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Abstract. Phase-transition in random SAT formulas is one of the proper-

ties best studied by theoretical SAT researchers. There exists a constant
rk depending on k such that, if we choose randomly a k-SAT formula

over n variables and m clauses, it will be satisfiable with high proba-

bility, if m/n < r, and unsatisfiable, otherwise. However, this criterion
is useless in practice, because real-world or industrial instances have

some properties not shown in random formulas. In the last years, several

models of realistic random formulas have been proposed.
Here we discuss about the phase transition in these models, and about

the size of unsatisfiability proofs. We observe that in these models, like in

real-world formulas, there is not a sharp phase transition, the transition
occurs for smaller values of r, and the proofs on unsatisfiable formulas

are smaller than in the classical random model. We also discuss about

the strategies used by modern SAT solvers to exploit these properties.
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1. Introduction

SAT is a crucial problem in computer science, artificial intelligence and even
in complex systems theory. From a theoretical perspective, the (in)possibility of
deciding SAT in polynomial time is probably the most famous open question in
computer science. From an AI perspective, the translation of many constraint
satisfaction problems like scheduling, planning, hardware verification into SAT,
and the use of SAT solvers has shown to be a successful approach, that defines the
state-of-the-art in many applications. In recent years, SAT has also been studied
from a complex systems and complex networks perspective. This has made SAT
the object of study of several scientific communities, often disjoint and with very
different techniques and sensibilities.

One of the best studied phenomena in SAT is the satisfiability phase transi-
tion. If we chose a random k-SAT formula over n variables and m clauses with
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uniform probability, we fix the ratio α = m/n and make n tend to infinite, the
probability that the formula is satisfiable will tend to 0, when α < rk, and to 1
when α > rk, where rk is a constant that only depends on k. The existence of
this satisfiability threshold has been shown experimentally [17]. It has also been
shown that most difficult to solve random SAT instances are located around this
satisfiability threshold. This motivates the generation of instances close to the
satisfiability threshold when using a random model to generate SAT instances for
solvers evaluation. For k = 2, the phase transition has been rigorously proved
for r2 = 1. For k = 3, experimentally it has been estimated r3 ≈ 4, 27, and sev-
eral upper and lower bounds for r3 have been proved. Using the cavity method, a
technique applied in statistical mechanics to analyze the Ising models and other
physical systems, Mézard and Zecchina [20], Mézard et al. [21] found an exact
value for r3. However, this cannot be considered a rigorous prove since it is based
in some heuristics. The same technique is behind the Braunstein et al. [10] sur-
vey propagation algorithm, that is the most efficient SAT solving algorithm when
dealing with random SAT instances near the phase transition threshold.

The main difference difference between real-world SAT instances and random
instances is the presence of a structure. This structure may be revealed represent-
ing them as graphs. Real-world instances use to be scale-free [2], which means
that the number of occurrences of variables k follows a power-law distribution
P (k) ∼ k−δ. They are also very modular [4], and have a small fractal dimen-
sion [5]. The space of tree-like resolution proofs, also called hardness, of these
instances use to be small, when compared with random instances [1, 9].

The scale-free structure of real-world networks is usually explained as the
result of preferential attachment [8]. If we have a growing network where new
nodes get connected to old nodes with probability proportional to the number of
edges they already have, we get a network where P (k) ∼ k−2. Most real-world
SAT instances are not the result of a growing process. In this case, the scale-free
structure may be the result of a communication-optimization process. Modularity
may be the result of a local structure or low fractal dimension. For instance,
a network with n nodes, where every node is only connected to two neighbors,
forming a ring of dimension 1, has modularity close to 1, when partitioning it
into modules of

√
n consecutive nodes. The low fractal dimension has a more

intriguingly explanation. As we will see, the satisfiability phase transition in SAT
instances is related with the percolation threshold in graphs. It is known that the
biggest connected component of a graph, in the percolation threshold, has a low
fractal dimension [12]. If we assume that real-world SAT instances are also in the
satisfiability threshold, the same reason may explain their low fractal dimension.

In this article, we will focus on two new models of random SAT instances
that capture the nature of real-world SAT instances better than the traditional
uniformly-random model: the scale-free SAT model [3, 6] and the popularity-
similarity SAT model [19]. We will discuss on the satisfiability threshold on these
models, and its relation with the proof-size of unsatisfiable instances. We will
relate the satisfiability threshold with the percolation threshold on graphs and we
will describe a method that may help to characterize the satisfiability threshold
based on techniques already developed for networks.



2. Phase Transition in 1-SAT

There is a close relationship between percolation threshold in graphs and sat-
isfiability threshold in SAT instances. Percolation theory describes the behavior
of connected components in a graph when we remove edges randomly (or we
construct it adding random edges). Erdös and Rényi [14], in a seminal paper,
proposed a random graph model G(n,m) where all graphs with n nodes and
m edges are selected with the same probability. Gilbert [18] proposed a similar
model G(n, p) where n is also the number of nodes, and every

(
n
2

)
possible edge

is selected with probability p. For not very sparse graphs (when p n2 →∞), both
models have basically the same properties taking m =

(
n
2

)
p. Erdös and Rényi [15]

also studied the connectivity on these graphs and proved that

• when m < n/2, a random graph almost surely has no connected component
larger than O(log n),

• when m = n/2 a largest component of size n2/3 almost surely emerges.
Later, [12] proved that this connected component has a small fractal di-
mension. And,

• when m > n/2, the graph almost surely contains a unique giant component
with a fraction of the nodes and no other component contains more than
O(log n) nodes.

In next section, we will see that the phase transition observed in graphs is
responsible for the abrupt satisfiability transition observed in random SAT. There
exists a relation between the existence of connected components (in the formula
represented as a graph) and the existence of a unsatisfiability core of clauses (i.e.
of a unsatisfiability proof) that makes the formula unsatisfiable. The existence of
a big connected component in a SAT formula implies the existence of a contra-
diction, i.e. the existence of a big unsatisfiability proof. But, what happens with
small connected components? Could not them make the formula unsatisfiable? In
classical models of random formulas, existence of small minimal unsatisfiability
cores of clauses (cores for short) is much less probable than existence of large
cores. Therefore, in these models, we can add clauses and we do not get a con-
tradiction until we get a giant connected component. These models show then an
abrupt phase transition. However, there are other models where the unsatisfia-
bility of the formula is due to the existence of small cores. In this second case,
there is not a proper phase transition threshold. In order to analyze this second
phenomena, we will study the phase transition in 1-SAT formulas.

1-SAT formulas are conjunctions of one-literal clauses. The only possible min-
imally unsatisfiability core is {a,¬a}, for some variable a. Therefore, in this model
all cores are small. There are satisfiable 1-SAT formulas of any size (since we can
have repeated clauses). However, a random formula with just one repeated vari-
able has probability 1/2 to be unsatisfiable. In order to find the phase transition
threshold, if it really exists, we may compute the probability of a formula with m
clauses over n variables to not contain repeated variables:

P (n,m) =
n− 1

n

n− 2

n
· · · n−m+ 1

n
=

(n− 1)!

(n−m)!nm−1
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Figure 1. Fraction of satisfiable random 1-SAT formulas as a function of clause/variable for
n between 28 and 214. Dots represent experimental data, and continuous lines the prediction

P (n,m) for the probability of not repeated variables. The experimental fraction is approximated

repeating the experiment for 50 formulas.

Using Stirling’s approximation and limn→∞(1 − 1/n)n = e−1, for big values of
n−m, this probability can be approximated as:

P (n,m) ≈
√

2π(n− 1)
(
n−1
e

)n−1√
2π(n−m)

(
n−m
e

)n−m
nm−1

= e1−m (1− 1/n)n−1/2 (1−m/n)m−n−1/2

≈ e−m (1−m/n)m−n−1/2 =
1√

1−m/n

(
1

em/n (1−m/n)1−m/n

)n

If we replace m = r n, with r < 1, we get P (n, r n) ≈ 1√
1−r

(
1

er (1−r)1−r

)n
.

When n → ∞, the function P (n, r n) has a phase transition, but it is located at
the critical value of r solving: er (1− r)1−r = 1. However, the unique solution of
this equation is r = 0.

Therefore, 1-SAT has a phase transition point, when m = r n and n→∞, but
it is located at r = 0. In Figure 1 we represent the fraction of satisfiable formulas
with respect to m/n found experimentally and the theoretical prediction for the
occurrence of the fist repeated variable. Since the repetition of variables does not
imply the unsatisfiability of the formula, the experimental data are moved to the
right of theoretical data.

In Section 4, we will see another example of formulas with a phase transition
at r = 0, and where cores are small. We conjecture that, in a random SAT
model, when small cores are more probable than large cores, the phase transition
threshold is r = 0. And, when large cores are more probable than small cores, then
the percolation threshold, obtained with our criterion, and the phase transition
threshold are equal.



3. A Criterion for Phase Transition in 2-SAT

In this section we consider clauses of up to 2 literals. It may be argued that, since
2-SAT is a polynomial problem, these formulas are not interesting. However, this
only means that we cannot observe the easy-hard-easy pattern on the difficulty
of solving the formulas. But we can observe the sharp and smooth satisfiability
transitions, and analyze the size of unsatisfiable cores.

Unsatisfiability proofs of 2-SAT formulas are characterized by bicycles [7, 11].
We define a cycle in a 2-SAT formula F as a sequence of literals x1, . . . , xn such
that, ¬xi ∨ xi+1, for any i = 1, . . . , n − 1, and ¬xn ∨ x1 are clauses of F . We
define a bicycle in a 2-SAT formula as a cycle x1, . . . , xn such that there exists a
variable a satisfying {a,¬a} ⊆ {x1, . . . , xn}. A 2-SAT formula is unsatisfiable if,
and only if, it contains a bicycle [7, 11].

We will also consider random graphs with n nodes and m edges and connected
components, defined as subsets of nodes such that any pair of them is connected
by a path inside the component. A random graph of size n is said to contain a
giant connected component if almost surely2 it contains a connected component
with a positive fraction of the nodes. Given a model of random graphs, we say
that r is the percolation threshold if any random graph with n nodes and more
than r n edges almost surely contains a giant component. In a random graph,
the degree of a node x, noted kx, is a random variable. The random variable k
represents the degree of a random node chosen with uniform probability.3

As we comment in the introduction, there is a parallelism between graphs
and SAT formulas, and between the percolation threshold and the satisfiability
threshold. We can consider the graph of all literals of a formula, where every clause
clause a ∨ b is represented as an edge a ↔ b between nodes a and b. However,
notice that a connected component in the graph is not a bicycle in the formula
(in a bicycle, the clause a ∨ b is connected to ¬b ∨ c, whereas in a connected
component the edge a↔ b is connected to b↔ c).

Theorem 1 establishes a criterion for the existence of a giant bicycle in a
formula. The proof of the theorem resembles Cohen et al. [13], Molloy and Reed

[22]’s criterion for the existence of a giant component in a graph when E[k2]
E[k] > 2,

where k is the degree of a random node, and E denotes expectation. However,
notice that, in Theorem 1, the 2 of Molloy-Reeds criterion is replaced by a 3.

Theorem 1 Let F be a random 2-SAT formula generated with a model where
(1) the number of occurrences of literals x and ¬x, noted kx and k¬x, follow the
same and independent probability distribution4 and (2) the probability of clause
x∨y only depends on the probability distributions for kx and ky. Then, F contains

a giant bicycle if, and only if, E[k2]
E[k] +E[k] > 3. Or, equivalently: E[K2]

E[K] > 3, where

Kx = kx + k¬x, for every variable x.

2Almost surely or with high probability means that, in the model of random graph, as n → ∞,

the probability tends to 1.
3In some of the models of random graphs that we will consider, not all degrees of nodes follow

the same probability distribution. Therefore, we will distinguish between k and kx.
4The distribution is the same for kx and k¬x, but it can be different for the number of

occurrences of distinct variables kx and ky .



Proof: A similar theorem is proved in detail in [6], following similar arguments
as in [22]. Here we only sketch the proof following arguments of [13], that are
more in the style of physics.

In percolation theory we get a giant connected component when a node i,
connected to a node j, is also connected in average to at least one other node.
Formally, when the expected degree of i, conditioned to the fact that i and j are
connected, is E[ki | i↔ j] = 2.

In our case, in order to emerge a giant cycle, when there is a clause x∨ y, we
have to find another clause containing ¬x. It is difficult to find a criterion express-
ing such condition dealing with literals. Instead, we will reason about variables.
When we have a clause containing variable x, i.e. x∨ y or ¬x∨ y, for some literal
y, we have to find another clause that contains ¬x, or x, respectively, allowing us
to continue the construction of the cycle. In this situation, the expected number
of other clauses containing x is 2, that added to the original clause gives the 3.
Let ±x ∨ y express the fact “x ∨ y ∈ F or ¬x ∨ y ∈ F , for some literal y, and
let Kx = kx + k¬x be the number of occurrences of variable x. Formally, our
criterion can be written as E[Kx | ±x ∨ y] > 3. This criterion is the necessary
and sufficient condition to continue the construction of a set of clauses, ensuring
that the probability that this set contains a fraction of the literals tends to one.

Using Bayes, we have

E[Kx | ±x ∨ y]=

∞∑
k=0

k P (Kx = k | ±x ∨ y) =

∞∑
k=0

k
P (Kx = k ∧ ±x ∨ y)

P (±x ∨ y)

=

∞∑
k=0

k
P (±x ∨ y | Kx = k)P (Kx = k)

P (±x ∨ y)

Under the conditions of the theorem we have that the probability of a clause
conditioned to the fact that the number of occurrences of one of its variables is k is
P (±x∨y | Kx = k) = k

n−1 and, the probability of any clause is P (±x∨y) = E[Kx]
n−1 .

Therefore

E[Kx | ±x ∨ y]=

∞∑
k=0

k
k

n−1P (Kx = k)
E[Kx]
n−1

=

∑∞
k=0 k

2 P (Kx = k)

E[Kx]
=
E[K2

x]

E[Kx]

Now, since Kx = kx+k¬x and kx and kx follow the same distribution, we have

E[Kx] = 2E[kx] and E[K2
x] = 2E[k2x]+2E2[kx]. Therefore, E[K2]

E[K] = E[k2]
E[k] +E[k].

Finally, we prove that any giant cycle in a formula is, with high probability,
a bicycle. I.e. any set of literals containing a fraction of all literals will almost
surely contain also a literal a and its negation ¬a. We are in the presence of 2n
literals and a giant cycle of size r n (where 0 < r < 1). The probability of having
two given literals in the giant cycle is roughly r2. But then, the giant cycle can
have any of the n pairs of the form (x,¬x) with probability 1− (1− r2)n, which
tends exponentially fast to 1.

The previous theorem ensures that, when E[K2]
E[K] > 3, there is a giant bicycle

containing a fraction of the literals, and the formula is unsatisfiable. However,
if the formula is unsatisfiable, it can be due to a small bicycle, and we can not



conclude E[K2]
E[K] > 3. In other words, Theorem 1 establish a sufficient (but not

necessary) condition for unsatisfiability of random 2-SAT formulas, which result
into an upper bound for the phase transition point. However, we conjecture that,
either giant bicycles are more probable than small bicycles and the percolation
threshold (obtained with the criterion) is equal to the phase transition point, or,
if small bicycles are more probable, the phase transition point is at r = 0, like for
1-SAT.

4. Scale-free 2-SAT Formulas

Random scale-free formulas were introduced by Ansótegui et al. [3]. They are
parametric on an exponent β ∈ [0, 1]. Clauses are chosen independently, with
possible repetitions, like in the classical random model. However, the probability
to be chosen is not uniform, and depends on the probability of their literals
P (x1 ∨ . . . ∨ xn) ≈

∏n
i=1 P (xi), being zero when the clause contains repeated

variables. The probability of a literal and its negation is the same P (x) = P (¬x),
and the probability of variable xi is P (xi) ∼ i−β .

Ansótegui et al. [3] proved that in this model, the number of occurrences
K of a random variable follows a power-law distribution P (K) ∼ K−δ, where
δ = 1 + 1/β.

Recently, Friedrich et al. [16] have proved that scale-free random 2-SAT for-

mulas with exponent δ > 3 and clause/variable ratio m/n < (δ−1)(δ−3)
(δ−2)2 are satis-

fiable with probability 1−o(1).This gives a lower bound for a possible phase tran-
sition point, in terms of δ. They conjecture that this bound is tight and that this
phase transition exists. Replacing δ = 1+1/β (according to [3, 6]) in [16], we get:
Scale-free random 2-SAT formulas with exponent β < 1/2 and clause/variable
ratio m/n < 1−2β

(1−β)2 are satisfiable with probability 1− o(1). The first statement

of the following theorem states that, when the clause/variable ratio exceeds this
value, formulas are almost surely unsatisfiable.

Theorem 2 ([6]) Scale-free random 2-SAT formulas with exponent β < 1/2 and
clause/variable ratio m/n > 1−2β

(1−β)2 are unsatisfiable with probability 1− o(1).

Scale-free random 2-SAT formulas over n variables, exponent 1/2 < β < 1, and
m > 1

(1−β)2ζ(2β)n
2(1−β) + O(n1−β) distinct clauses, are unsatisfiable with proba-

bility 1− o(1).

5. When Formulas Have Small Refutations

In the previous section, we have seen that, in random scale-free 2-SAT formulas,
when 1/2 < β < 1 the number of clauses needed to make the formula unsatisfiable
is sub-linear: m = O(n2(1−β)). Therefore, the satisfiability threshold –understood
as a constant r such that, on the limit n→∞, formulas with less that r n clauses
are satisfiable and those with more than r n clauses are unsatisfiable– is r = 0. In
this section, we go further and prove that, when β exceeds a certain bound, scale-
free formulas become unsatisfiable due to a small subset of clauses containing
variables with small indexes. Moreover, this result holds for clauses of any size.



Theorem 3 ([6]) A random scale-free formula over n variables, exponent β and
O(n(1−β)k) clauses of size k is unsatisfiable with probability 1− o(1).

To prove the previous result, it suffices to compute the probability of a clause
only containing the smallest k variables:

P (x1 ∨ . . . ∨ xk) ≥ P (x1) · · ·P (xk) (1/2)k = 1−β ···k−β

(
∑n
i=1 i

−β)
k (1/2)k

≈ (k!)−β

(2
∫ n
1
i−β di)

k = (k!)−β
(

1−β
2(n1−β−1)

)k
In the limit n → ∞, when the number of clauses is O(n(1−β)k), the formula

will contain all 2k clauses of the form ±x1 ∨ . . . ∨ ±xk with probability 1− o(1).
As in classical random formulas, the expected number of truth assignments

that satisfy a scale-free random formula is 2n(1 − 2−k)m. This imposes a linear
upper bound on the number of clauses of satisfiable scale-free formulas, i.e. a
random scale-free formula with m = r n clauses of size k over n variables such
that r > 2k log 2 is unsatisfiable with probability 1− o(1). Therefore, the bound
in Theorem 3 only improves this other linear bound when (1 − β)k < 1, hence
when β > 1− 1/k.

For random scale-free 2-SAT formulas, Theorem 3 predicts that the number
of clauses in a satisfiable cannot grow faster that O(n2(1−β)), due to the emer-
gence of constant size cores. When 1/2 < β < 1, the second statement of Theo-
rem 2 predicts exactly the same exponent 2(1 − β) for the emergence of a giant
bicycle. This suggest that, in this range of β ∈ [1/2, 1], the probability of ex-
istence of a small and a giant unsatisfiable core of clauses is similar (at least in
O-approximation). However, experimental results suggest that the SAT-UNSAT
transition is quite smooth, like in classical 1-SAT. This suggest that small cores
are, in fact, more prominent.

6. The Effect of Locality

According to the conclusions of the previous section, it seems that the best we
can do for solving a random scale-free SAT instance is to instantiate first those
variables that occur more frequently. When β > 1, variables with smaller indexes
are a constant fraction of all variable occurrences. This implies that by instanti-
ating them first, we would get a polynomial algorithm. For β < 1, the complexity
of this algorithm is an open question (nobody has been able to prove that it is
polynomial, and nobody has been able to prove either that they require linear
tree-like refutation space, which would be an indicator of its hardness). In any
case, this is not the heuristics used by most industrial-specialized SAT solvers.
The reason is that the scale-free model does not capture another property of real-
world SAT instances. Clauses in those instances tend to relate similar variables
(according to some hidden metrics), i.e. variables that are close or local. This
leaded Giráldez-Cru and Levy [19] to define a more sophisticated random model
called popularity-similarity model. In this model, the probability that a clause
relates a pair of variables depends on the popularity of those variables (popular-
ity is the responsible of the scale-free structure) and their similarity (proximity



in this hidden metrics). There is a parameter, the temperature, that adds some

randomness or entropy to the resulting instance. Modern SAT solvers, using the

VSID heuristics, are able to use (a combination of) both properties, i.e. they tend

to instantiate most popular variables (the ones that occur more frequently) but

also closest variables (the ones that are more similar to the ones that have been

instantiated recently).

At low temperatures, clauses only relate closest variables. This means that

we can have small cores only containing most popular variables (like in the scale-

free model) or only containing a small subset of local variables, or a combination

of both. The use of the VSID heuristics would be an efficient way to search for

those small unsatisfiable cores (and proofs). The analysis of the phase transitions

of this model is proposed as a future research. However, the experiments support

the hypothesis of the existence of these small cores at low temperature, and the

existence of a smooth phase transition.

Finally, we conjecture that the existence of (a sharp) phase transition is only

possible when the number of clauses that make the formula unsatisfiable is linear

on the number of variables. In this situation, we conjecture that the tree-like

refutational space (the hardness) is linear (i.e. that the proofs found by the solvers

are linear). When the set of clauses is sub-linear we conjecture that, like in the

scale-free model, the satisfiability transition is smooth (there is not properly a

phase transition), and the unsatisfiable cores are also sub-linear.

7. Conclusions

In this paper, we have shown that percolation-based or, in general, mean field

techniques are useful tools for the analysis of phase transition in SAT. We have

applied these techniques to analyze the phase transition threshold in random

scale-free 2-SAT formulas. These model of random formulas are more realistic

describing real-world SAT instances. They have a parameter that regulates the

homogeneity on the number of occurrences of variables. When all variables have

a similar number of occurrences, the model shows a satisfiability phase transition,

like in classical random formulas. However, when the number of occurrences has

more variability the satisfiability transition becomes smoother and the size of

unsatisfiable cores of clauses become smaller (just like it is observed in real-world

SAT instances).

We also discuss the effect of the locality of variables on the phase transition,

following the popularity-similarity random model. In this model, with low tem-

perature, we obtain small unsatisfiable cores of clauses that relate very popular

and close variables. The VSID heuristics used by most SAT solvers, exploit this

topology in the space of variables to find these cores efficiently.

Finally, we conjecture that phase transition in SAT is only present when

the size of unsatisfiable cores are linear on the number of variables, and the

phenomena is related to the percolation phenomena in graphs. Otherwise, the

models generate smooth satisfiability transitions.
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