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Abstract

The BDI architecture, where agents are modelled
based on their beliefs, desires and intentions, pro-
vides a practical approach to develop large scale
systems. However, it is not well suited to model
complex Supervisory Control And Data Acquisi-
tion (SCADA) systems pervaded by uncertainty.
In this paper we address this issue by extending
the operational semantics of CAN(PLAN) into
CAN(PLAN)+. We start by modelling the beliefs
of an agent as a set of epistemic states where each
state, possibly using a different representation,
models part of the agent’s beliefs. These epis-
temic states are stratified to make them commen-
surable and to reason about the uncertain beliefs
of the agent. The syntax and semantics of a BDI
agent are extended accordingly and we identify
fragments with computationally efficient seman-
tics. Finally, we examine how primitive actions
are affected by uncertainty and we define an ap-
propriate form of lookahead planning.

1 INTRODUCTION

SCADA (Supervisory Control And Data Acquisition)
systems are known for their large scale processes in
a wide variety of domains, including production pro-
cesses [Zhi et al., 2000] and energy and transportation sys-
tems [Boyer, 2009]. One way of modelling such systems is
by means of the BDI architecture [Bratman, 1987] which
allows us to decompose a complex system into a set of
autonomous and interacting agents, where an agent is de-
fined by its (B)eliefs, (D)esires and (I)ntentions. Agent-
based programming languages based on the BDI frame-
work have been proposed [Ingrand et al., 1992, Rao, 1996,
Dastani, 2008] and have been used to some extent to model
SCADA systems (e.g. [McArthur et al., 2007]).

However, current BDI implementations are not well-suited
to model the next generation of complex SCADA systems.

The reason for this is two-fold. On the one hand, current
BDI implementations are not able to deal with uncertainty
associated with the beliefs of an agent (e.g. due to noisy
sensing) or the uncertain effects of actions (e.g. due to ac-
tuator malfunctions). This limits the ability of a BDI agent
to react in a satisfactory way in an uncertain environment.
On the other hand, and closely related, is that most BDI
implementations do not provide any mechanisms for looka-
head planning to guide (part of) the BDI execution in this
uncertain setting.

(1) (2)
(3)

Figure 1: Scenario for a train agent with an unreliable sig-
nal (1), a dangerous junction (2) and a goal station (3).

To illustrate these issues, consider the running example in
Figure 1. A train agent is moving along a track with a sig-
nal (1). The signal, which is green or orange, informs the
agent if it violates the safe distance (with uncertainty due
to e.g. mist, conflicting signals . . . ). Once the agent has
passed the signal, the agent decides on how to approach
the junction (2). The speed of the train is not known ex-
actly, yet the agent needs to decide whether it wants to keep
speeding (as it is running late) or slow down (resp. 75%
and 50% chance of reaching the junction in time). Once
at the junction, the action to take the junction only has
a 30% chance of succeeding when speeding (e.g. due to
derailment). Otherwise, the junction can safely be taken.
For simplicity, the station is reached on time only when the
junction is safely taken. Clearly, an agent should be able to
reason about the uncertainty and be able to plan ahead, e.g.
foresee that slowing down is the best action.

Not a lot of work in the literature on BDI tackled the
problem of representing, and reasoning about, uncertain
information. A notable exception is the recent work
in [Chen et al., 2013], which incorporates uncertain per-
ceptions in the epistemic state of an agent after which



it is mapped to a classical belief base, thus ignoring
the other information. The work on graded BDI sys-
tems [Casali et al., 2005, Casali et al., 2011] similarly dis-
cusses how uncertainty can pervade the beliefs, desires and
intentions. However, the graded BDI framework is mainly
of theoretical interest and has not led to actual implemen-
tations, contrary to how AgentSpeak and CAN have helped
to advance the state-of-the-art in BDI implementations.

Planning in a BDI agent, where the agent reflects on
its actions before executing them, has been considered
in numerous works. While the BDI model does not
prevent planning, most BDI implementations resort to
simple plan selection strategies to avoid the computa-
tional cost associated with declarative planning. This pre-
vents them from acting optimally when needed, e.g. when
important resources are consumed during the execution
of plans. A formal approach to planning in BDI,
called CANPLAN, was presented in [Sardiña et al., 2006].
CANPLAN is based on the Conceptual Agent Notation
(CAN) [Winikoff et al., 2002], a high-level agent language
in the spirit of BDI [Rao and Georgeff, 1991]. It is closely
related to AgentSpeak [Rao, 1996] but allows for declara-
tive goals alongside procedural steps (i.e. we can state what
we want to achieve, not just how to achieve it). CANPLAN
extends this work by introducing a Plan(·) action, making
planning on-demand an integral part of the BDI framework.
Nevertheless, none of the approaches to BDI address the
issues that arise when dealing with actions with uncertain
effects, or uncertain beliefs in general.

In this paper we propose the CAN+ and CANPLAN+ frame-
works, which extend CAN and CANPLAN to provide for-
mal approaches for dealing with uncertain beliefs and
(planning for) actions with uncertain effects. The beliefs of
an agent are modelled as a set of epistemic states, with each
local epistemic state representing a distinct part of the be-
liefs held by the agent. Each epistemic state can deal with a
different form of uncertainty (e.g. possibilities or infinites-
imal probabilities) and includes its own revision strategy.
Such a set of local epistemic states will be called a Global
Uncertain Belief set (GUB) and allows the agent to rea-
son about different forms of uncertainty in a uniform way,
as long as these can be expressed using epistemic states
that are equivalent to Definition 1. This is achieved in two
steps. Firstly, a stratification of each local epistemic state
allows for commensurability, along with the ability to rea-
son about the uncertain beliefs. In other words: it enables
an agent to reason about those beliefs it currently does not
assume to be true (in the sense of beliefs in classical log-
ics). Nevertheless, an agent commonly still considers some
outcomes to be more plausible than others. The agent thus
gains the ability to reflect on its own uncertainty. Secondly,
an agent will be able to revise a GUB directly, with the
GUB ensuring that only the information relevant to a spe-
cific local epistemic state is used to revise it. This idea of

a GUB will be introduced in the CAN framework to obtain
CAN+. CANPLAN+ further extends upon it by adding the
ability to execute and plan for non-deterministic actions, all
while dealing with uncertain beliefs.

The remainder of this paper is organised as follows. Some
preliminary notions are discussed in Section 2. We explore
how we can efficiently model and reason about uncertain
beliefs in Section 3, where we introduce the idea of epis-
temic states and how they can be applied in a BDI setting.
In Section 4 we extend CAN to enable us to deal with un-
certain beliefs, while uncertain actions and planning under
uncertainty are addressed in Section 5. Related work is dis-
cussed in Section 6 and conclusions are drawn in Section 7.

2 PRELIMINARIES

An agent in the BDI framework is defined by its beliefs,
desires and intentions. The beliefs encode the agent’s un-
derstanding of the environment, the desires are those goals
that an agent would like to accomplish and the intentions
those desires that the agent has chosen to act upon.

CAN, and its extension CANPLAN, formalise the behaviour
of a classical BDI agent, which is defined by a belief base
B and a plan library Π. The belief base of an agent is a
set of formulas over some logical language that supports
entailment (i.e. B |= b, b a belief), belief addition and be-
lief deletion (resp. B ∪ {b} and B \ {b}). The plan library
is a set of plans of the form e : ψ ← P where e is an
event, ψ is the context and P is a plan body. Events can
either be external (i.e. from the environment in which the
agent is operating) or internal (i.e. sub-goals that the agent
itself tries to accomplish). The plan body P is applicable
to handle the event e when B |= ψ, i.e. the context evalu-
ates to true. The event and context differ in that the context
is lazily evaluated; it is checked right before the execution
of the plan body. The language used in the plan body P is
defined in Backus-Naur Form (BNF) as:

P ::= nil | +b | −b | act | ?φ | !e | P1;P2 | P1 ‖ P2 |
P1 . P2 | (|∆|) | Goal(φs, P, φf ) | Plan(P )

with nil an empty or completed program, +b and −b be-
lief addition and deletion, act a primitive action, ?φ a test
for φ in the belief base, and !e a subgoal, i.e. an (internal)
event. Actions, tests and subgoals can fail, e.g. when the
preconditions are not met. Composition is possible through
P1;P2 for sequencing, P1 ‖ P2 for parallelism (i.e. a non-
deterministic ordering) and P1 . P2 to execute P2 only on
failure of P1. (|∆|) is used to denote a set of guarded plans,
with ∆ of the form ψ1 :P1, ..., ψn :Pn, which intuitively
states that the plan body Pi is guarded by the context ψi,
i.e. the context needs to be true to execute the plan body.
The plan form Goal(φs, P, φf ) is a distinguishing feature
of CAN that allows to model both declarative and procedu-
ral goals. It states that we should achieve the (declarative)



goal φs using the (procedural) plan P , where the goal fails
if φf becomes true during the execution. CANPLAN fur-
thermore introduces the Plan(P ) construct, which is used
for offline lookahead planning. This construct will be dis-
cussed in more detail in Section 5.

The operational semantics of CANPLAN are defined in
terms of configurations. A basic configuration is a tuple
〈B,A, P 〉 with B a belief base,A the sequence of primitive
actions that have been executed so far and P the remainder
of the plan body to be executed (i.e. the current intention).
An agent (configuration) is a tuple 〈N ,D,Π,B,A,Γ〉 with
N the name of the agent, D the action description li-
brary, Π the plan library, Γ the set of current intentions
of the agent and B and A as before. For each action act
the action description library contains a rule of the form
act : ψ ← φ−;φ+. We have that ψ is the precondition,
while φ− and φ+ denote respectively a delete and add set
of belief atoms, i.e. propositional atoms.

A transition relation −→ on (both types of) configura-
tions is defined by a set of derivation rules. A transition
C −→ C ′ denotes a single step execution from C yielding
C ′. We write C −→ to state there exists a C ′ such that
C −→ C ′ and C 6−→ otherwise. We use ∗−→ to denote the
transitive closure over −→. A derivation rule consists of a
(possibly empty) set of premises pi and a single transition
conclusion c. Such a derivation rule is denoted as

p1 p2 . . . pn
lc

with l a label attached to the derivation rule for easy ref-
erence. Transitions over basic configurations (resp. agent
configurations) define what it means to execute a single in-
tention (resp. the agent as a whole). For example, the tran-
sition for belief addition and a primitive action are:

+b〈B,A,+b〉 −→ 〈B ∪ {b} ,A, nil〉

(a : ψ ← φ−;φ+) ∈ D aθ = act B |= ψθ
act

〈B,A, act〉 −→ 〈(B \ φ−θ) ∪ φ+θ,A · act, nil〉
where the latter states that when the unified precondi-
tion ψθ is true in the belief base B, the effect of the action is
the application of the add and delete atom lists to the belief
base. We refer the reader to [Sardiña and Padgham, 2011]
for a full overview of the semantics of CANPLAN.

Finally, a preorder ≤A defined on any set A is a reflexive
and transitive relation over A×A. We say that ≤A is total
iff for all a, b ∈ A we have that either a ≤A b or b ≤A
a. A strict order <A and an indifference relation =A can
conventionally be induced from ≤A.

3 MODELLING AND REASONING
ABOUT UNCERTAIN BELIEFS

As discussed in Section 2, a belief base in CAN is de-
fined over a logic for which operations are available to add,

delete and entail beliefs. This classical setting allows for
an easy approach to belief revision. However in this pa-
per we are concerned with the modelling of, and reasoning
over, uncertain information. To deal with uncertainty we
will need more elaborate ways to both represent the beliefs
and to revise the beliefs when new information becomes
available. To this end, we will use epistemic states instead
of a belief base as in CAN.

3.1 MODELLING UNCERTAIN BELIEFS AS
EPISTEMIC STATES

To define epistemic states, we first start by considering a fi-
nite set At of propositional atoms. For a set of atoms A ⊆
Atwe define the set of literals that can be constructed using
the atoms in A as lit(A) = {a | a ∈ A} ∪ {¬a | a ∈ A}.
A proposition φ is defined in BNF as φ ::= a | ¬a |
(φ1 ∧ φ2) | (φ1 ∨ φ2), i.e. all propositions are in Negation
Normal Form (NNF). This does not affect the expressive-
ness of our language as arbitrary formulas can be efficiently
converted into NNF. It will, however, make the definition
of our semantics easier. We will denote this language as L.
Now we introduce the concept of an epistemic state:

Definition 1. (from [Ma and Liu, 2011]) Let Ω be a set
of possible worlds. An epistemic state is a mapping
Φ : Ω→ Z ∪ {−∞,+∞}.

An epistemic state will be used to represent the mental
state of an agent, where the value Φ(ω) associated with
a possible world ω, called the weight of ω, is understood
as the degree of belief in the possible world ω. Through-
out the paper we will denote epistemic states using capi-
tal Greek letters. For ω, ω′ ∈ Ω and Φ(ω) > Φ(ω′) the
intuition is that ω is more plausible than ω′. Two epis-
temic states Φ and Ψ are semantically equivalent iff
∃k ∈ Z · ∀ω ∈ Ω : Φ(ω) = Ψ(ω) + k, i.e. the value asso-
ciated with the possible worlds only has a relative meaning.
In the remainder of this paper we assume that epistemic
states have 2A as their domain with A ⊆ At. The strength
of preference on a propositional formula φ is defined as
Φ(φ) − Φ(¬φ) with Φ(φ) = maxω|=φ(Φ(ω)). We use
maxΦ to denote maxΦ = max

ω∈Ω
(Φ(ω))−min

ω∈Ω
(Φ(ω)) + 1,

i.e. the weight stronger than any of the strengths associated
with information in Φ, and minΦ = 1−maxΦ .1 The val-
ues maxΦ and minΦ are only needed in Section 4 when
considering belief additions and deletions as in CAN.

Before we provide an example, it is important to clar-
ify that the definition of an epistemic state from Defi-
nition 1 allows for the construction of a general frame-
work. Indeed, this definition does not impose any restric-
tions on the values associated with the possible worlds,
other than that they are weights. As such, it is the

1These values only change when the epistemic state is revised
and can be computed as a by-product of revision.



most general way in which we can talk about an epis-
temic state, regardless of the actual representation. Other
representations for epistemic states, which attach more
specific meaning to the values, have been shown to be
equivalent to the one from Definition 1. For exam-
ple, Definition 1 induces an Ordinal Conditional Func-
tion (OCF) [Spohn, 1988]2, which in turn can be trans-
formed into other representations, e.g. those based on in-
finitesimal probabilities [Darwiche and Goldszmidt, 1994]
and possibility theory [Dubois and Prade, 1995]. The rep-
resentation from Definition 1 can thus be instantiated us-
ing any of the other representations to best suit the nature
of the uncertainty. After developing all main concepts, we
will show in Section 4 that this will allow us to work with
these different forms of uncertainty in a uniform way.

We now give an example of such an epistemic state.

Example 1. Consider a signal that can be (o)range or
(g)reen (but never both on). When the signal is orange it
usually indicates that the agent is about to violate the safe
distance (sd). The agent believes that the light is green
and that there is still a safe distance with the train in front.
Even when the signal would turn out not to be green, the
agent still believes that there would be a safe distance with
the train in front of it. An epistemic state Φ could be:

Φ({o, g, sd}) = −∞ Φ({¬o, g, sd}) = 10

Φ({o, g,¬sd}) = −∞ Φ({¬o, g,¬sd}) = −2

Φ({o,¬g, sd}) = 7 Φ({¬o,¬g, sd}) = 7

Φ({o,¬g,¬sd}) = 6 Φ({¬o,¬g,¬sd}) = −2

where maxΦ = +∞ and minΦ = −∞. The weight as-
sociated with e.g. {o, g, sd} means that we strongly disbe-
lieve this possible world, while the weight associated with
{¬o, g, sd} implies that we believe this possible world to
be more plausible than any of the other possible worlds.

The belief set, i.e. the sentences that an agent is committed
to believe, is commonly defined as the set that has all the
most plausible worlds as its models.

Definition 2. (from [Ma and Liu, 2011]) Let Φ be an epis-
temic state. The belief set of Φ, denoted as Bel(Φ), is
defined as Bel(Φ) = φ with φ any propositional formula
such that Mod(φ) = min(Ω,≤Φ). Here Mod(φ) is the set
of models of φ and ≤Φ is a total preorder relation over Ω
such that ω ≤Φ ω′ iff Φ(ω) ≥ Φ(ω′).

The model of the belief set thus only contains those possi-
ble worlds with the highest weight. In this paper we extend
on this idea by also taking the other possible worlds into
account. These other possible worlds constitute the uncer-
tain information, i.e. they define the preferences the agent
has over the outcomes that are currently not believed to be
true.

2Compared to OCFs, the representation from Definition 1
avoids the normalisation step.

To clearly identify these preferences, irrespective of the ac-
tual values of these weights in different representations of
the epistemic states, we consider a stratification of the set
of possible worlds. The highest stratum (containing those
possible worlds with the strongest associated belief) corre-
sponds to the set of models of the belief set, i.e. that what
the agent believes to be true. The other strata constitute the
uncertain information, with information in a higher stratum
believed/preferred over information in a lower stratum.

Definition 3. Let Φ be an epistemic state. The stratification
λ of the domain Ω from Φ induced by the total preorder
relation ≤Φ is defined as:

λ(ω) =

{
1 ω ∈ min(Ω,≤Φ)

n+ 1 ω ∈ min(Ω \ {ω | λ(ω) ≤ n} ,≤Φ)

In Example 1 we obtain λ({¬o, g, sd}) = 1,
λ({o,¬g, sd}) = λ({¬o,¬g, sd}) = 2, etc. This
idea of a stratification readily corresponds with the more
common notion of a stratification over propositional
formulas as any subset of possible worlds can trivially be
represented by a single propositional formula.

Notice that the models of the belief set (see Definition 2)
correspond to those possible worlds ω for which λ(ω) = 1,
i.e. information on all the other strata is ignored. Instead
of simply ignoring this information, we want to make it
possible for a BDI agent to reason about the preferences
expressed throughout the stratification. To this end we ex-
tend the language L with the connectives ≥ and >. The
intuition of a ≥ b (resp. a > b) is that the agent believes a
to be at least as plausible as b (resp. a is strictly more plau-
sible than b). These new connectives are taken to have the
lowest precedence. The resulting language L≥, or the con-
text language, can be defined in BNF as:

φ ::= a | ¬a | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ≥ φ2 | φ1 > φ2

where formulas with connectives such as → and ↔ can
easily be transformed into logically equivalent statements
in the language L≥. Notice that this definition is the equiv-
alent of NNF for propositional formulas. Any proposition
using the connectives ¬, ∧, ∨, ≥ and > can be turned
into an equivalent formula in L≥ in the usual way and by
rewriting ¬(ψ1 ≥ ψ2) as (ψ2 > ψ1) and ¬(ψ1 > ψ2)
as (ψ2 ≥ ψ1). We assume that this has been done when
needed throughout paper.

By extending the mapping λ we can define the semantics
of L≥ over arbitrary formulas. We have:

λ(φ) =

{
min {λ(ω) | ω |= φ} if φ ∈ L
λ(pare(φ)) otherwise

with min(∅) = ∞. Before defining the function
pare, we point out that λ is closely related to a pos-
sibility measure [Dubois et al., 1994] for propositional



formulas φ, ψ ∈ L. We readily establish some inter-
esting properties such as λ(φ ∨ ψ) = min(λ(φ), λ(ψ)),
λ(φ ∧ ψ) ≥ max(λ(φ), λ(ψ)), λ(>) = 1, λ(⊥) = ∞ and
min(λ(φ), λ(¬φ)) = 1.

When φ is not a propositional statement (i.e. φ 6∈ L), we
need to pare down the formula until the formula is a classi-
cal propositional statement. This is done by:

pare(φ ∧ ψ) = check(φ) ∧ check(ψ)

pare(φ ∨ ψ) = check(φ) ∨ check(ψ)

pare(φ ≥ ψ) =

{
> if λ(¬φ) ≥ λ(¬ψ)

⊥ otherwise

check(φ) =

{
φ if φ ∈ L
pare(φ) otherwise

with pare(φ > ψ) equivalently defined as pare(φ ≥ ψ).
The intuition of paring down is straightforward: for each
operand of the operators ∧ and ∨ we verify whether it is
an expression in the language L (for which the λ-value can
readily be determined). Otherwise, we need to further pare
it down. When the operator is ≥ or >, we define it as a
plausibility ordering with an expression such as φ > ψ read
as “φ is more plausible than ψ” or, alternatively, “we have
less reason to believe ¬φ than ¬ψ”.3 Such an expression
can always be evaluated to true or false, i.e. > or ⊥.

Finally, we can define when a formula φ is entailed.
Definition 4. Let Φ be an epistemic state and φ a formula
in L≥. We say that φ is entailed by Φ, written as Φ |= φ, if
and only if λ(φ) < λ(¬φ).
Example 2. Consider λ of Φ from Example 1. We have:

λ(g ∧ sd) = 1 λ(o ∧ sd) = 2 λ(g ∧ ¬g) =∞
λ((o ∨ g) > ¬sd) = 1 λ(g ≥ o) = 1 λ(o ≥ g) =∞

For example, λ(g ∧ sd) = 1 since λ{¬o, g, sd} = 1
and {¬o, g, sd} |= g ∧ sd. An expression such as
(o ∨ g) > ¬sd, which is also believed to be true, states that
the agent does not care about the colour of the light as long
as the agent is not violating the safe distance.

Note that in Definition 4 it is insufficient to state that a for-
mula is entailed when λ(ψ) = 1. Indeed, for a ∈ At we
can have that λ(a) = λ(¬a) = 1, which occurs when we
are ignorant about the value of a. As such, we need to en-
sure that both expressions are mapped onto strictly distinct
strata. This notion of entailment (assuming ψ ∈ L) corre-
sponds exactly to those formulas that can be derived from
the belief base Bel(Φ).
Proposition 1. Let φ ∈ L be a propositional formula, Φ an
epistemic state with domain Ω and λ the stratification of Ω.
We have that Φ |= φ iff for all ω ∈ Ω such that λ(ω) = 1
we have that ω |= φ, i.e. Bel(Φ) |= φ.

3In terms of possibilistic theory: we want N(φ) ≥ N(ψ),
i.e. we want Π(¬φ) ≤ Π(¬ψ) (with λ a reversed order).

3.2 SEMANTICS BASED ON LITERAL MAPPING

While the semantics we presented thus far allows us to rea-
son about the uncertain information, they are computation-
ally expensive for evaluating a context because they rely
on an exponential structure. A tractable way to evaluate
contexts can be obtained by restricting ourselves to a frag-
ment of the languageL≥, allowing us to determine the truth
of a context based on the λ-value associated with the con-
stituent literals.

Example 3. Consider the stratification λ of Φ from Ex-
ample 1. We have λ(o) = 2, λ(¬o) = 1, λ(g) = 1,
λ(¬g) = 2, λ(sd) = 1 and λ(¬sd) = 3.

Due to the way we defined λ over arbitrary formu-
las, we know that λ(φ ∨ ψ) is decomposable, while
λ(φ ∧ ψ) is not. Indeed, recall that we only have that
λ(φ ∧ ψ) ≥ max(λ(φ), λ(ψ)). Therefore, we cannot al-
low∧ in our restricted language. Furthermore, it affects our
ability to verify whether for a given expression ψ we have
that λ(ψ) < λ(¬ψ). Indeed, we can only allow disjunction
as part of an operand of the operators ≥ or > as otherwise
its negation would turn it into a conjunction, which we do
not allow. As such, we obtain the fragment L≥, defined in
BNF as:

d ::= a | ¬a | d1 ∨ d2 φ ::= a | ¬a | d1 ≥ d2 | d1 > d2

Contexts in this language can easily be evaluated, once we
have the λ-values of the literals lit(A):

λ(φ ∨ ψ) = min(λ(φ), λ(ψ))

λ(φ ≥ ψ) =

{
1 λ(¬φ) ≥ λ(¬ψ)

∞ otherwise

and equivalently for λ(φ > ψ). As before, we say that φ is
true iff λ(φ) < λ(¬φ). Even though enforcing tractability
carries a penalty in terms of the expressive power, we still
retain a language that takes advantage of the new connec-
tives we have introduced, thus allowing us to reason over
the plausibility of statements.

3.3 EFFICIENTLY MODELLING ISOLATED
UNCERTAIN BELIEFS

As a final step in the representation of uncertain beliefs for
a BDI agent, we introduce the concept of a global uncertain
belief set (GUB) which applies to both Section 3.1 and 3.2.

Definition 5. A global uncertain belief set G is a set
{Φ1, ...,Φn} with each Φi an epistemic state over the do-
main Ai ⊆ At such that {A1, ..., An} is a partition of At.

Each local (or isolated) epistemic state models beliefs that
are semantically related, e.g. the colour of the signal or the
condition of the track, and that are governed by the same



form of uncertainty. A GUB then groups a set of such lo-
cal epistemic states. A GUB is therefore a representation
of the overall beliefs of an agent, yet it differs in three sig-
nificant ways from a global epistemic state. First, it avoids
the exponential representation of a global epistemic state
by partitioning the beliefs. Second, it allows for a general
framework where each local epistemic state can use a dif-
ferent representation. Third, it does not include a revision
strategy (as each local epistemic state can have a distinct
revision strategy), i.e. it is not itself an epistemic state.

Despite these differences, we can use a GUB to determine
if a context φ is true according to the agent’s collective be-
liefs. Intuitively, φ can be evaluated directly if it applies to
a single local epistemic state Φi, i.e. we can verify whether
Φi |= φ. Otherwise, we need to break φ apart up until the
point where we can evaluate it directly. An expression can
be split when the connective is either ∧ or ∨. Since both
operands will either be true or false such a decomposition
is trivial. However, this also implies that we cannot decom-
pose≥ or>, since in this paper we require both operands to
be from the same local epistemic state. Indeed, in general,
stratifications of different formulas in different local epis-
temic states are incomparable due to the varying underlying
structures. The problem of comparing the plausibilities of
different local epistemic states is left for future work.

To formalise this intuition, we use LAi

≥ to denote the lan-
guage L≥ limited to atoms a ∈ Ai, i.e. the language corre-
sponding to the epistemic state Φi. A formula φ is broken
apart by (simp)lifying it, which returns the evaluation of φ
by evaluating the operands (or it returns ⊥ if the connec-
tive is ≥ or > and both operands are incomparable). We
can then define valGUB (φ) as:

valGUB (φ) =


> if φ ∈ LAi

≥ ,Φi |= φ

⊥ if φ ∈ LAi

≥ ,Φi 6|= φ

simp(φ) otherwise

simp(φ ∧ ψ) = valGUB (φ) ∧ valGUB (ψ)

simp(φ ∨ ψ) = valGUB (φ) ∨ valGUB (ψ)

simp(φ ≥ ψ) = ⊥

and simp(φ > ψ) equivalently defined as simp(φ ≥ ψ).

Definition 6. Let G be a GUB and φ a formula in L≥.
We say that φ is entailed by G, written as G |= φ, if and
only if valGUB (φ) ≡ >.

A visual representation of a GUB is given in Figure 2.

4 DEALING WITH UNCERTAIN
BELIEFS IN A BDI AGENT

In the previous section we discussed how the beliefs of an
agent can be represented as a set of local epistemic states.
We also discussed how a GUB, and the underlying strat-
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Figure 2: A GUB models the belief of an agent as a set of epis-
temic states Φi, each having its own representation (Definition 5).
Commensurability is obtained by stratifying the possible worlds,
with each stratum constituting an (uncertain) belief set (Defini-
tion 3). These stratifications can be combined to compute the
λ-value of any arbitrary propositional formula. When new input
is received, the local epistemic states are revised by ignoring (or
forgetting) irrelevant information, as discussed in Section 4.

ification of the local epistemic states, can be used to en-
sure commensurability. In this section, we extend CAN to
CAN+ by adding to it a GUB to represent uncertain be-
liefs and by extending its syntax so that a CAN+ agent can
reason about its uncertain beliefs. After Definition 8, we
introduce how a GUB can be revised directly, thus allow-
ing an agent to revise its beliefs irrespective of the various
forms of uncertainty that govern those beliefs. In our exten-
sion CAN+, a context ψ is taken to be a sentence from the
language L≥. We assume the language for a plan body to
be defined as in CAN, where we will gradually modify the
language throughout this section. First though, we redefine
the concept of configurations in CAN+. Rather than con-
sidering a belief base to model the knowledge, we will thus
use a GUB to represent the uncertain beliefs of the agent.
We have:

Definition 7. A basic configuration is a tuple 〈G,A, P 〉
with G a GUB, A the list of executed actions and P a plan
body being executed (i.e. the current intention). An agent
(configuration) is a tuple 〈N ,D,Π,G,A,Γ〉 with N the
name of the agent, D the action description library (de-
fined in Section 5), Π the plan library, Γ the set of current
intentions of the agent and G and A as before.

With the configurations redefined we can extend the first
set of rules from CAN, i.e. the rule for a test goal (?φ) and
the rule for plan selection (select):

G |= φθ
?φ

〈G,A, ?φ〉 −→ 〈G,A, nil〉

ψi :Pi ∈ ∆ G |= ψiθ
select〈G,A, (|∆|)〉 −→ 〈G,A, Piθ . (|∆ \ Pi|)〉

We retain the notation as used in [Sardiña et al., 2006] to
denote unification as e.g. φθ, i.e. variables are dealt with in
the customary way. The modified rules make clear that ver-
ifying whether a belief or context holds is now done against



the GUB. The language has implicitly been extended in
both cases, since test goals and contexts can now include
statements to reason over uncertain beliefs, i.e. φ, ψi ∈ L≥.

So far we have looked at how we can reason about the
agent’s (uncertain) beliefs, but we also want to revise these
beliefs. When new input is presented (e.g. due to an in-
ternal belief change or the effects of an action), a naive
approach would be to compute the global epistemic state
as the Cartesian product of the local epistemic states, apply
the input and then marginalise the outcome. However, such
an approach is computationally too expensive. Instead, we
will apply the input directly to the relevant epistemic states.
First though, we define the notion of an uncertain belief.

Definition 8. Let φ be a sentence in the language LAin

with Ain ⊆ A. Let µ ∈ (Z ∪ {−∞,+∞}). We say that
b = (φ, µ) is an uncertain belief.

An input b, which is an uncertain belief, corresponds to a
sequence of inputs refine(b,Φi) for any given local epis-
temic state Φi ∈ G. We have:

refine(b,Φi) =

{
forget(b,Φi) Ain ∩Ai 6= ∅
〈〉 otherwise

with forget(b,Φi) a sequence of inputs defined as
〈(m′, µ) | b = (φ, µ),m ∈ Mod(φ),m′ = m ∩ lit(Ai)〉
andm′ in (m′, µ) treated as a conjunction of literals. When
Ain ⊆ Ai we could equivalently take forget(b,Φi) = 〈b〉.

By G ◦ b we denote that we want to revise the cur-
rent beliefs of the agent with the input b, such that
G ◦ b = {Φi ◦ refine(b,Φi) | ∀Φi ∈ G} with ◦ a revision
operator. That is, revising a global uncertain belief
set is taken as revising the local epistemic states with
the given input. Each input (m′, µ) in the sequence
refine(b,Φi) corresponds to a simple epistemic state
from [Ma and Liu, 2011], i.e. to an epistemic state Φin

with the domain 2Ai such that Φin(ω) = µ iff ω |= m′

and Φin(ω) = 0 otherwise. An epistemic state Φ can be
revised by a simple epistemic state Φ′ with the same do-
main Ω, denoted as Φ ◦ Φ′, as ∀ω ∈ Ω, (Φ ◦ Φ′)(ω) =
Φ(ω) + Φ′(ω).4 As such, when the input has been trans-
formed to refine(b,Φi) for a given local epistemic state
Φi, the revision is equivalent to iterated revision using
the simple epistemic states in refine(b,Φi). The final
output of this iterated revision is unique regardless of
the order in which we revise Φi with simple epistemic
states Φin in forget(b,Φi) based on postulates B5 and B6
in [Ma and Liu, 2011] (i.e. weights are cumulative and the
order of updating does not affect the result).

Now we can introduce the ◦b rule to CAN+ for belief
change. The intuition of this new rule is clear; we want to
change the beliefs encoded in the GUB with the uncertain
belief b. We have:

4For other epistemic states these values can be extrapolated.

◦b〈G,A, ◦b〉 −→ 〈G ◦ b,A, nil〉

The rule for belief change can serve as a template to define
the rules for classical belief addition +φ and deletion −φ.
Those rules would become:

+φ
〈G,A,+φ〉 −→ 〈G ◦ (φ,maxG),A, nil〉

−φ
〈G,A,−φ〉 −→ 〈G ◦ (φ,minG),A, nil〉

with maxG = max {maxΦi
| Φi ∈ G} and minG analo-

gously defined. Notice that we transform the formula φ
into an uncertain belief by assigning to it the weight maxG
(minG). This ensures that φ will be true (false) after re-
vision. We can also define belief addition and deletion as
syntactic sugar on top of the belief change semantics. In-
deed, a statement such as +φ is nothing more than a short-
hand for the statement ◦(φ,maxG). Similarly, −φ can be
considered a shorthand for ◦(φ,minG). As we try to keep
the semantics as concise as possible, we opt to define these
operators in the latter way. Such a choice will also need to
be made in the next section, where we will directly present
the approach based on syntactic sugar.

In conclusion, the new language for a plan body in CAN+
is given in BNF as:

P ::= nil | ◦b | act | ?φ | !e | P1;P2 | P1 ‖ P2 |
P1 . P2 | (|∆|) | Goal(φs, P, φf )

with b an uncertain belief and φ, φs, φf ∈ L≥. We also
modified the rules for ?φ and select, while dropping the
rules for +φ and−φ and introducing a new rule for ◦b. The
rules in CAN dealing with program flow do not require any
changes and can be integrally applied to the CAN+ seman-
tics. The rules on declarative goals do need to be modified,
but in a straightforward way similar to ?φ, i.e. we need to
verify φs and φf against G.

5 DEALING WITH UNCERTAIN
ACTIONS IN A BDI AGENT

The primitive actions of a BDI agent are affected by uncer-
tainty in a variety of ways. Usually described in a STRIPS-
like style such as act : ψ ← φ−;φ+, an action act can have
uncertainty in the precondition ψ, uncertainty as to a spe-
cific effect (where the effect will change the epistemic state
and possibly the belief set) or uncertainty as to the outcome
of an action (with a probability for each outcome).

The first form of uncertainty is the easiest to incorporate.
Similar to how the rule select for plan selection allows us
to consider uncertain information, we can take ψ ∈ L≥ and
verify whether this context, or precondition, is satisfied.

Next, φ− and φ+ are usually taken to be delete and add
lists of atoms. Nothing in the semantics for CAN+ prevents



us from instead considering a list of uncertain beliefs φu

as the results of an action. Not only does this consider-
ably increases the expressive powers of action effects, but
it also allows to define φ− and φ+ as special cases of φu

with each being a list of propositions φ ∈ L to which the
weight minΦ and maxΦ is assigned, respectively. As we
did before, we assume hereafter that φ− and φ+ are forms
of syntactic sugar for which we will not explicitly define
the semantics.

Finally, the effects of an action may not be known in ad-
vance. This form of uncertainty has already been ex-
tensively considered in the literature, leading to varia-
tions of the STRIPS language that consider various out-
comes with associated probabilities. Rather than a sin-
gle outcome φ−;φ+ we consider a set of outcomes{
〈p1, φ

−
1 , φ

+
1 〉, ..., 〈pn, φ−n , φ+

n 〉
}

with
∑n
i=1 pi=1.

By adopting a STRIPS-like probabilistic action library D,
populated by probabilistic action description rules – each
representing a single independent action – we can model
these three forms of uncertainty with rules of the form:

act : ψact ← {〈p1, φ
u
1 〉, ..., 〈pn, φun〉}

such that pi ≥ 0,
∑n
i=1 pi = 1 with ψact an uncertain

belief and φui a list of uncertain beliefs.
Example 4. Consider the running example from the intro-
duction and Figure 1. We can model the actions to slow
down and to continue at the same speed as

slow : true← {〈0.4, [(junc,maxG), (sp,−20)]〉,
〈0.6, [(late,maxG), (sp,−20)]〉}

cont : sd ≥ ¬sd← {〈0.75, [(junc,maxG)]〉,
〈0.25, [(late,maxG)]〉}

The first action can always be applied and has two out-
comes. With 40% chance the junction is reached in time
and with 60% the train is late. In both cases the (sp)eed is
reduced. The second action encodes an agent in a hurry:
the agent will not wait until there is a safe distance, i.e. the
agent continues whenever he thinks it is at least more plau-
sible that there is still a safe distance (or when the agent is
ignorant and doesn’t care).

While we already know how to correctly deal with un-
certain beliefs, we do not yet have the machinery in
the operational semantics to deal with probabilistic ef-
fects. To model a probabilistic action we use the notion
of a probabilistic transition C −→p C ′ where p repre-
sents the transition probability between the configurations
C and C ′ [Di Pierro and Wiklicky, 1998]. Notice that all
the transition rules used thus far are special cases of prob-
abilistic transition rules where the probability of the tran-
sition is 1. As such we assume in CAN+ that all transition
rules are probabilistic transition rules, where the probabil-
ity is 1 unless explicitly specified. The act derivation rule
can then be defined as:

(a : ψ ← effects) ∈ D aθ = act G |= ψθ
act〈G,A, act〉 −→pi 〈G ◦ φui θ,A · act, nil〉

with effects the set {〈p1, φ
u
1 〉, ..., 〈pn, φun〉}. As expected,

the transition will depend on the probabilities of the differ-
ent effects associated with the action act.

Thus far we have only discussed how CAN+, which extends
CAN, adds the ability to model and reason about uncertain
information. A parallel endeavour is to extend CANPLAN
into CANPLAN+. The main difference between CAN and
CANPLAN is the ability of the latter to perform lookahead
planning by means of the Plan(·) action. A similar idea
can be incorporated in CAN+ to arrive at CANPLAN+.

We know from the way we extended the act rule that, dur-
ing the BDI execution, it is the probability of the transition
that determines the effect of a primitive action. Further-
more, when a BDI agent tries to achieve some intention,
this may involve the execution of a large number of plans.
However, merely selecting the plan with the highest prob-
ability of reaching the next state without taking future ac-
tions into account may lead to poor performance. Indeed,
this single step may not be on the same path that offers
the highest overall chance of achieving our goal. Such is-
sues can be addressed by using lookahead planning. During
planning performed through the Plan(·) action we can take
the probability of the different transitions into account and
thus maximise the probability of achieving our intention.

To formalise this idea, we introduce the notion of maximis-
ing the overall transition probability. Intuitively, given two
configurations C and C ′′, there may be more than one op-

tion such that C
plan∗−→ C ′′. When a transition is labelled

with ‘plan’ or ‘bdi’, the transition is resp. only valid in the
planning context or during BDI execution. We want to take

the transition C
plan−→ C ′ such that C ′ is the next configura-

tion on the path which offers us the highest overall chance
of reaching our goal, which we will denote as C max∗−→

C′
C ′′.

Definition 9. Let C and C ′′ be configurations such

that C
plan∗−→ C ′′. Furthermore, let p be such that

p =
∏n
i=0 pi and C

plan−→p1 C ′
plan−→p2 . . .

plan−→pn C ′′.
We say that C max∗−→

C′
C ′′ when there does not exist a

configuration D′ that is different from C ′ in either its
belief base, executed actions or plan body such that

C
plan−→p′1

D′
plan−→p′2

. . .
plan−→p′m

C ′′ and p′ > p with
p′ =

∏m
i=0 p

′
i.

In other words: C ′ is the next configuration on the most
probable path to reach C ′′. Using Definition 9 we can ex-
tend the operational semantics of the Plan(·) construct to
take into account that we are dealing with uncertain actions.
In CANPLAN the rule for Plan(·) is as follows:

C
plan−→ C ′ C ′

plan∗−→ C ′′ plan
〈B,A,Plan(P )〉 bdi−→ 〈B′,A′,Plan(P ′)〉



with the configurations C,C ′ and C ′′ defined as 〈B,A, P 〉,
〈B′,A′, P ′〉 and 〈B′′,A′′, nil〉, respectively. Intuitively,
this rule states that the next action to execute is the one
that, according to our lookahead planning; will eventually
lead us to achieving our goal.

The rule in CANPLAN+ for Plan(·), which not only en-
sures that we reach our goal but also maximises the chances
of reaching our goal, is then defined as:

C
plan−→ C ′ C

max∗−→
C′

C ′′

plan
〈G,A,Plan(P )〉 bdi−→ 〈G′,A′,Plan(P ′)〉

with C, C ′ and C ′′ defined as 〈G,A, P 〉, 〈G′,A′, P ′〉 and
〈G′′,A′′, nil〉, respectively.

Example 5. Consider the running example from Figure 1.
Assume we are at the decision point just after reaching the
signal. An agent that plans ahead for the goal of reaching
the station in time, will make the rational choice to slow
down. If the agent did not perform lookahead planning and
only looked at the highest chance to reach the junction, then
continuing at the same speed would be preferred.

6 RELATED WORK

The BDI framework [Rao and Georgeff, 1991] is notable
for treating beliefs and intentions as two distinct ideas in an
agent-based setting. However, due to the complex tempo-
ral modal logic being used and the assumption of unlimited
resources there was a disconnect between the theory and
implementations based on BDI. This problem was mostly
resolved in [Rao, 1996] where an abstract agent-based lan-
guage, called AgentSpeak, was proposed. This language
was strongly related to the original BDI theory, while be-
ing easily implementable.

CAN [Winikoff et al., 2002] follows up on this approach of
AgentSpeak and provides operational semantics for deal-
ing with declarative goals. Such goals allow more flexi-
bility, e.g. plans can be stopped when the goal is reached
instead of being blindly executed until the end. Declar-
ative goals also make it easier to define semantics for
planning in a BDI setting. Most approaches on plan-
ning [de Silva and Padgham, 2005, Walczak et al., 2006,
Meneguzzi et al., 2007] had been ad-hoc approaches with-
out a semantical background for the integration of plan-
ning in BDI. Such a semantical background was provided
in [Sardiña et al., 2006, Sardiña and Padgham, 2011] with
the introduction of CANPLAN, an extension of CAN with a
Plan(·) action that allows for offline lookahead planning.

Notable work on the integration of uncertainty in a
BDI context has been done in the setting of graded
BDI [Casali et al., 2005]. In graded BDI it is assumed that
the beliefs, desires and intentions have a degree of uncer-
tainty. While of theoretical interest, their framework uses a

complex modal logic axiomatisation which makes it hard to
implement the work directly. Later, in [Criado et al., 2014],
the graded BDI system was further extended to incorporate
norms, i.e. patterns of behaviour that should be adhered to
in given circumstances. These norms are acquired and en-
forced in an uncertain environment. To accommodate this,
norms have an associated salience to reflect their impor-
tance in the given uncertain environment.

Implementations that deal with uncertain percepts in a
BDI setting [Chen et al., 2013] have not been based on
the graded BDI framework but approached the problem
more pragmatically. Our work extends upon the ideas of
graded beliefs (i.e. what the agent knows), where we allow
more fine-grained control by dividing the beliefs into iso-
lated parts, each with their own representation and revision
strategies. Contrary to graded BDI, our work has a vested
interest in the feasibility of implementations while still pro-
viding strong theoretical underpinnings. In that sense, our
work is close to the spirit of CANPLAN.

7 CONCLUSIONS

In this paper we showed how operational semantics for a
BDI agent can be devised to deal with uncertain beliefs and
actions affected by various forms of uncertainty. We intro-
duced CANPLAN+, an extension of CANPLAN, in which
we introduce a novel way of representing the agent’s beliefs
as a set of epistemic states. We furthermore introduced the
idea of stratifying the domains of epistemic states. This al-
lows an agent to reason about the plausibility of his beliefs
within a local epistemic state and allows commensurabil-
ity over the evaluation of these local results. As such, an
agent can select more appropriate plans and can revise his
current beliefs with uncertain information from the envi-
ronment. In addition, it gives a BDI agent system designer
the freedom to choose the best representation for the beliefs
at hand. We also established a way to model actions trig-
gered by uncertain beliefs, have uncertain effects and have
effects that may introduce extra uncertainty into the beliefs.
Finally, we extended the Plan(·) action from CANPLAN
to allow a BDI agent to plan for the most optimal plan,
i.e. with the highest chance of achieving the goal.

For future work, we plan to develop complete algorithms
as well as approximate/tractable algorithms to use in BDI
implementations that model and allow to reason about the
uncertain beliefs of an agent. Moreover, we want to ex-
plore how existing planners under uncertainty can be ex-
tended to deal with the various forms of uncertainty faced
in a SCADA environment.
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