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Abstract. In this paper, a validation and an experimentation of the use of graded
BDI agents is reported. This agent model has been proposed to specify agents ca-
pable to deal with the environment uncertainty and with graded attitudes in an ef-
ficient way. As a case study we focus on a Tourism Recommender Agent specified
using this agent model. The experimentation on the case study aims at proving that
this agent model is useful to develop concrete agents showing different and rich be-
haviours. We also show that the results obtained by these particular recommender
agents using graded attitudes improve those achieved by agents using non-graded
attitudes.
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1. Introduction

In the last years, an increasing number of theories and architectures have been proposed
to provide multiagent systems a formal support, among them the so-called BDI archi-
tecture [7]. This model has evolved over time and has been applied, to some extent, in
several of the most significant multiagent applications developed up to now. With the
aim of making the BDI architecture more expressive and flexible, in [2] a general model
for Graded BDI Agents (g-BDI) has been proposed , specifying an architecture able
to deal with the environment uncertainty and with graded mental attitudes. As a case
study, a Tourism Recommender multiagent system has been designed and implemented
where its main agent, the Travel Assistant Agent (T-Agent), has been modelled using the
graded BDI model [3,4]. Actually, recommender systems [9,1] is an increasing area of
interest within the Artificial Intelligence community where Agent technology becomes
very valuable as it eases the expression of those different characteristics we expect from
these systems (e.g. user profile oriented, able to aggregate relationships from heteroge-
neous sources and data, open and scalable) [6]. The agent-based tourism recommender
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system that has been developed has the goal of recommending the best tourist packages
on Argentinian destinations, provided by different tourist operators, according to user’s
preferences and restrictions.

In this work we report on the validation process of the recommender system as well
as on the experimentation we have performed with the aim of proving different proper-
ties of the g-BDI model of agents. Namely, we have performed a sensitivity analysis to
show how the g-BDI agent model can be tuned to have different behaviours by modify-
ing some of its component elements. Also, we have done some experiments in order to
compare the performance of recommender agents using the g-BDI model with respect
to agents without graded attitudes. This paper is structured as follows. In Section 2 the
g-BDI model of agent is succinctly described. Then, in Section 3 we present the relevant
characteristics of the Tourism Recommender implementation. In Section 4, we describe
the validation process of the T-Agent designed using the g-BDI model and implemented
in a multithreaded version of Prolog. Finally, the results of the above mentioned exper-
iments are reported in Section 5. We conclude in Section 6 with some final remarks.

2. Graded BDI agent model

The graded BDI model of agent (g-BDI) allows to specify agent architectures able to
deal with the environment uncertainty and with graded mental attitudes. In this sense,
belief degrees represent to what extent the agent believes a formula is true. Degrees of
positive or negative desire allow the agent to set different levels of preference or rejection
respectively. Intention degrees give also a preference measure but, in this case, modelling
the cost/benefit trade off of reaching an agent’s goal. Thus, agents showing different
kinds of behaviour can be modeled on the basis of the representation and interaction of
these three attitudes.

The specification of the g-BDI agent model is based on Multi-context systems
(MCS) [5] allowing different formal (logic) components to be defined and interrelated. A
particular MCS specification contains two basic components: contexts and bridge rules,
which channel the propagation of consequences among theories. Thus, a MCS is defined
as a group of interconnected units or contexts

〈
{Ci}i∈I ,∆br

〉
. Each context Ci is de-

fined by a tuple Ci = 〈Li, Ai,∆i〉 where Li, Ai and ∆i are the language, axioms, and
inference rules of the context respectively. ∆br is a set of bridge (inference) rules, that
is, rules of inference with premises and conclusions in possibly different contexts. When
a theory Ti ⊆ Li is associated with each unit, the specification of a particular MCS is
complete. In the g-BDI agent model, we have mental contexts to represent beliefs (BC),
desires (DC) and intentions (IC). We also consider two functional contexts: for Planning
(PC) and Communication (CC) and a set of bridge rules (∆br). Thus, the g-BDI agent
model is defined as a MCS of the form Ag = ({BC, DC, IC, PC, CC},∆br). The
overall behaviour of the system will depend on the logic representation of each inten-
tional notion in the different contexts and the bridge rules. The left hand side of Figure
1 illustrates the g-BDI agent model proposed with the different contexts and some of
the bridge rules relating them. As for example, we describe the bridge rule (see (3) in
Figure 1) that infers the degree of intention towards a goal ϕ for each plan α that allows
to achieve the goal (Iαϕ), in the next section 3.

In order to represent and reason about graded mental attitudes we use a modal many-
valued approach where reasoning about graded uncertainty, preferences and intentions
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Figure 1. Multi-context model of a graded BDI agent (left) and the multiagent architecture of the Tourism
Recommender system (right)

is dealt with by defining suitable modal theories over suitable many-valued logics. The
formalization of the adequate logics (i.e. language, semantics, axiomatization and rules)
for the different contexts and the basic bridge rules can be seen in [2].

3. A Tourism Recommender System

For a prototype version of the Tourism Recommender System, we define two agent’s
types: provider agents and a Travel Assistant agent. As it is natural in the Tourism Chain,
different Tourist Operators may collaborate/compite for the provider role. To represent
these different sources of tourist packages, we use for this implementation two differ-
ent agents (P-Agents), but the multiagent architecture is easily scalable to include other
providers. These agents are only considered as packages suppliers and therefore, we
do not get into their internal architecture. The agents in the Recommender system with
the main source of information they interact with (i.e., the destination ontology and the
package reservory) are illustrated in Figure 1 (right). The implementation of the Recom-
mender system was developed using a multi-threaded version of prolog 3 allowing an in-
dependent execution of different contexts (i.e. in different threads). The principal role of
the Travel assistentt agent (T-Agent) is to provide tourists with recommendations about
Argentinian packages and it can be suitably modelled as an intentional agent and partic-
ularly, by a g-BDI model. This agent model is specified by a multicontext architecture
having mental and functional contexts Next, we briefly describe how the contexts have
been implemented in order to obtain the desired behaviour of the T-agent (for a detailed
description see [4]).

Communication Context (CC): The CC is the agent’s interface and is in charge of
interacting with the tourism operators (P-Agents) and with the tourist that is looking
for recommendation. The T-Agent, before beginning its recommendation task, updates
its information about current packages (carrying out its reservory maintenance role). It
behaves as a wrapper translating the incoming packages into the T-Agent format and
sends them to the Planner context. The user’s interface has been developed as a Web
service application and it is responsible for:

3http://www.swi-prolog.org



- Acquiring user’s preferences: they are explicitly obtained from the user by filling
in a form. The tourist can set her preferences (positive desires) and restrictions (negative
desires) and assign them a natural number from 1 to 10 to represent the level of pref-
erence (resp. restriction) for the selected item. Preferences are given about the follow-
ing issues: geographic zone, natural resources, infrastructure, accommodation, transport
or activities. The constraints are related to the maximum cost she is able to afford, the
days available for traveling and the maximum total distance she is willing to travel. Once
the user finishes his selection, the CC sends all the acquired information to the Desire
context DC.

- Showing the resulting recommendation: as a result of the T-Agent deliberation
process, the CC receives from the Intention context a ranking of feasible packages that
satisfies some or all of the tourist preferences. Then, he can visualize the information
about them (i.e. the description of the transport, destination, accommodation, activities)
opening suitable files.

- Receiving Tourist’s feedback: After analyzing the ranking of the recommended
packages, the user can express through the CC interface her opinion about the recom-
mendation. Namely, the user can select one of the following three possible evaluations:

1. Correct: when the user is satisfied with the ranking obtained.
2. Different order: when the recommended packages are fine for the user, but they

are ranked in a different order than the user’s own order. In such a case, the user
is able to introduce the three best packages in the right order.

3. Incorrect: The user is not satisfied with the given recommendation. Then, the
interface enables him to introduce a (textual) comment with his opinion.

All the information resulting from the user data entry is stored to evaluate the system
behaviour.

Desire Context (DC): As the T-Agent is a personal agent, its overall desire is to max-
imize the satisfaction of the tourist’s preferences. Thus, in this context the different
tourist’s graded preferences and restrictions are respectively represented as positive and
negative desires. For instance, the preferences of a tourist that would like to go to a
mountain place and to travel by plane but not more than 2000 kms could be represented
by the following theory:

TDC = {(D+(resources, mountain), 0.9), (D+(transport, air), 0.7),
(D+[(resources, mountain), (transport, air)], 0.92), (D−(distance, 2000), 0.5)}

The T-Agent uses the desires as pro-active elements, and are passed by a bridge rule to
the Planner context that looks for feasible packages.

Belief Context (BC): In this context the T-Agent represents all the necessary knowl-
edge about tourism and the Argentinian domain: tourist packages (each package is rep-
resented as a list containing an identifier, a tour provider, the package cost and a travel-
stay sequence), information about destinations (represented by a destination ontology)
and rules to infer how much preferences can be satisfied (to some degree) by the fea-
sible tourist packages. This context also contains knowledge about similarity relations
between concepts to extend the possibility of satisfying a tourist with similar preferences
than the actually selected ones. Besides, the BC is in charge of estimating the extent (the



belief) B([αP ]ϕ) to which a desire (preference) ϕ will be achieved when selecting a
given package αP .

Planner Context (PC): This context it is responsible for looking for feasible pack-
ages. A package is feasible when it satisfies at least one of the positive desires and its
execution does not violate any restriction. These plans are computed within this context
using an appropriate search method, that takes into account beliefs and desires injected
by bridge rules from the BC and DC units, respectively. This set of packages is passed to
the Intention context which is in charge of ranking them.

Intention Context (IC) and a Bridge rule example: In the IC the T-Agent finds the
intention degree for each feasible package that is expected to satisfy a desire ϕ. There
is a bridge rule that infers the degree of Iαϕ for each package α that allows to achieve
ϕ. This value is computed by a function f that suitably combines factors like the degree
d of desire about ϕ, the belief degree r in achieving ϕ by executing the plan α, and the
(normalized) cost c of the plan α.

DC : (D+ϕ, d), PC : fplan(ϕ, α, P, A, r, c)
IC : (Iαϕ, f(d, r, c))

Different functions can model different individual agent behaviours. In the T-Agent this
function is defined as a weighted average: f(d, r, c) = (w1 ∗ d + w2 ∗ r + w3 ∗ (1 −
c))/(w1 + w2 + w3), where the different weights wi are set by the T-Agent according
to the priority criterion selected by the user (minimum cost or preference satisfaction).
Once the rule has been applied to all the feasible plans, the IC has a set of graded in-
tention formulae. Using the intention degrees the T-Agent makes a package ranking that
communicates to the CC and then, through the user interface, it is provided back to the
user as recommendation.

4. Validation of the Recommender Agent

It has been shown in [3,4] that the g-BDI architecture described above is useful to model
recommender systems. In this section we try to answer whether this system provides
satisfactory recommendations. This recommender system is accessible via Internet4 al-
lowing an online and a multiuser access. To analyze its behaviour the user’s opinion is
crucial. This opinion is given after he receives the ranking of the tourist packages the
system recommends. We want to know whether the T-Agent is a personal agent satisfy-
ing, to some degree, a set of different users. As the process of information classification
is generally a complex and personal task, and may differ among persons, we want to
measure the average system behaviour over a population.

We use the implementation of the T-Agent modelled as a g-BDI agent and a set of 40
tourism packages offered to the T-Agent by the provider agents. We have collected a set of
52 queries made to at least 30 different users, most of them students of our Department.
The preferences and restrictions introduced by them as input to the system, together with
the system results and the user’s feedbacks, constitute our N-cases set. Each case in the
dataset is composed by:

• User’s Input: a user ID and his graded preferences and restrictions.

4http://musje.iiia.csic.es/eric/



• Agent’s Result: the system returns a ranking of at most nine packages.
• User’s Feedback: as explained in the previous section, after analyzing the infor-

mation of the recommended plans the user provides a feedback by evaluating the
result as: (1) Correct, (2) Different order or (3)Incorrect. In this validation process
we consider feedback types (1) and (2) correspond indeed to satisfactory results
since the user can find what he wants among the recommended options.

Actually, for the validation purposes, we have only taken into account those cases which
included the user’s feedback.

Results: From the selected 52 cases (N-cases) we have separated the ones having a sat-
isfactory feedback (including Correct or Different order) from the non satisfactory ones.
The cases where the user provides his own ranking (Option 2: Different order) are in-
deed very valuable because it means that the user analyzed the offers proposed by the
system, while cases with the Option 1 (Correct order) sometimes they correspond to a
“quick answer”. The results obtained for the N-cases classified by the different feedback
categories are shown in the following Table. From these results, the global behaviour of
the T-Agent may be considered useful in most cases (73% of N-cases).

Queries (N-cases) Correct order Different order Incorrect Satisfactory (S-cases)
52 21 17 14 38

100% 40.4% 32.7% 26.9% 73.1%

In order to give a general measure of the T-Agent results over the satisfactory cases
(S-cases), we have evaluated how close is the T-Agent ranking with regard to the user’s
own ranking. For this, we choose the Block (Manhathan) distance between the position
of the first three packages selected by the user and their position in the system ranking.
This distance was adopted because it is appropriate for capturing positional differences.
Namely, assume the user’s feedback is Ui = (Pi1, Pi2, Pi3) and the T-Agent ranking for
this consult is Ri = (R1, R2, ..., R9). Then, if Pi1 = Rj , Pi2 = Rk, Pi3 = Rn, the
distance between the user’s the system rankings is defined by:

Dist (Ui, Ri) = |1 − j| + |2 − k| + |3 − n|

The frequencies of the block distance corresponding to the T-Agent results for all the
S-cases can be seen in Figure 2. We analyzed the incorrect cases and the comments
attached (if any) about the user dissatisfaction with respect to the system recommenda-
tion and they were somewhat scattered. Apart from that, in some of these incorrect cases
we detected a system shortcoming related to the tourism knowledge base, the destina-
tion ontology used for this experimentation was incomplete with respect to the popular
knowledge. Therefore, we believe the T-Agent behaviour may be improved by complet-
ing these ontologies. Finally, the S-cases set of satisfactory results (see table in Figure
2) yields an average distance of 2.95 in the scale [0, 18], and hence giving a good global
measure result. Summarizing, we have obtained satisfactory results of the Recommender
System in this validation process that allows us to claim that “the T-Agent recommended
rankings over Tourism packages are in most cases near to the user’s own rankings”.



5. Experimentation

In this section we present the experimentation we have made following two directions.
The first one, we call it Sensitivity Experimentation, has the purpose of analyzing how
much the general g-BDI agent architecture can model concrete agents having different
behaviours by modifying some of its components. The second one aims at checking
whether the distinctive feature of the g-BDI agent model, which is the gradual nature of
mental attitudes, actually makes a difference (in terms of better results) with simulated
BDI non-graded models.

5.1. Sensitivity model experimentation

We have performed two experiments to analyze how the overall recommender system
behaviour can be modified by tuning some of the T-agent components. First, in Experi-
ment 1 we change the theory of one of the mental contexts, the desire context DC, using
another way for computing the desire degree for each preference combination. Then, in
Experiment 2 we modify the bridge rule (1) definition by changing the function f to
obtain the intention degree.

Experiment 1 For this experiment we follow the next steps:
(1) We use the tourism recommender agent T2-Agent: this agent was developed changing
in the T-Agent the desire context. The modification in this context is related to the way the
desire degrees are computed. The underlying idea was to weight not only the preference
degree but also the number of preferences we are considering in each combined desire,
as to give more relevance to the desires that combine a higher number of preferences.
For this purpose in the Desire Context of the T2-Agent we use as degree for desire D the
value

d′ = 1/2 ∗ (d +
CardD

CardPref
)

where d is the degree used in the T-Agent, CardD is the number of preferences consid-
ered in the desire D and CardPref is the number of preferences selected by the user.
(2) We consider the S-cases (see Validation 1) where the results were satisfactory.
(3) The user’s inputs of the S-cases are run in the T2-Agent
(4) We compare the T2-Agent results with the S-cases user’s feedbacks we have for the
T-Agent and compute distances.
Results: In the experiment we compare the ranking proposed by T2-Agent with the feed-
back of the S-cases consisting of the first three packages extracted from the T-Agent rec-
ommendation. Some of these packages may not be found in the T2-Agent answer. As in
the validation process, we use the Block distance to have a global measure of the T2-
Agent performance. For the missing packages, we take an optimistic approach assuming
that the distance is 10 (supposing that the missing packages would be in the first place
immediately after those appearing in the ranking). The distance frequency corresponding
to the T2-Agent results for all the S-cases are shown on the table and graphic of Figure
2. For this experiment we use two global measures, the average of distances excluding
the cases having missing packages and the total average that includes all the cases. The
average of the distances between the T2-Agent ranking and the feedback of the S-cases
is 2.85 and the total average is 4.23. Comparing the first global measure with the one ob-



tained with the T-Agent results, we notice that this measure is slightly better than the one
obtain for the T-Agent results. We think that in a direct measure of the performance of the
T2-Agent (comparing the T2-Agent ranking with the corresponding user’s feedback) we
would have had better results. Thus, we can conclude that T-Agent and T2-Agent share a
similar behaviour, but the T2-Agent’s results are a little bit closer to the user’s selections.

Experiment 2 We follow the same steps used in Experiment 1 but in this case, for item
(1) we use a tourism recommender agent called T3-Agent. This new agent has been de-
fined from the T-Agent by changing one of its bridge rules. Namely, we have modified
bridge rule (1) (see Section 3) that computes the intention degree of a package α in or-
der to satisfy a set of user’s preferences ϕ. We have used for T3-Agent a function that
assigns an intention degree according to two different priorities (Preference Satisfaction
or Minimum Cost) by defining two lexicographic orderings, namely:

• when the Preference Satisfaction criterion is selected, we consider the intention
Iαϕ described by the 3-tuple (d′, r, 1 − c), where d′ is the desire degree of ϕ, r
is the belief degree in satisfying the user’s preferences ϕ by the considered plan
α, and c is the cost of the plan α. Then, we use the lexicographic order on the
product space [0, 1]3 to rank the 3-tuples and hence the intentions.

• when the Minimun Cost criterion is selected, we consider Iαϕ described by the
3-tuple (d′, 1 − c, r) and then we rank intentions by lexicographically ordering
these tuples.

Results: The resulting distance frequencies of the results of the T3-Agent, for the S-cases
are shown in Figure 2 (compared with the ones obtained by T-Agent and T2-Agent). The
average of the distances in this case was 4.97, worst than the previous experiments, and
the total average is 6.73. This means that the ranking obtained by this T3-Agent is farther
from the user’s ranking obtained in the validation process than the results of the previ-
ous versions T-Agent and T2-Agent. This fact does not mean that T3-Agent behaviour is
necessarily worst, perhaps it finds other options different from the ones found by the T-
Agent. This result may be interpreted that the way this agent computes the intention de-
gree is different from the way the other recommender agents do it. Then, we can state that
the g-BDI model allow us to engineer recommender agents having different behaviors.

Distance Frequency
T-Agent T2-Agent T3-Agent

0 21 11 5
1 1 4 3
2 2 4 3
3 3 5 3
4 2 1 2
5 0 1 2
6 2 4 3
7 2 2 0
8 0 0 3
9 0 0 2
10 0 1 3
11 3 2 1
12 0 1 4
13 0 1 1
14 1 0 1
17 1 0 0
18 0 0 1
26 0 0 1
30 0 1 0

Average 2.95 2.85 4.97
Tot.Average 2.95 4.23 5.73

Figure 2. Distance frequencies Table (left) and Graphic
(right)



5.2. Graded vs. non-graded model comparison

The aim of this experimentation is to compare the g-BDI model with non-graded (two-
valued) BDI architectures. We want to show that the graded model of agent allows us to
implement recommender agents having better results than the ones based on non-graded
BDI models. We use the T-Agent and T2-Agent prototypes as g-BDI model implemen-
tations. Since the development of a Tourism Recommender using another traditional
BDI architecture would be a highly time-demanding task and since also different fac-
tors would possibly interfere in the comparison of the results (e.g. how the agent builds
plans, which decision process she uses), for simplifying and clarifying purposes we have
decided to use simulated non-graded versions of the g-BDI architecture of the tourism
agent. Starting from the recommender agents T-Agent and T2-Agent we keep their mul-
ticontext architecture and their logic schemes for contexts 5. Then we introduce some
thresholds to make the desire and belief attitudes two-valued (i.e., their degrees will be
allowed to only take values in {0, 1}). The intention degrees have been left many-valued
as to obtain a ranking of the selected packages.

Experiment 3 We have followed the same procedure as for the previous ones but, for this
case, we use a family of Tourism Recommender agents called Cij-Agents. These agents
derive from the recommender T-Agent or T2-Agent and simulate two-valued models of
BDI agents. Each Cij-Agent has been developed by introducing thresholds in the context
DC (Ud) and in the context BC (Ub) of the T-Agent and T2-Agent, to decide which for-
mulae in these contexts are considered to hold (i.e. those with degree 1) and which do
not (i.e. those with degree 0). Then, the following internal processes are introduced in
these contexts:

- DC: before introducing formulae like (D+φ, d) in the DC it is checked whether
d ≥ Ud; if so, the formula (D+φ, 1) is added in the context, otherwise this desire is
discarded (supposing (D+φ, 0)).
- BC: the same happens when the belief context evaluates the degree r of formulae like
(B[α]ϕ, r), if r ≥ Ub then the formula (B[α]ϕ, 1) is added to the BC, otherwise its de-
gree is considered to be 0.

As for the setting of the different thresholds, we have analyzed the desire and belief
degrees distribution in the T-Agent and T2-Agent previous executions. We have experi-
mented different thresholds and it turns out that with three different values ( 0.4, 0.5 and
0.6) we can obtain a good representation of the whole variations in the agents’ results.
Then, we have defined the following “two-valued” BDI agents using three thresholds in
each case:

- Deriving from T-Agent: - Deriving from T2-Agent:

1. C14-Agent uses Ud = Ub = 0.4 4. C24-Agent uses Ud = Ub = 0.4
2. C15-Agent uses Ud = Ub = 0.5 5. C25-Agent uses Ud = Ub = 0.5
3. C16-Agent uses Ud = Ub = 0.6 6. C26-Agent uses Ud = Ub = 0.6

Then, we have run the S-cases in each agent of this two-valued family and compared
the results with the S-cases feedback computing the Block distances. As in the previ-

5This is possible as the many-valued frameworks used for the mental contexts are extensions of classical
logic used in the two-valued models.



ous experimentation we have used the distance average and the total average as global
measures.
Results: The resulting distance frequencies of the results of these two families of crisp
agents deriving from T-Agent and T2-Agent are respectively shown in Figure 2. The av-
erage distance and total average resulting from this experiment are gathered in the fol-
lowing table.

T-Agent family T2-Agent family
Average Tot. Average Average Tot. Average

g-BDI model 2.95 2.95 2.85 4.23
Ud = Ub = 0.4 6.43 14.06 4.04 8.36
Ud = Ub = 0.5 6.43 14.83 3.50 8.07
Ud = Ub = 0.6 4 17.41 3.55 14.43

Comparing the averages obtained with the two-valued models of recommenders (de-
riving from T-Agent and T2-Agent) we can see that those corresponding to the thesholds
0.4 and 0.5 are very similar. The average achieved with the threshold 0.6 is the best in
the T-Agent family and is almost the best in the T2-Agent one, but the total average is
greater, meaning that we have more packages of the S-cases feedback out of the system
ranking. In both families we can see that the distance average of the recommenders us-
ing graded models are better than the simulated two-valued ones (using three different
thresholds). These results give support to the claim that the recommender agents mod-
elled using graded BDI architectures provide better results than the ones obtained using
two-valued BDI models.

6. Conclusions

In this work we have focused on the validation and experimentation of g-BDI agents us-
ing as a case study a Tourism recommender agent. First, the results of the validation pe-
formed allows us to conclude that g-BDI agents are useful to build recommender systems
in a real domains such as tourism, providing satisfactory results. Second, we have also
performed a sensitivity analysis showing that a g-BDI agent architecture can engineer
concrete agents having different behaviours by suitably tuning some of its components.
Finally, the results of a third experiment support our claim that the distinctive feature
of recommender systems modelled using g-BDI agents, which is using graded mental
attitudes, allows them to provide better results than those obtained by non-graded BDI
models.
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