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Abstract.
Sensor networks (SN) are rapidly becoming the tool of choice

for monitoring. Their versatility makes them useful in numer-
ous and diverse application domains. However, most SN deploy-
ments assume that the area and events to monitor/control are well
known/understood at design time. Thus, the sensors’ configurations
can be defined prior to their deployment. Nevertheless, when the pur-
pose of an SN is to monitor the events of an uncharted environment,
where the distribution and nature of events is uncertain, it is rather in-
tricate to configure its sensors at design time. Instead, sensors should
be able to self-configure at run time. In this paper, we propose a low-
cost (in terms of energy and computation) collective approach that
allows the sensors in an SN to collaboratively search for their most
appropriate configurations only using their local knowledge. We em-
pirically show that our approach can help sensors efficiently monitor
environments where various dynamic events exist.

1 Introduction
As technology continuously improves, it is becoming apparent that
sensor networks (SN) are a powerful and versatile tool [5]. They
have been employed by numerous applications on domains of dif-
ferent characteristics. Nevertheless, many of these applications rely
on static sensor configurations (i.e pre-configured at design time),
which can be detrimental. It has been argued that in real-world de-
ployments the complexity, diversity, and dynamicity of the sensing
requirements is a major issue that cannot be tackled through static
configurations ([2] [4]).

Moreover, the current literature assumes that the deployment en-
vironment has been well studied, and thus that the sensor designers
and the sensors themselves can use the available domain knowledge
for configuration purposes. Nonetheless, this may not always be the
case. It has been argued that sensor networks can be particularly use-
ful in remote or dangerous environments that have rarely been stud-
ied due to their inaccessibility [1]. Therefore, sensors need to be able
to (re)configure and coordinate themselves in a decentralized manner
according to the occurring events of these uncharted environments to
maximize the amount of information perceived over time.

Furthermore, it has been noted that in large environments various
distinct events are prone to occur at once. In other words, there is a
spatial distribution of concurrent events. Hence, a sensor’s configu-
ration depends on the event(s) present on its geographic location (a
sensor must be able to adopt as many configurations as events are
possible). In these cases, it is likely that neighboring (close-by) sen-
sors experience the same event(s), consequently making them require
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similar (the same) configurations. Collective active sensing [5], is a
known type of approaches that take advantage of the fact that col-
lectives of sensors may need similar configurations, by making them
coordinate and cooperate towards a common goal (discovering the
most useful configuration).

In this paper we propose a collective approach to monitor un-
charted environments where only (at most) partial domain knowl-
edge is available to the sensors in a SN. Thus, unlike in most current
SN applications, we are not aware of the kind of events that may
occur, nor of their possible locations in the environment. For our ap-
proach, we embed in each sensor a distributed algorithm that: i) has a
low computational overhead and a low energy consumption; ii) em-
ploys diffusion search to collectively find/construct the most useful
sensor configurations for to the occurring events; iii) promptly recon-
figures the sensors in response to dynamicity of the events; and iv)
works when the sensor cannot rely on the available domain knowl-
edge (uncharted environment).

2 A Collective Approach

In situations where the sensors are deployed to an uncharted environ-
ment, it may be the case that the only available useful information is
the one provided by the sensors’ own feedback function. Under such
circumstances, cooperation becomes necessary since sensors can im-
prove their partial domain knowledge (regarding the configurations)
by sharing their local experiences. Moreover, the number of possible
configurations may be very large, thus it may be unfeasible for the
sensors to individually search for their configurations. Hence, if mul-
tiple sensors search for the same configuration, they can save time
and power by searching together. Once a sensor finds a good config-
uration, it can be promptly shared with its searching peers.

To that aim, we designed the collective diffusion search (CDS)
as an algorithm based on the collective sharing of configurations
amongst neighboring sensors. In what follows we describe the main
components of CDS and their rationale.
Diffusion. It is an efficient (computation-wise) component in charge
of sharing the configurations. In a sensor, diffusion consists in a
broadcast (to its close-range neighbors) of its configuration. How-
ever, to reduce energy consumption (which may be a sensor’s pri-
ority) a probability of diffusion can be employed to regulate a sen-
sor’s likelihood of broadcasting. Computationally, diffusion has a
low overhead on the transmitting sensor side (sending a message
without caring who will receive it). Nonetheless, receiving various
broadcasts raises an issue, because a receiving sensor needs to de-
cide what to do with these received configurations
Culling. Attaching in each broadcast the utility of a configuration ef-
fectively provides a receiving sensor with the means to decide how



Figure 1. a) Distribution of four different events in an environment.

to deal with multiple incoming configurations. This new informa-
tion allows each receiving sensor to implement a culling component
to dismiss useless (received) configurations. For instance, we imple-
ment this through a filter that selects the best received configuration
and only if it is better than the sensors own.
Intermixing. Diffusion and culling do not have searching capabili-
ties, at most they will establish the best configuration known by any
of the sensors (per event). Thus, some searching needs to be incorpo-
rated since its unlikely to expect that some sensor knows its most use-
ful configuration a priori. A low-overhead search method, consists
in intermixing (combining) two configurations (the selected through
culling and the sensor’s current one) to create a new one. This can
be regarded as using someone else’s experience without completely
forgetting your own. Nevertheless, sensors cannot always depend on
the usefulness of their neighbors configurations (e.g if all the neigh-
boring sensors share a bad configuration).
Local improvement. Through this component each sensor is capable
of searching for new configurations without depending on its neigh-
bors. Local improvement can be accomplished (without expending
much processing power) by introducing a random change a sensor’s
configuration with some probability of improvement. Various disci-
plines have shown this to be effective [3].

Altogether, in collective diffusion search each sensor continuously
attempts to propagate its configuration while trying to improve it at
the same time. The sensor receives some broadcasts which are then
filtered through culling in an attempt to determine if there is a bet-
ter configuration. In case there is, the sensor’s configuration and the
selected one are combined in an attempt to create a new (and ideally
better) configuration. Afterwards, local improvement can be used to
continue the search for the best configuration. Once this is over, the
sensors configuration is used and its utility valuated through the feed-
back generated by the performed actions. Lastly (is a matter of per-
spective) the sensor wraps its configuration along with its utility into
a message for broadcasting. An execution of this process shall here-
after be referred as a communication cycle.

3 Experimental Results

Our preliminary experiments were designed to test if through collec-
tive diffusion search randomly deployed sensors can find the config-
urations needed to monitor the events occurring in the environment.
For this experiment we ran 50 discrete event simulations (each one
up to 5000 ticks) over a 100 x 100 grid environment covered by four
distinct events (figure 1 depicts with different colors the shape of
each event). During a simulation a set of 1500 sensors is randomly
deployed unto this environment. However, because we are evaluating
their self-configuration capability in an uncharted environment none
of the sensors is aware of the environment partitioning and thus each
sensor starts with a random configuration. A sensor configuration is
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Figure 2. Results of convergence after the initial deployment. The black
dots mark when the best configurations were found.

given by an ordered sequence of 5 actions selected from a pool of 20
possible actions ( i.e ‖K‖ = 205).

The CDS parameters used for the experiments were: a broadcast
range of 4 cells, a 20% diffusion probability per sensors at a given
point in time, and a 0.0008 probability of local improvement.

Figure 3 shows that CDS is quite effective in finding the most
useful configurations for most of the sensors. Observe that once
such configurations are found (black dots in the figure) the sensors
promptly adopt them. These configurations are found at ∼ 20,∼
30,∼ 40 and∼ 60 communication cycles for each of the four events
respectively.

However, notice that depending on features of the event, some con-
figurations require more time to be adopted by sensors. This appears
to be related to the dimension of the area occupied by the event, and
thus by the number of sensors that require the same configuration.
Event 4 is a particularly pronounced example of this effect (sensors
localized in the region of this event take the longest to find the best
configuration and thus to adopt it). From the algorithmic point of
view, this is reasonable in a collective approach because fewer sen-
sors are looking for the same configuration. Although there may be
another factor to consider, the location of the event. Observe that
event 4 is completely surrounded by the other events, which means
that sensors in that area are constantly receiving conflicting config-
urations from their neighbors. Additionally, because of its small di-
mensions a broadcast originated in its frontiers may cover a signifi-
cant area of the event. In other words, sensors far from the center of
the event may receive conflicting configurations.

To conclude, collective diffusion search is a low overhead, but
powerful distributed algorithm that when embedded in each sensor
empowers them to dynamically find the most useful configuration for
the events in their locations (even when only partial domain knowl-
edge is available). Nonetheless, the dimensions and location of the
events affect how promptly such configuration is found and adopted.
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