When Belief Functions and Lower Probabilities are Indistinguishable

Esther Anna Corsi
Department of Philosophy, University of Milan, Italy

Tommaso Flaminio
Artificial Intelligence Research Institute, IIIA — Spanish National Research Council, CSIC

Hykel Hosni
Department of Philosophy, University of Milan, Italy

Abstract
This paper reports on a geometrical investigation of de Finetti’s Dutch Book method as an operational foundation for a wide range of generalisations of probability measures, including lower probabilities, necessity measures and belief functions. Our main result identifies a number of non-limiting circumstances under which de Finetti’s coherence fails to lift from less to more general models. In particular our result shows that rich enough sets of events exist such that the coherence criteria for belief functions and lower probability collapse.

Keywords: Belief functions, coherence, geometric interpretation, imprecise probabilities, lower probabilities, uncertain reasoning.

1. Introduction
The research reported in the present paper is rooted in de Finetti’s foundation of probability [4]. We assume the reader to be familiar with the approach, and limit ourselves to recall only the details of the Dutch Book method which are directly relevant to our contribution.

Suppose that ψ_1, \ldots, ψ_n are elements of SL, the set of sentences built recursively from a finite set of propositional variables as usual, which are interpreted as the events of interest to a bookmaker B. Suppose further that this interest materialises with the publication of a book $\beta: \psi_1 \mapsto \beta_1, \ldots, \psi_n \mapsto \beta_n$ where for $i = 1, \ldots, n$, $\beta_i \in [0,1]$. A gambler G then chooses real-valued stakes $\sigma_1, \ldots, \sigma_n$ and for $i = 1, \ldots, n$, pays $\sigma_i \beta_i$ to B. G will then receive back $\sigma_i \nu(\psi_i)$ where $\nu(\psi_i) = 1$, if ψ_i is true and $\nu(\psi_i) = 0$ otherwise. Thus, B’s payoff is $\sum_{i=1}^n \sigma_i (\beta_i - \nu(\psi_i))$.

This setup is sufficient to put forward an operational definition of “rational degrees of belief”: the book published by B is coherent if there is no choice of (possibly negative) stakes which G can make, exposing B to a sure loss. More precisely, for every $\sigma_1, \ldots, \sigma_n \in \mathbb{R}$ there is a valuation ν such that,

$$\sum_{i=1}^n \sigma_i (\beta_i - \nu(\psi_i)) \geq 0. \tag{1}$$

As shown by de Finetti, coherence is necessary and sufficient for the existence of a finitely additive measure P that extends, over the boolean algebra of the events, the assessment β. That is, there is a probability function P such that for $i = 1, \ldots, n$ $P(\psi_i) = \beta_i$.

We consider books defined over generic sets of events. As shown in [14, 13], the definition of books over boolean algebras can be generalized to other algebraic structures that are more suitable to represent many-valued events. Furthermore, more refined notions of coherence, such as that of strict coherence, have been recently treated for both classical and many-valued events in [10].

Over the past decades considerable attention has been devoted to showing that the criterion captured by (1) can be used to provide a foundation to a much broader class of uncertainty measures than probability. The seminal contribution of Walley [16] is a particularly telling example, as it is largely motivated by concerns entirely analogous to those of de Finetti: tying uncertainty quantification to decision-making. Particularly relevant to our contribution is [17], in which Walley treats sets of desirable gambles, a model for representing imprecise probabilities.

The connection of these sets with the definition of books over a set of events is clear but not direct. Desirable gambles are defined over a finite set of outcomes $\Omega = \{\omega_1, \ldots, \omega_n\}$ such that there is an unknown outcome value belonging to Ω. A gamble over Ω is a bounded mapping from Ω to \mathbb{R}, i.e. $X: \Omega \to \mathbb{R}$. If an agent A accepts a gamble X, then $X(\omega)$ is the reward A obtains if the outcome of the experiment is ω. If L denotes the set of all gambles defined over Ω and $X, Y \in L$, then $X > Y$ means that $X(\omega) > Y(\omega)$ for all $\omega \in \Omega$ and for at least one $\omega \in \Omega$, $X(\omega) > Y(\omega)$. A subset D of L is a coherent set of desirable gamble if it satisfies the following axioms:

- **D1.** $0 \notin D$.
- **D2.** If $X \in D$ and $X > 0$, then $X \notin D$.
- **D3.** If $X \in D$ and $c \in \mathbb{R}_{>0}$, then $cX \in D$.
- **D4.** If $X \in D$ and $Y \in D$, then $X + Y \in D$.

As consequence of the above axioms we have that if $X < 0$, then $X \notin D$ (avoiding partial loss). Let D be a set of gambles on Ω. A lower prevision on D is a functional
\(P : \mathcal{D} \to \mathbb{R} \). For any gamble \(X \) in \(\mathcal{D} \), \(P(X) \) represents \(A \)'s supremum acceptable buying price for \(X \), i.e. \(A \) is willing to pay \(P(X) - \varepsilon \) with \(\varepsilon \in \mathbb{R}_+ \) for the uncertain reward determined by \(X \) and the outcome of the experiment. A buying price \(\varepsilon \) for \(X \) is acceptable if \(X - \varepsilon \) is desirable. (See Chapter 3 of [15] and [12] for more details.)

Lower previsions are subject to coherence constraints inspired by (1). In particular, a positive linear combination of acceptable gambles should never result in \(A \) losing money independently of the outcome of the experiment. This generalisation of de Finetti’s criterion is known in the area as avoiding sure loss and can be formalised as follows. For every \(i = 1, \ldots, n \) and \(X_i \in \mathcal{D} \), we should have

\[
\sup_{\omega \in \Omega} \sum_{i=1}^n [X_i(\omega) - P(X_i)] \geq 0. \tag{2}
\]

If we understand the set of possible outcomes as the events of a book, we have that every outcome of the experiment over \(\Omega \) corresponds to a valuation \(\nu \) such that \(\nu(\omega_i) = 1 \), if the result of the experiment is \(\omega_i \) and \(\nu(\omega_i) = 0 \) otherwise. This last property does not hold for a generic book, i.e. on assignments on an arbitrary subset of the whole algebra of events.

Coherent books and desirable gambles share much conceptual ground. Mathematically though, criteria (1) and (2) are clearly distinct: the former is defined over all the events of the book, while the latter asserts that there is at least one \(\omega \in \Omega \) such that \(A \) has positive gain if \(\omega \) is the result of the experiment. Moreover, the requirement of avoiding partial loss which follows from the axioms of coherent desirable gambles is more general than, and cannot be reduced to, de Finetti’s criterion. For in this case, \(A \)'s gain is negative regardless of the outcome of the experiment, i.e. for \(i = 1, \ldots, n \) whenever the experiment’s outcome is \(\omega_i \), \(A \) must pay \(X(\omega_i) \) to the bookmaker.

The methodological framework we adopt in this paper is rooted in the geometric perspective put forward by Paris in [14], whose key results show how geometrical tools can be used to generalise de Finetti’s notion to non-boolean events and, more importantly for the present paper, to non (finitely) additive measures of uncertainty. We can also find connections with the geometric perspective presented in [2, 3]. By using a geometric approach similar to Paris’s we will recall in Section 3 results on the characterization of books that can be extended to probabilities, normalized necessity measures, and belief functions. Then, in Section 4, we will tackle the same extendibility problem but in the more general setting of lower probabilities. There we prove our main result to the effect that partial assignments on events exists for which it is impossible to tell whether they are coherent in the sense of lower probability theory but fail coherence according to belief functions. Thus, in logical terms, our result suggests that there are non negligible limits to the expressive power of coherence.

2. Background on Uncertainty Measures

We shall assume the reader acquainted with basic notions and results of (finitely additive) probability theory. In particular, since we will only consider measures on finite boolean algebras, we shall often identify a probability measure \(P \) on an algebra \(A \) with the distribution \(p \) obtained by restricting \(P \) on the atoms of \(A \).

As for the other uncertainty measures we will deal with in the next sections, it is convenient to recall some basic definitions and results that we will take from [1, 6, 11, 12].

As we have already declared, we will only consider finite, and hence atomic, boolean algebras as the domain for uncertainty measures. Boolean algebras will be understood as described in the signature \(\{\land, \lor, \neg, \top, \bot\} \) and their elements will be denoted by lower-case greek letters with possible subscripts. In particular, atoms of an algebra will be indicated as \(\alpha_1, \alpha_2, \ldots \).

Definition 1 A normalized necessity measure \(N \) on an algebra \(A \) is a \([0,1]\)-valued map satisfying the following equations:

\[(N1)\ N(\top) = 1, N(\bot) = 0; \]
\[(N2)\ N(\psi_1 \land \psi_2) = \min\{N(\psi_1), N(\psi_2)\} \]

If \(\pi \) is a normalized possibility distribution on the atoms \(\alpha_1, \ldots, \alpha_n \) of \(A \) (i.e., \(\pi(\alpha_i) \in [0,1] \) and \(\max\{\pi(\alpha_i) \mid i = 1, \ldots, n\} = 1 \)), then the map defined as follows is a normalized necessity measure on \(A \).

\[N(\psi) = \bigwedge_{j=1}^n (1 - \pi(\alpha_j)) \land \psi(\alpha_j). \tag{3} \]

Furthermore, every normalized necessity measure on \(A \) can be obtained by a normalized possibility distribution as in (3) above.

Definition 2 A belief function \(B \) on an algebra \(A \) is a \([0,1]\)-valued map satisfying

\[(B1)\ B(\top) = 1, B(\bot) = 0; \]
\[(B2)\ B\left(\bigwedge_{j=1}^n \psi_j \right) \geq \sum_{i=1}^n \sum_{\{J \subseteq \{1, \ldots, n\} : |J| = i\}} (-1)^{i+1} B\left(\bigwedge_{j \in J} \psi_j \right) \]

for \(n = 1, 2, 3, \ldots \).

Belief functions on boolean algebras can be characterized in terms of mass functions as follows. Let \(A \) be any finite boolean algebra with atoms \(\alpha_1, \ldots, \alpha_n \). A mass function is a map \(m \) that assigns to each subset \(X \) of atoms, a real number such that \(m(\emptyset) = 0 \) and \(\sum_X m(X) = 1 \). Given a mass function \(m \), the map

\[B(\psi) = \sum_{X \subseteq \{\alpha_i \mid \alpha_i \leq \psi\}} m(X) \]
is a belief function and every belief function on A can be defined in this way.

Definition 3 A lower probability P on an algebra A is a monotone $[0, 1]$-valued map satisfying

1. $P(\emptyset) = 1$, $P(A) = 0$;
2. For all natural numbers n, m, and all ψ_1, \ldots, ψ_n, if $\{\psi_1, \ldots, \psi_n\}$ is an (m, k)-cover of (φ, \top), then $k + mP(\varphi) \geq \sum_{i=1}^n P(\psi_i)$.

Although the definition above does not make clear why those measures are called lower probabilities, [1, Theorem 1] characterizes them as follows: Let $P : A \rightarrow [0, 1]$ be a lower probability on A. Then, for all $\alpha \in A$,

$$P(\psi) = \min\{P(\psi) \mid P \in \mathcal{M}(\varphi)\}.$$

Lower probabilities are more general than belief functions. The following result characterizes those lower probability that are belief functions.

Remark 4 A lower probability P on an algebra A is a belief function if P satisfies (B2), namely

$$P\left(\bigvee_{i=1}^n \psi_i\right) \geq \sum_{i=1}^n \sum_{|J| \leq n} (-1)^{|J|-1} P\left(\bigwedge_{j \in J} \psi_j\right)$$

for all $n = 1, 2, \ldots$.

The following, which is an immediate consequence of the above characterization, gives a minimal algebraic requirement to distinguish belief functions and lower probabilities. It will be useful to justify our main result and its consequences that we will show in Section 4.

Corollary 5 Let A be a boolean algebra. Then, every lower probability on A is a belief function if A has two atoms.

Proof Assume α_1, α_2 be the unique atoms of A and let P be a lower probability on A. Discarding trivial cases, let us focus on the non-trivial events of A: α_1 and α_2. Then, $P(\alpha_1 \lor \alpha_2) = P(\top) = 1$ and $P(\alpha_1) + P(\alpha_2) - P(\alpha_1 \land \alpha_2) = P(\alpha_1) + P(\alpha_2) - P(\bot) = P(\alpha_1) + P(\alpha_2)$. Moreover α_1 and α_2 are disjoint, so $P(\alpha_1) + P(\alpha_2) \leq 1$, whence (4) is satisfied.

Conversely, assume that A has more than two atoms. Then the claim just follows from Example 2 below.

Let us close this section observing that, although the algebra with two atoms does not distinguish lower probabilities and belief functions, it does distinguish probability functions from normalized necessities and both probability and necessities from belief functions. Indeed, it is easy to see that the necessity N whose possibility distribution π maps $\pi(\alpha_1) = \pi(\alpha_2) = 1$ cannot be a probability function and the probability function P given by the distribution $P(\alpha_1) = P(\alpha_2) = 1/2$ does not define a normalized necessity measure. Moreover, the mass assignment m that maps $m(\{\alpha_1, \alpha_2\}) = 1$ and the rest of subsets to 0 gives a belief function that is neither a probability, nor a normalized necessity.

3. A Geometric View on Coherence and Extendibility

Let $\Psi = \{\psi_1, \ldots, \psi_n\}$ be a finite set of events (i.e., elements of a finite boolean algebra A). Let us denote by $\mathcal{V} = \{v_1, \ldots, v_t\}$ the finite set of all possible homomorphisms of A to the boolean chain on the two-element set $\{0, 1\}$. For every $j = 1, \ldots, t$, call e_j the binary vector $e_j = (v_j(\psi_1), \ldots, v_j(\psi_n)) \in \{0, 1\}^n$.

Remark 6 Let $x_1, \ldots, x_t \in [0, 1]^n$. The tropical hull of the x_j’s is the sub-semiring $\mathcal{C}(\mathbb{R}, \wedge, +)$ of all points y of $[0, 1]^n$ for which there exist parameters $\lambda_1, \ldots, \lambda_t \in [0, 1]$ such that $\sum_{j=1}^t \lambda_j = 1$ and

$$y = \bigwedge_{j=1}^t \lambda_j + x_j.$$

The symbol \wedge stands for the minimum and $+$ for the ordinary addition in the tropical semiring $(\mathbb{R}, \wedge, +)$. Given $\lambda \in [0, 1]$ and $x \in [0, 1]^n$, $\lambda + x = (\lambda + x_1, \ldots, \lambda + x_n)$ and the \wedge operator is defined component-wise.

Now, for e_1, \ldots, e_t being defined as above from the formulas ψ_i’s in Ψ, let us consider the following sets:

1. $\mathcal{P}_\Psi = \mathcal{C}(e_1, \ldots, e_t)$, where \mathcal{C} denotes the usual Euclidean convex hull;
2. $\mathcal{A}_\Psi = \mathcal{C}_{\wedge, +}(e_1, \ldots, e_t)$, where $\mathcal{C}_{\wedge, +}$ is as in Definition 6.
3. $\mathcal{B}_\Psi = \mathcal{C}(\mathcal{N}_\Psi)$, where, in this case, being \mathcal{N}_Ψ usually uncountable, \mathcal{C} denotes the topological closure of the Euclidean convex hull \mathcal{C}.

The following theorem recalls known results that have been proved in [4, 7, 8]

Theorem 7 Let $\Psi = \{\psi_1, \ldots, \psi_n\}$ be a finite set of events and let $\beta : \Psi \to [0, 1]$ be a book. Then,

1. β extends to a probability measure iff $(\beta(\psi_1), \ldots, \beta(\psi_n)) \in \mathcal{P}_\Psi$;
2. β extends to a normalized necessity measure iff $(\beta(\psi_1), \ldots, \beta(\psi_n)) \in \mathcal{N}_\Psi$;
3. β extends to a belief function iff $(\beta(\psi_1), \ldots, \beta(\psi_n)) \in \mathcal{B}_\Psi$.

It is worth noticing that the previous characterization also allows to easily distinguish the uncertainty measures appearing in the theorem above. Indeed, assume the set of events Ψ we start with is not trivial, i.e., it neither is $\{\top, \bot\}$ on which all uncertainty measures coincide, nor it is itself a boolean algebra on which all uncertainty measures can be easily distinguished. In general, \mathcal{P}_Ψ and \mathcal{N}_Ψ are both strictly included in \mathcal{B}_Ψ (i.e., $\mathcal{P}_\Psi \subset \mathcal{B}_\Psi$ and $\mathcal{N}_\Psi \subset \mathcal{B}_\Psi$) and this is expected because belief functions are strictly more general than both probabilities and normalized necessity measures. For the same reason, it is easy to see that \mathcal{P}_Ψ and \mathcal{N}_Ψ are usually incomparable. The next example clarifies this situation.

Example 1 Let \mathbf{A} be the boolean algebra of 8 elements and 3 atoms $\{\alpha_1, \alpha_2, \alpha_3\}$ and consider the non-trivial set of events $\Psi = \{\psi_1, \psi_2, \psi_3\} \subset \mathbf{A}$ where $\psi_1 = \alpha_1 \lor \alpha_2$, $\psi_2 = \alpha_2 \lor \alpha_3$ and $\psi_3 = \alpha_1 \lor \alpha_3$. The algebra \mathbf{A} has 3 homomorphisms to $\{0, 1\}$. Computing the points e_1, e_2, e_3 as in (5), we hence obtain

$$e_1 = (1, 0, 1); e_2 = (1, 1, 0); e_3 = (0, 1, 1).$$

The subsets \mathcal{P}_Ψ, \mathcal{N}_Ψ and \mathcal{B}_Ψ are hence as in Figures 1, 2 and 3 respectively. Notice that, although Ψ does not coincide with the whole algebra \mathbf{A}, it allows to distinguish those books that are either extendible to a probability or a normalized necessity, from those extendible to belief functions. Indeed both \mathcal{P}_Ψ and \mathcal{N}_Ψ are strict subsets of \mathcal{B}_Ψ.

The question we raise is hence if similar results on the possibility of distinguishing uncertainty theories, via coherence, still hold when we consider more general uncertainty models and in particular lower probabilities. A partial yet surprising result will be presented in the next section in which we will study if coherence is sufficiently robust to distinguish lower probability from belief functions.
4. On Coherent Books: From Belief Functions to Lower Probabilities

This section aims to show that, in general, the geometric characterization of coherence we presented in Theorem 7 seems not to be sufficiently robust to distinguish books that are extendible to lower probabilities from those that are extendible to belief functions.

As it will appear clear in a while, a major role in this sense is played by the chosen set of events $\Psi \subseteq A$ (the domain of the boolean algebra started with). Due to what we proved in Corollary 5, we will henceforth assume that A has a number of atoms strictly greater than 2.

Proposition 8 For every algebra A and for every subset Ψ of A if $P_{\Psi} \cap N_{\Psi} \neq P_{\Psi}$ and $P_{\Psi} \cap N_{\Psi} \neq N_{\Psi}$, then $P_{\Psi} \cap N_{\Psi} \neq N_{\Psi}$.

Proof For every algebra A and for every subset Ψ of A, $P_{\Psi} \subseteq P_X$ and $N_X \subseteq P_X$. Then, assume that $P_{\Psi} \cap N_{\Psi} \neq P_{\Psi}$ and $P_{\Psi} \cap N_{\Psi} \neq N_{\Psi}$. We have to prove that hence the above inclusions are proper.

The current hypothesis states that there are $\beta_1, \beta_2 : X \to [0, 1]$ such that $\beta_1 \in P_{\Psi}$, $\beta_2 \in N_{\Psi}$, $\beta_1 \not\in N_{\Psi}$ and $\beta_2 \not\in P_{\Psi}$. Since $P_{\Psi}, N_{\Psi} \subseteq P_X$, one has that $\beta_1, \beta_2 \in P_{\Psi}$ and therefore $P_{\Psi} \cap N_{\Psi} \neq N_{\Psi}$.

One could expect that, under the same hypothesis, a similar behaviour lifts to the realm of lower probabilities. However, as our main result shows, this is not the case. First, we need the following result where we will indicate by L_{Ψ} the set of all books β on Ψ that extend to a lower probability P.

Lemma 9 Let A be a finite boolean algebra and $\Psi = \{ \psi_1, \ldots, \psi_n \} \subseteq A$. A book β on Ψ belongs to L_{Ψ} if there are $\beta_1, \ldots, \beta_n \in P_{\Psi}$ such that, for all $\psi_i \in \Psi$, $\beta(\psi_i) = \min(\beta_j(\psi_i) \mid j = 1, \ldots, n)$.

Proof The right-to-left direction is trivial. Let us hence assume that β extends to a lower probability P. Let $M(P) = \{ P \mid P(a) \geq P(a), \forall a \in A \}$ as in Section 2 and then, for all $\psi_i \in \Psi$,

$$P(\psi_i) = \min\{P(\psi_i) \mid P \in M(P)\}.$$

For all $P \in M(P)$, call βP the (necessarily coherent) book on Ψ obtained from P by restriction. Then, obviously,

$$\beta(\psi_i) = \min\{\beta P(\psi_i) \mid P \in M(P)\}.$$

Finally, since Ψ is finite, for every $\psi_i \in \Psi$ fix a book $\beta_{P(i)}$ among the βP’s such that

$$\beta_{P(i)}(\psi_i) = \beta(\psi_i) = \min\{\beta P(\psi_i) \mid P \in M(P)\}.$$

For every i, $\beta_{P(i)}$ exists. Then the claim follows since $\beta(\psi_i) = \min\{\beta_{P(i)}(\psi_i) \mid P = P(i)\}$. In other words $\beta = \min\{\beta_{P(1)}, \ldots, \beta_{P(k)}\}$.

In the light of Corollary 5 and previous observation, let us introduce the following notion of “adequate” set of events Ψ which allows us to discard those cases that we already know does not allow us to distinguish P_{Ψ} from L_{Ψ}.

Definition 10 Let A be a boolean algebra. A non-empty subset Ψ of A is said to be adequate if Ψ is a strict subset of $A \setminus \{ \bot, \top \}$ and the subalgebra A_{Ψ} of A generated by Ψ has at least 3 atoms.

Then, our main result reads as follows.

Theorem 11 For every algebra A with at least three atoms there exists an adequate subset Ψ of A such that $P_{\Psi} \cap N_{\Psi} \neq P_{\Psi}$ and $P_{\Psi} \cap N_{\Psi} \neq N_{\Psi}$, but $P_{\Psi} = L_{\Psi}$.

Proof Let us assume without loss of generality that $a_1, \ldots, a_n (n \geq 3)$ are the atoms of A and let us fix the subset Ψ of A made of the following elements: $\psi_1 = a_1 \vee a_2$, $\psi_2 = a_1 \vee a_3$ and $\psi_3 = a_2 \vee a_3$. Clearly Ψ is adequate in the sense of Definition 10.

First, let us show that $P_{\Psi} \cap N_{\Psi} \neq P_{\Psi}$ and $P_{\Psi} \cap N_{\Psi} \neq N_{\Psi}$.

Since every belief function is, in particular, a lower probability, $P_{\Psi} \subseteq L_{\Psi}$. Let β be a book in L_{Ψ}. We want to prove that $\beta \in P_{\Psi}$. Let P be a lower probability on A such that, for all $i = 1, \ldots, n$, $P(\psi_i) = \beta(\psi_i)$. Let us also assume that P is not a probability, that is to say, that β does not belong to P_{Ψ}, otherwise, the claim would be trivial.

Now we follow the proof.

Fact 1 $\beta \in M = \text{co}\{\min\{e_1, e_2\}, \min\{e_2, e_3\}, \min\{e_1, e_3\}, \min\{e_1, e_2, e_3\}\}$.

Proof (of Fact 1). Assume, by way of contradiction, that $\beta \notin M$. Thus, $\beta \in [0, 1]^3 \setminus M$, that is to say, $\beta \in \text{co}(e_1, e_2, e_3, \max\{e_1, e_2, e_3\})$. In other words, there exist $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ (with $\lambda_4 > 0$) such that $\sum \lambda_i = 1$ and

$$\beta = \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 + \lambda_4 \max\{e_1, e_2, e_3\}.$$

The expression above is equal to $\lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 + \max\{\lambda_2 e_1, \lambda_4 e_2, \lambda_4 e_3\}$ and since $a + \max\{b, c\} = \max\{a + b, a + c\}$, one has

$$\beta = \max\{\beta_1, \beta_2, \beta_3\}.$$

where $\beta_1 = (\lambda_1 + \lambda_2) e_1 + \lambda_2 e_2 + \lambda_2 e_3$, $\beta_2 = \lambda_1 e_1 + (\lambda_2 + \lambda_4) e_2 + \lambda_3 e_3$, $\beta_3 = \lambda_1 e_1 + \lambda_2 e_2 + (\lambda_3 + \lambda_4) e_3$. Thus $\beta_1, \beta_2, \beta_3 \in P_{\Psi}$. Letting P_i for $i = 1, 2, 3$ such that P_i extends β_i, we conclude that β extends to an upper probability. Therefore, by assumption β extends to a lower probability. In addition, β extends to an upper probability, thus β extends to a probability that is absurd by a previous hypothesis.

Now, we go back to the proof of the main claim and we prove that $\min\{e_1, e_2\}, \min\{e_2, e_3\}, \min\{e_1, e_3\}$,
is necessarily a belief on the is not a belief function. Indeed, \(P_\beta \) on events in the remaining events in the

We conclude the present paper with the following observation.

Remark 12 Let us point out a couple of questionable points that one could reasonably raise in the light of Theorem 11 and the above Example 2.

The first one is the following: our main result shows that, over that particular subset of formulas \(\Psi \) of \(A \), it is impossible to distinguish books that are extendible to lower probabilities from those that are extendible to belief functions: \(B_\Psi = L_\Psi \). It is worth remarking that \(\Psi \) is not the unique adequate subset of \(A \) on which we can observe such a behavior. For instance, the same result holds for \(\Psi' = \{ \alpha_1, \alpha_2, \alpha_3 \} \).

This leads to the second observation: one may be tempted to improve Theorem 11 showing that \(B_\Psi = L_\Psi \) for every non-trivial subset of \(A \), i.e., every strict subset of \(A \setminus \{ \bot, \top \} \). However, this is false in most cases. Indeed, take \(A \) with more than 4 atoms, let \(\mathcal{A}' \) be any subalgebra of \(A \) with more than 3 atoms and let \(\Psi \) be \(\mathcal{A}' \setminus \{ \bot, \top \} \). Then Corollary 5 shows that \(B_\Psi \subset L_\Psi \) (strict inclusion) and hence \(\Psi \) is a non-trivial subset of \(A \) that distinguishes those sets.

5. Conclusion and Future Work

This paper illustrated how through a geometric characterization of coherence, books which are extendable to lower probabilities cannot be distinguished from those which are extendable to belief functions. To the best of our knowledge, this is a new result. As a consequence we are not at present able to tell whether the observed phenomenon can be appreciated also outside the geometric settings.

An interesting question for further investigation is to characterize the adequate subsets of events of a given algebra \(A \) that do not distinguish belief functions from lower probabilities and provide a geometric characterization of \(L_\Psi \). In addition, we intend to investigate these subsets of events considering coherence criteria defined in terms of (proper) scoring rules.

Finally, following the approach put forward in [9], we intend to explore the consequences for the betting games therein defined, of the fact that certain belief functions cannot be distinguished from lower probabilities.

Acknowledgments

We are very grateful to the four ISITPA reviewers whose careful reading and thorough comments helped us clarifying a number of important points.

Corsi and Hosni acknowledge funding by the Department of Philosophy “Piero Martinetti” of the University of Milan under the Project “Departments of Excellence 2018-2022” awarded by the Ministry of Education, University and Research (MIUR). Flamini acknowledges partial support by the Spanish project PID2019-111544GB-C21 and by the Spanish Ramón y Cajal research program RYC-2016-19799. Hosni also acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG, grant LA 4093/3-1).
References

