plans P contains 10 plans, one for every action

in MA. Causality function f is built such that every plan

in P achives a goal in G: f (Practice all) = Finest Musician,

f (Practice Piano) = Good Piano Performant, f (Practice Band

Improvisation) = Good Band Improviser, etc.

In the experiments there is always a single user η ∈ U. Com-

pliance and honor functions for this user, cη(P) and hη(P), are

built such that for every plan P ∈ P, a plan P′ is picked at a

distance d1 (for compliance) or d2 (for honor). Notice that cη

19



Prac%ce	
  Music	
  

Prac%ce	
  Piano	
   Prac%ce	
  Band	
  
Improvisa%on	
  

Study	
  
Composi%on	
  

Prac%ce	
  Scales	
  

Read	
  Sheet	
  
Music	
  

Prac%ce	
  Solo	
  	
  
Improvisa%on	
  

Play	
  in	
  Live	
  	
  
Concerts	
  

Study	
  Theory	
  

Listen	
  to	
  Classics	
  

Finest Musician

Good Piano 
Performant

Good Band 
Improviser

Good
Composer

Good Reading
Music

Good Playing
Scales

Good Solo
Improviser

Know Theory

Know ClassicsGood in Live 
Concerts

Figure 3: MA, (up) and TG, (down)

and hη are not inyective functions, therefore when d1 , 0 and

d2 , 0 it may be the case that η never commits to a plan P (@P′

s.t. cη(P′) = P) or honors a plan P (@P′ s.t. hη(P′) = P).

The number of recommenders varies from 5 to 30. To gen-

erate ρ’s knowledge about η’s compliance (cη(P)−1), we first

calculate the inverse of cη(P) and then pick a plan in P at a dis-

tance d3 from the inverse value. The same logic is followed to

generate hη−1 and f −1.

Experiments run as follows. The user needs advice to achieve

goals and he receives advice from the recommenders. Once an

advice is selected, an experience is generated where the user

may or may not commit to the recommended plan and achieve

the desired goal. As explained in Section 3.1, recommendations

are generated according to the recommender’s knowledge and

experiences are generated according to the user’s compliance

and honor. In the experiments we perform several iterations

and observe the trust evolution of the recommenders and the

user’s success rate over time. Results are given for different

values of d1, d2, d3, d4, d5. For convenience we use the notation

d̄ = (d1 + d2 + d3)/3.

We compare 3 trust strategies: selecting advise randomly,

selecting the advice whose adviser is ranked top by the Eigen-

Trust algorithm (Kamvar et al., 2003),17 and selecting the ad-

vice/recommender ranked top by CONSUASOR.

The flexibility of the CONSUASOR model allows to con-

sider several applications where we are able to focus on differ-

ent aspects of advice. We provide different experimental sce-

narios. In Experiment 1, we calculate the trust on advices given

by recommenders, while in Experiment 2 we calculate the trust

on recommenders for a specific goal. Experiment 1 addresses

the question: How good is ρ recommending [Pη]G? While Ex-

periment 2 addresses the question: How good is recommender

ρ giving advice for goal G? We are interested in showing the

flexibility and coherence of the model in cases were different

approaches are needed. Finally, Experiment 3 presents a com-

parison of different CONSUASOR trust evaluations focusing

on different aspects of advice. In every case, we present aver-

aged results of 50 experiments with a time frame n = 5.

3.3. Experiment 1. Trust on Recommender giving Advice

In these experiments the user η has a single goal (randomly

picked from the goals ontology) which is fixed over time. There

is a set of recommenders providing advice. Every experiment

performs 100 iterations (time instants) of the following steps:

(1) The user asks advice to all recommenders for its goal; (2)

Each recommender provides a recommendation, as defined in

Section 3.1; (3) The user selects one advice (in the random case,

randomly, in the EigenTrust and CONSUASOR cases, the most

trusted one); and, (4) An experience is generated and stored, the

trust of recommenders is updated and the success of the user is

updated.

Figure 4 shows the CONSUASOR trust values evolution in

time for 11 recommenders (each line represents the trust in a

specific recommender). Recommenders knowledge vary from

fully knowledgeable (small d̄) to ignorant (large d̄). Case (a)

17In the EigenTrust case, we compute the normalized local trust. The notion

of transitive trust is not needed since neither users nor recommenders provide

advise among themselves.
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present results for a fully compliant and honourable user (d1 =

d2 = 0). In this case, recommenders with 0 ≤ d̄ ≤ 0.6 over-

lap. This is an effect of our small ontology: since we have just

a few terms, the semantic distance between them is relatively

large. We need to increase the distance beyond 0.6 to obtain

recommenders that are not competent. The trust on competent

recommenders (0 ≤ d̄ ≤ 0.6) increases over time and reaches 1,

while the trust on less competent recommenders (0.7 ≤ d̄ ≤ 1)

fluctuates up and down (an incompetent recommender may ran-

domly give a good recommendation, but most of the times he

does not). As expected, the worst the recommender, the lower

its trust line is. Case(b) present results with a non-compliant

and dis-honourable user (d1 = d2 = 1). We observe the same

(a) 1 compliant, honourable user (d1 = d2 = 0) and 11 recommenders with

varied competence

(b) 1 non-compliant, dis-honourable user (d1 = d2 = 1) and 11 recommenders

with varied competence

Figure 4: Experiment1. Trust evaluation in time

behavior of Case (a) but trust measures are lower now (trust on

competent recommenders reaches 0.5 approximately instead of

1). This is because a non-compliant and dis-honourable user

does not necessarily commit to or honor every plan (because cη

and hη are not inyective functions). In such cases, it is not pos-

sible to obtain a plan such that the user is willing to commit to

(or execute) and that causes the goal fullfilment, given the rec-

ommender’s knowledge (@P′′ s.t cη(P′′) = P′ and hη(P′) = P

and f (P) = G). In other words, there is no good plan for this

non-compliant and dis-honourable user. In such cases, the rec-

ommender does not provide any advice to the user and the trust

on that recommender/advice is not measured (since the advice

does not exist), then we simply put a zero as the trust value in

that iteration and when executions are averaged this is reflected

in the graphics. If we increase d1 and d2 (η’s compliance and

honor), we see how the trust lines increase until we obtain a

graph like (a) for a fully compliant and honourable user.

Figures 5 and 6 show η’s success evolution in time (S ucct
η)

for compliant/honourable and non-compliant/dis-honourable

users, respectively, following the three strategies: random,

EigenTrust and CONSUASOR. Results in Figure 5 correspond

to executions with a compliant and honourable user. Case

5(a) includes 30 competent recommenders. Competent recom-

menders always give good advice and η always commits and

executes that advice, therefore success is always 1. Cases 5(b)

and 5(c) include 30 mediocre and incompetent recommenders,

respectively, we observe how the CONSUASOR algorithm ob-

tains high levels of success while EigenTrust and the random

approach remain low. Case 5(d) includes 5 recommenders with

varying competency (from fully competent to fully incompe-

tent), we observe that EigenTrust performs well and that CON-

SUASOR stabilizes earlier. In Figure 6, the user η is not al-

ways compliant and honourable (d1 = d2 = 0.7). We observe

the same behaviour of the previous cases but the success rate

is lower now, since sometimes there are no recommendations

that allow η’s goal to be fulfilled and that η is willing to com-

mit to or execute. For higher d1 and d2 values (less compli-

ant/honourable user), we verified experimentally that the suc-
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(a) 1 compliant, honourable user (d1 = d2 = 0)

and 30 competent recommenders (d̄ = 0.6)

(b) 1 compliant, honourable user (d1 = d2 = 0)

and 30 mediocre recommenders (d̄ = 0.8)

(c) 1 compliant, honourable user (d1 = d2 = 0)

and 30 incompetent recommenders (d̄ = 1)

(d) 1 compliant, honourable user (d1 = d2 =

0) and 5 recommenders with varied competence

(d̄ = 1 . . . 0.6)

Figure 5: Experiment1. Success evaluation in time, for compliant and hon-

ourable users

(a) 1 non-compliant, dis-honourable user

(d1 = d2 = 1) and 30 competent recom-

menders (d̄ =0.6)

(b) 1 non-compliant, dis-honourable user

(d1 = d2 = 1) and 30 mediocre recom-

menders (d̄ =0.8)

(c) 1 non-compliant, dis-honourable user

(d1 = d2 = 1) and 30 incompetent recom-

menders (d̄ =1)

(d) 1 non-compliant, dis-honourable user

(d1 = d2 = 1) and 5 recommenders with

varied competence (d̄ =1 . . . 0.6)

Figure 6: Experiment1. Success evaluation in time, for non-compliant and dis-

honourable users
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cess lines are lower and for lower d1 and d2 values the success

lines increase.

These results show that CONSUASOR is able to increase

η’s success rate in a short period of time, when compared with

the random and EigenTrust strategies. EigenTrust obtains high

levels of success when there is at least one competent recom-

mender, but when recommenders are less competent or users

are not fully compliant or honourable, its success diminishes

considerably (in fact it acts similarly to the random approach

in many cases). CONSUASOR is able to learn which advice is

trustworthy and reaches high levels of success in all observed

cases.

3.4. Experiment 2. Trust on Recommenders for Goals

In these experiments the user η has 3 goals that will change

over time every 40 time instants (G1,...,40 =Good Piano Perfor-

mant, G41,...,80 = Good Band Improviser, G81,...,120= Good Com-

poser). η is fully compliant and honourable (d1 = d2 = 0) and

there are 11 recommenders providing advice, each spacialized

in a different goal. Every experiment performs 100 iterations

(time instants) of the following steps: (1) The user calculates

the trust on each recommender for its goal Gt; (2) The user se-

lects the most trusted recommender and asks him for advice; (3)

The selected recommender provides a recommendation, as de-

fined in Section 3.1; (4) An experience is generated and stored,

the trust on the recommender is updated and the success of the

user is updated.

Figures 7 and 8 show the recommenders’s trust evolution and

η’s success evolution in time. In Figure 7, each recommender

is fully expert in one goal and ignorant in the others (d̄ = 0

when he is asked for its goal of expertise and d̄ = 1 otherwise).

We observe that every time the user changes its goal, the trust

on the recommender which is expert in that goal grows. The

trust evolution is slower when the user changes from one goal

to the other, since more elements are included in the probability

distributions and increments in such distributions require more

time. The success evolution of CONSUASOR is better than the

EigenTrust case. In Figure 8, each recommender is moderately

Figure 7: Experiment 3. Trust and success in time, for 1 compliant and hon-

ourable user (d1 = d2 = 0) with 3 different goals, and 11 recommenders, each

competent in 1 goal (d̄ =0) and incompetent in the other 2 (d̄ =1)

Figure 8: Experiment 3. Trust and success in time, for 1 compliant and hon-

ourable user (d1 = d2 = 0) with 3 different goals, and 11 recommenders, each

with mediocre competency in 1 goal (d̄ = 0.7) and incompetent in the other 2

(d̄ =1)
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knowledgeable in one goal and ignorant in the others (d̄ = 0.7

when he is asked for its goal of expertise and d̄ = 1 other-

wise). As in the previous case, the recommender which is more

knowledgeable at every time instant stands above the rest, al-

though the trust measure is lower since the recommender is not

fully expert and sometimes he might not give the best advice.

Success evolution of the CONSUASOR strategy is also better

than EigenTrust in this case.

These results show that CONSUASOR is able to adapt to a

different scenario (calculate the most trusted recommender for

a given goal) and learn which is the most suitable recommender

when a user pursues different goals in time. Experiments where

the user first asks for advice from the recommenders and then

selects the most trusted advice were also executed, and these

showed similar results trends. The adequacy of CONSUASOR

to provide reliable trust measures at every time instant results

in higher success rates than in the EigenTrust case.

3.5. Experiment 3. Comparison of CONSUASOR strategies

Finally we present different strategies that can be used with

CONSUASOR and how these strategies behave in time for a

particular context. In these experiments a compliant and hon-

ourable user η (d1 = d2 = 0) has 5 goals that change in time

randomly. Recommenders are fully expert in one particular

goal and ignorant in the others. In this context, η will focus

on three specific questions: (1) How good is recommender ρ

giving advice [Pη]G? (2) How good is recommender ρ giving

advice for my goal G? and (3) How good is recommender ρ?

Strategy 1 consists of the following steps: (1) The user asks

advice to all recommenders for its goal Gt; (2) Each recom-

mender provides a recommendation; (3) The user calculates

the trust on each advice and selects the most trusted one; and,

(4) An experience is generated and stored, the trust on recom-

menders is updated and the success of the user is updated.

Strategy 2 consists of the following steps: (1) The user calcu-

lates the trust on each recommender for its goal Gt; (2) The user

selects the most trusted recommender and asks him for advice;

(3) The selected recommender provides a recommendation; (4)

An experience is generated and stored, the trust on the recom-

mender is updated and the success of the user is updated.

Strategy 3 consists of the following steps: (1) The user calcu-

lates the general trust on each recommender ρ; (2) The user se-

lects the most trusted recommender and asks him for advice; (3)

The selected recommender provides a recommendation; (4) An

experience is generated and stored, the trust on recommenders

is updated and the success of the user is updated.

Figure 9 shows the success evolution of strategies 1, 2 and 3.

We observe that, in this particular context where recommenders

are specialized in goals, Strategy 1 is the one that presents a

faster learning rate in the first time instants, but eventually Strat-

egy 2 achieves higher levels of success. In this particular con-

text, focusing on a competent recommender for a given goal

is more effective than focusing on the most trusted advice in

general. Strategy 3 is not effective, which tells us that overgen-

eralising (focusing on competent recommenders in general) is

not useful in this scenario.

These results stress the point that the flexibility of the CON-

SUASOR algorithm in calculating general trust measures is an

advantage. However when making such generalizations, the

decision on what to generalize should be carefully made, and

it should take into consideration the specific context and the

available information.

Figure 9: Experiment 3. Success in time, for 1 compliant and honourable user

(d1 =d2 =0) with 5 different goals, and 11 recommenders, each competent in 1

goal (d̄ =0) and incompetent in the other 4 (d̄ =1)
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4. Background

The literature on trust is vast, with many surveys on the

subject (e.g. Pinyol and Sabater-Mir (2013); Ramchurn et al.

(2004a); Mui et al. (2002); Sabater and Sierra (2002)), where

each survey focuses on different dimensions in their classifi-

cation of existing trust and reputation models. For instance,

Sabater and Sierra (2002), the most cited survey, categorises

computational trust and reputation models based on six dimen-

sions: (1) paradaigm, which describes whether the model fol-

lows a cognitive approach or a numerical one; (2) information

source, which describes the type of information used, such as

direct experiences, witness information, sociological informa-

tion, and prejudice; (3) visibility, which describes whether a

trust measure is a global property that may be viewed by all

or a private and subjective property that each individual builds;

(4) granularity, which describes whether a model is context de-

pendent or not; (5) cheating behaviour, which describes what

type of cheating behaviour is addressed, if any; and (6) type

of exchanged information, which describes whether exchanged

information is described as boolean or continous measures.

According to the above classification, CONSUASOR follows

a numerical paradigm where trust is defined based on a proba-

bilistic measure, although the model has been designed based

on a cognitive model that assumes a good adviser is one who

knows about the compliance and honour of advisees as well as

the causal relations between plans and goals. Concerning the

information source, we say CONSUASOR is based on direct

experiences as the model relies on the experiences of a single

entity (that which maintains the history of experiences). How-

ever, we note that the ‘observers’ that help populate the history

of experiences may be trusted third-party entities. Concerning

visibility, although a trust measure may be shared, we say the

trust measure is subjective as it is local to the history of expe-

riences it relies on. Concerning the granularity, CONSUASOR

is context dependent, as it learns from past experiences in sim-

ilar contexts. Concerning cheating behaviour, CONSUASOR

does assume that the adviser or advisee might lie. For example,

an advisee may say they will perform a plan (i.e. commit to

it) when they are in fact not willing to do so. However, CON-

SUASOR assumes observers to be truthful. Who to trust as an

observer is a decision left for the entity maintaining the history

of experiences (as it has been discussed in Section 2.1.1).

From the large existing literature, the models that may be

classified as similar to ours are those that are context dependent,

which we focus on next. One of these models is the early model

by Marsh (1994), which proposed an approach for calculating

‘situational trust’. In this model, the trust that an agent x has

on an agent y in a given situation (or context) α is based on

the utility that x gains from situation α, the importance of the

situation α for x, and an estimate of the general trust of x on y

that takes into account all possible relevant data in similar past

situations. Marsh (1994) also has a notion of decay, which is

modelled as a time window for experiences.

A more cognitive-based model is that of Castelfranchi and

Falcone (1998), where trust is viewed as a mental state and a

complex attitude where the trust of x on y regarding goal g de-

pends on whether x believes y is both capable and willing of

performing g. x’s trust on y regarding goal g also depends on

whether g is a goal for x and whether x believes it depends on y

in achieving goal g.

The model by Abdul-Rahman and Hailes (2000) makes use

of both direct and indirect (or communicated) experiences. The

model uses a qualitative degree approach to model trust, taking

into account the context as well as the trustworthiness of indi-

rect (communicated) experiences. However, the modelling of

uncertainty is somewhat ad-hoc and not based on probabilistic

grounds.

In Mui et al. (2001), a context-based personalised reputation

measure is inferred from propagated ratings through a peer-to-

peer network. The model is based on a Bayesian probabilistic

framework.

The Regret model (Sabater and Sierra, 2001) also calculates

trust based on learning from similar past experiences. Both

direct and indirect experiences are considered, and an incor-

porated credibility model is used to assess the reputation and

trust of an information provider, based on social network anal-
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ysis and prejudices. However, the overall notion of trust does

not have a probabilistic meaning and is based on a utility mod-

elling of the interactions that we depart from (see Debenham

and Sierra (2009) for a discussion).

Like Regret, the FIRE model (Huynh et al., 2006) uses a

number of information sources to calculate and integrate four

different types of trust and reputation measures: (1) interaction

trust, which is based on learning from the similar past experi-

ence of direct interactions; (2) role-based trust, which is a trust

measure that is influenced by role-based relationships between

the agents; (3) witness reputation, which is based on learning

from the similar past experience of indirect interactions; and (4)

certified reputation, which is built from third-party references

provided by the agent itself (this is similar to the recommenda-

tion letters used when applying for a job position).

Ramchurn et al. (2004b) also based reputation on similarity

between new contexts and past ones. However, their approach

uses the concept of fuzzy sets to compute one’s confidence,

based on the notion of assigning utilities to the different aspects

of a context. Trust is then built on the concept of the maximum

expected loss in utility.

Simari et al. (2008)’s approach compares what the agent has

committed to to what was actually delivered (which we refer to

as observed). Similar to us, trust is then context dependent and

based on past performances, although our similarity measures

are more general measures that are based on semantic matching

and empowerment.

Tavakolifard et al. (2008) illustrates how trust information in

one context can affect trust information in other contexts. The

model uses case-based reasoning to assess trustworthiness in

new situations by relying on past similar experiences.

In the domain of recommendations, Nakatsuji et al. (2010)

illustrate how recommendations may be made across multiple

interrelated domains such as music and movies. Their similar-

ity is based on comparing users who share (and rate) similar

items or who share social connections. Such a similarity mea-

sure can then help provide recommendation chains (sequences

of transitively associated edges) to items in other domains.

Finally, as illustrated by the introduction of Section 2, Osman

et al. (2014) uses the same philosophy as this paper. In Osman

et al. (2014), one compares what has been committed to to what

is actually delivered (or observed), and the model is based on

probability and information theory (for updating the probabil-

ities of expectations) and semantic similarity (for comparing

contexts). The equations on semantic similarity and informa-

tion decay have first been introduced in Osman et al. (2014),

whereas the notion of updating a probability distribution fol-

lowing the minimum relative entropy approach has first been

introduced in Sierra and Debenham (2005).

However, differently from all the above models, CONSUA-

SOR takes into account the specifics of an advice. For com-

puting trust on advice, the model does not treat advice as a

single entity, but assesses each of its components: the recom-

mended plan and the intended goal. Carefully analysing an ad-

vice’s constituents is what makes this model stand out from the

rest. As a result, we say an adviser is a good adviser if the ad-

viser takes into consideration the compliance and honour of the

advisee when making his advice, in addition to the causality re-

lations between plans and goals. Additionally, CONSUASOR

introduces the notion of empowerment for comparing the simi-

larity of contexts when the capability of performing actions (or

plans) is important. Given these significant differences between

CONSUASOR and existing models, for our evaluation, we have

chosen to compare CONSUASOR to the popular EigenTrust

model, which has been used in the industry by eBay and Ama-

zon, to name a few. EigenTrust (Kamvar et al., 2003) is based

on the notion of having each peer building a local trust value for

other peers based on direct past experiences. A transitive trust

measure is then computed for other peers based on the idea that

if a peer trusts another peer x, then it will also trust every other

peer trusted by x.

5. Conclusions

A good adviser needs to certainly know the causal relation-

ship between performing a plan and realising a goal. However,

when suggesting a plan to someone, the adviser also needs to
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know how compliant and honourable that person is, in order to

personalise his advice accordingly. An adviser may need to be

more demanding to those who are less compliant or honourable,

for instance, in order to guarantee that the target plan is actu-

ally performed. Currently existing trust algorithms do not take

into account the specifics of plan recommendation. We have

proposed a trust model for advice based on the compliance and

honour of advisees, as well as the causality between plans and

goals. All these models are learned from similar past experi-

ences using probability and information theory. The similarity

of experiences is based on semantic similarity and the notion

of empowerment, which this paper introduces to help compute

the similarity of actions (or plans) when the capability of per-

forming these actions (or plans) is important. Finally, we have

proposed a benchmark for the evaluation of trust algorithms on

advisers that may be used in the future to compare with other

trust algorithms modelling plan recommendations, if they be-

come available. Empirical evaluation shows that our model as-

sesses coherent trust measures and reach high levels of success

in short periods of time. We leave for future work a more de-

tailed analysis of the sensitivity of the algorithm’s parameters

and further experiments on complex scenarios.

Concerning impact and applicability, we note that the pro-

posed trust model may be used in a number of existing plat-

forms where advice may be given to help achieve a certain goal.

For example, in wikiHow (wikihow.com), which is a web-

based and wiki-based community, how-to guides are proposed

by members, where guides may be understood as plans that

help achieve the goal defined by the title of the how-to guide

(e.g. in ‘how to boil an egg’, the goal is ‘boil and egg’). In Stack

Overflow (stackoverflow.com), which is a question and an-

swer website focusing on computing programming, answers

may be interpreted as plans that are recommended by their au-

thor to fulfil the goal presented by the question. In complaint

resolution technologies (e.g. CogniCor, cognicor.com), sug-

gested resolutions may be understood as plans for the goal of

solving a given complaint. These are sample scenarios where

CONSUASOR can help select the best advise (whether it was

a wikihow plan, a stack overflow answer, or a suggested com-

plaint resolution). In any scenario, a number of requirements

need to be fulfilled for the CONSUASOR model to be applica-

ble. These may be summarised as follows: (1) the system needs

to keep track of who is suggesting what plan for what goal; (2)

the system needs to keep track of the results of following an ad-

vice (what plan was committed to and executed, and which goal

was fulfilled) which usually relies on feedback from the user at-

tempting to follow the advice; and (3) the system needs to be

capable of computing the similarity of plans/goals. We note

that some simplifications may be applied to increase the appli-

cability of the CONSUASOR model. For example, in some

scenarios, one may assume that executed plans are those that

are committed to, and in others, one may assume that commit-

ted to plans are those that are recommended. Simplifications

depend on how much detail does the system expect from the

user’s feedback. For instance, can the user state his executed

plan? To simplify keeping track of the outcome, one may also

assume that only two outcomes are possible: the goal was ful-

filled and the goal was not fulfilled. Additionally, if a numerical

rating can be provided by the user as feedback on an advice’s

outcome, this rating may be used to indicate the ‘similarity’

between the intended goal and the achieved goal. Finally, com-

puting the similarity of plans/goals will very much depend on

the specific context. For example, tags in Stack Overflow may

be used to represent plans (in the case of answers) and goals

(in the case of questions). Then, either the semantic similar-

ity between tags can be used to compute the similarity between

plans/goals, or the intersection between tags may be used to

indicate the similarity between plans/goals (this implies that

Equation 2 may be redefined to consider the intersection be-

tween keywords, as opposed to considering semantic similar-

ity). In the case of domain specific conflict resolution technolo-

gies, where there usually is a predefined set of plans and goals,

similarity between plans/goals may be computed in advance us-

ing semantic similarity, manual assessments, or any alternative

method that seems most applicable to the scenario in question.
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