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a b s t r a c t

Both Sequence and Context Unification generalize the same prob-
lem: Word Unification. Besides that, Sequence Unification solves
equations between unranked terms involving sequence variables,
and seems to be appealing for information extraction in XML
documents, program transformation, knowledge representation,
and rule-based programming. It is decidable. Context Unification
deals with the same problem for ranked terms involving context
variables, and has applications in computational linguistics and
program transformation. Its decidability is a long-standing open
question.
In this work we study a relation between these two problems.

We introduce a variant (restriction) of Context Unification,
called Left-Hole Context Unification (LHCU), to which Sequence
Unification is P-reduced: We define a partial currying procedure
to translate Sequence Unification problems into Left-Hole Context
Unification problems, and prove the soundness of the translation.
Furthermore, a precise characterization of the shape of the unifiers
allows us to easily reduce Left-Hole Context Unification to (the
decidable problem of) Word Unification with Regular Constraints,
obtaining then a new decidability proof for Sequence Unification.
Finally, we define an extension of Sequence Unification (ESU) and,
closing the circle, prove the inter-P-reducibility of LHCU and ESU.
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1. Introduction

In thisworkwe study a relationship between Sequence and Context Unification. Both problems are
generalizations of Word Unification (Makanin, 1977; Jaffar, 1990; Schulz, 1990; Plandowski, 1999;
Diekert, 2002). Word Unification is the problem of solving equations between terms built up from
letters and word variables (or unknowns). A solution of a word equation is a mapping from variables
to words that when applied to both sides of the equation gives the same word.
Sequence Unification (SU) is the problem of solving equations between terms built up using an

unranked signature (aka flexible arity, or variadic function symbols) and sequence and individual
variables. Sequence variables are instantiated with finite sequences of terms, while individual
variables instantiate to a single term. Sequence Unification is decidable and infinitary (Kutsia, 2002,
2007).
Solving equations with sequence variables has quite a broad range of applications. The rule-

based programming language of Mathematica (Wolfram, 2003) relies on a pattern matching
mechanism, which supports sequence variables and flexible arity function symbols. It can do
matching modulo certain equational theories as well. Solving equations with sequence variables
form a basis for schema transformation operations (Richardson and Fuchs, 1997; Chasseur and
Deville, 1998) used in synthesis and transformation of logic programs. Other applications include
knowledge representation (Genesereth et al., 1998; Hayes and Menzel, 2001, 2005), automated
reasoning (Paulson, 1990; Ginsberg, 1991; Buchberger et al., 2006), rewriting (Hamana, 1997),
functional logic programming (Boley, 1999). The ISO standard proposal for Common Logic (Common
Logic Working Group , 2007) has notation for sequence variables (called there sequence markers).
Recently there have been developments (Coelho and Florido, 2004, 2006) in XML querying and
transformation that model XML documents with terms over an unranked signature and use sequence
matching and unification techniques (Kutsia, 2002) for querying, transforming, and verifying them.
Sequence equation and disequation solving was used in collaborative development of XML schema
(Coelho et al., 2007). Obviously, we can not give an exhaustive overview of all the applications here.
Context Unification (CU) is the problem of solving equations between terms built up using a ranked

signature andwith first-order and context variables. The latter occur asmonadic function symbols and
denote contexts, i.e. terms with exactly one hole. When the ranked signature considered is restricted
to not contain symbols of arity greater than one, the problem is equivalent to Word Unification.
When allowing one single binary symbol, its decidability is still unknown (Levy and Villaret, 2002).
Nevertheless several fragments and variants are known to be decidable (Levy, 1996; Schmidt-
Schauß, 2002; Levy et al., 2005). The main application field of Context Unification is computational
linguistics, mainly in compositional semantics of natural language (Niehren et al., 1997; Koller, 1998;
Niehren and Villaret, 2002, 2005; Levy et al., 2005). Matching algorithms for multi-hole contexts have
been designed with the goal to use them in program transformation (Chiba et al., 2005) and XML
processing (Okui and Suzuki, 2006).
Combining sequence and context variables in a single framework and equipping it with

regular constraint solving methods makes the framework more flexible, with many potential
applications (Kutsia and Marin, 2005; Marin and Kutsia, 2006).
The goal of this paper is to look in depth into relations between Sequence and Context

Unification. It extends and refines the preliminary version (Kutsia et al., 2007) presented at the 18th
International Conference on Rewriting Techniques andApplications, RTA’07.Wedefine a curryfication
transformation that translates Sequence Unification problems into Context Unification problems over
a signature consisting of constants and a single binary function symbol @ (curried Context Unification
problems). The transformation ‘‘encodes’’ sequence variables into context variables while individual
variables become first-order variables. It preserves solvability in one direction: If the Sequence
Unification problem is solvable, then the corresponding Context Unification problem is solvable.
To preserve solvability in the other direction, we have to restrict possible solutions of the curried
Context Unification problems, which leads to a new variant of Context Unification that we call Left-
Hole Context Unification (LHCU). Theorem 17 proves that Sequence Unification is P-reducible to Left-
Hole Context Unification. Later, we prove that Left-Hole Context Unification is a decidable variant
of Context Unification. We do it by reducing (see Theorem 33) Left-Hole Context Unification toWord
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Unificationwith Regular Constraints (WURC) that is known to bedecidable (Schulz, 1990). The reduction
transforms context equations into word equations on the postorder traversal of the terms. Regular
constraints are required to filter the solutions of the word equations that correspond to traversals of
terms. This reduction is based on some ideas of Levy and Villaret (2001).
With these reductions we get a new decidability proof for Sequence Unification (SU), shorter than

the one in Kutsia (2007). In addition we also get decidability for an extension of Sequence Unification.
In fact, we prove that the Extended Sequence Unification (ESU) and the Left-Hole Context Unification
(LHCU) problems are mutually P-reducible (see Corollary 40). Moreover, this translation also allows
us to use certain complexity results for context matching of Schmidt-Schauß and Stuber (2004) to
characterize complexity of fragments of sequence matching. All these P-reductions are represented
in the following diagram:

SU
Theorem 17- LHCU

Theorem 33- WURC

ESU
?

∩

� Cor
olla
ry 4
0
-

The paper proceeds as follows: Section 2 defines the two main problems: Sequence and Context
Unification. Section 3 introduces the currying encoding and shows its soundness. In Section 4
decidability of Left-Hole Context Unification is proved. Section 5 describes an extension of Sequence
Unification thanks to the currying process, shows some complexity results for Extended Sequence
Matching, and describes a unification procedure. Section 6 is the conclusion.

2. Preliminary definitions

2.1. Sequence Unification

Given an unranked signature ΣU (i.e., a finite set of function symbols that have flexible arity),
a countable set of individual variables VI, and a countable set of sequence variables VS, we define
unranked terms overΣU and V = VI ∪ VS by the following grammar:

r ::= v | V | f (r1, . . . , rn)

and sequences of unranked terms by

seq ::= 〈r1, . . . , rn〉

where v ∈ VI, V ∈ VS, f ∈ ΣU, and n ≥ 0. The setsΣU, VI and VS are mutually disjoint.
We will abbreviate terms of the form f () by f . For the sake of readability, we sometimes put

sequences between angular brackets, that are later flattened: for instance, the replacement of V by
〈f (b), c〉 in f (u, V ) results in f (a, 〈f (b), c〉) = f (a, f (b), c). We do not distinguish between a singleton
sequence and its sole member.2 The length of the sequence 〈r1, . . . , rn〉, n ≥ 0, is n.
The set of unranked terms overΣU and V is denoted by T (ΣU,V). The letters f , g, a, b and c will

be used for function symbols, v and u for individual variables, V and U for sequence variables, w for
individual or sequence variables, r and l for unranked terms, and r̃ for sequences of unranked terms.
We call unranked terms from T (ΣU,V) \ VS the individual terms.
The size of a term r is the measure of its number of symbols and is denoted by |r|. We denote

by vars(r) the set of variables of a term. These definitions are generalized for any syntactic object
throughout the paper.

2 Although this could seem a source of possible error, it works in our setting. For instance, later, when we currify unranked
terms, we use two functions C or C (depending on the context) to currify terms, or sequences of terms, respectively. The fact
that we do not distinguish between a sequence of a sole term and one term does not lead to errors. Notice also that, in our
setting, sequences do not occur in unranked terms, only in substitutions.
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A substitution for individual and sequence variables (IS-substitution for short), is a mapping from
individual variablesto individual terms, and from sequence variables to finite sequences of unranked
terms such that all but finitelymany individual variables aremapped to themselves, and all but finitely
many sequence variables are mapped to themselves considered as singleton sequences. We use the
Greek letters σ and ϑ to denote IS-substitutions.
Given an IS-substitution σ , we represent it as [v1 7→ σ(v1), . . . , vn 7→ σ(vn), V1 7→ σ(V1), . . . ,

Vm 7→ σ(Vm)] where v’s and V ’s are all those variables for which σ(v) 6= v and σ(V ) 6= V . We say
that dom(σ ) = {v1, . . . , vn, V1, . . . , Vm} is the domain of σ .
The domain of IS-substitutions can be extended from the sets of variables to sets of unranked terms

using the congruence
σ(f (r1, . . . , rn)) = f (σ (r1), . . . , σ (rn)).

Similarly, σ can be applied to a sequence of unranked terms using
σ(〈r1, . . . , rn〉) = 〈σ(r1), . . . , σ (rn)〉.

We call σ(r) (respectively σ(〈r1, . . . , rn〉)) an instance of r (respectively of 〈r1, . . . , rn〉) under σ .
Note that the set of unranked terms is not closed under IS-substitution application: An instance of
a sequence variable is an unranked term sequence that in general is not an unranked term. However,
an instance of an individual term is always an individual term.
The restriction of a substitution ϑ to a set of variablesW , denoted ϑ |W , is a substitution defined as

follows: ϑ |W (w) = ϑ(w) ifw ∈ W , and ϑ |W (w) = w otherwise.
The composition of two IS-substitutions σ and ϑ , written as σ ◦ ϑ , is defined by (σ ◦ ϑ)(r) =

σ(ϑ(r)). An IS-substitution σ1 is more general than σ2 with respect to a set of variables W , written
σ1 �

W σ2, if there exists ϑ such that (ϑ ◦ σ1)(w) = σ2(w), for eachw ∈ W .
Definition 1. A Sequence Unification problem (SU problem) is a finite set of equations (unoriented
pairs) of individual terms, denoted {l1

?
= r1, . . . , ln

?
= rn}.

IS-Substitutions extend to equations and unification problems: σ(l1
?
= r1) = σ(l1)

?
= σ(r1)

and σ({e1, . . . , en}) = {σ(e1), . . . , σ (en)}. A unifier of a Sequence Unification problem Γ is an IS-
substitution σ such that σ(l) = σ(r) for each l ?= r ∈ Γ , and Γ is solvable if it has a unifier. A unifier
σ of Γ is called ground, if σ(Γ ) contains no variables. A unifier σ1 of Γ is more general than another
σ2, if σ1 �vars(Γ ) σ2. A unifier σ is most general, if any other unifier σ ′ satisfying σ ′ �vars(Γ ) σ also
satisfies σ �vars(Γ ) σ ′.

2.2. Context Unification

A ranked signatureΣR =
⋃
i≥0Σi is a finite set of fixed arity function symbols, where all symbols

of Σi have arity equal to i. Additionally to ΣR we also use the 0-ary symbol •, called the hole. Given
ΣR, a countable set of first-order variablesX0, and a countable set of context variablesX1, we define
ranked terms overΣR ∪ {•} andX = X0 ∪X1 by the following grammar:

t ::= x | X(t) | f (t1, . . . , tn) | •
where x ∈ X0, X ∈ X1, and f ∈ Σn. When n = 0, we omit the parentheses and write just f . The sets
ΣR,X0 andX1 are mutually disjoint. Constants are 0-ary function symbols. The set of ranked terms
overΣR andX is denoted by T (ΣR,X).
Definition 2. A context is a ranked term with exactly one occurrence of the hole. Application of a
contextC to a ranked term t , writtenC[t], is a ranked termoverΣR andX obtained fromC by replacing
the hole with t .
The letters x and y will be used for first-order variables, X and Y for context variables, z for first-

order or context variables, a and b for constants, f for function symbols and s and t for ranked terms.
A substitution for first-order and context variables, or an FC-substitution in short, is a mapping from

first-order variables to hole-free ranked terms, and from context variables to contexts such that all
but finitely many first-order variables are mapped to themselves, and all but finitely many context
variables are mapped to themselves applied to the hole. We use the Greek letters ϕ and ρ to denote
them. Restriction and composition are defined as above.
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Given an FC-substitution ϕ, we represent it as [x1 7→ ϕ(x1), . . . , xn 7→ ϕ(xn), X1 7→ ϕ(X1),
. . . , Xm 7→ ϕ(Xm)], where x’s are all first-order variables such that ϕ(x) 6= x, and X ’s are all context
variables such that ϕ(X) 6= X(•). Domains are defined as above.
The application of an FC-substitution ϕ to a ranked term t , denoted ϕ(t), is defined by
ϕ(X(s)) = ϕ(X)[ϕ(s)],
ϕ(f (s1, . . . , sn)) = f (ϕ(s1), . . . , ϕ(sn)).

Definition 3. A Context Unification problem (CU problem) is a finite set of equations (unoriented pairs)
of ranked hole-free terms, denoted {s1

?
≈ t1, . . . , sn

?
≈ tn}.

A unifier of a Context Unification problem ∆ is an FC-substitution ϕ such that ϕ(s) = ϕ(t) for each
s
?
≈ t ∈ ∆, and∆ is solvable, if it has a unifier. The notions of a ground,more general andmost general
FC-unifier are defined in the same way as for IS-unifiers.

3. Currying terms

In this section we define the curryfication transformation that will serve us to transform Sequence
Unification problems into (a variant of) Context Unification problems.
The currying function, defined below, transforms unranked terms into ranked terms, sequence

equations (problems) into context equations (problems), sequences of unranked terms into contexts
and IS-substitutions into FC-substitutions.
Definition 4. Given an unranked signature ΣU, we define its ranked curried signature as ΣC

U =

Σ0 ∪ Σ2, where Σ0 contains a unique and distinct constant af 6= •, for each f ∈ ΣU, Σ2 = {@},
andΣi = ∅, for i 6= 0, 2.
Similarly, given the set of individual and sequence variables V = VI ∪VS, we define its curried set

of variables VC
= X0 ∪X1, whereX0 contains a first-order variable xv for each individual variable

v ∈ VI, andX1 a context variable XV for each sequence variable V ∈ VS.
We define the currying functions C over unranked terms and sequence equations; and C over

sequences of unranked terms, as follows:

C(f ) = af ,
C(v) = xv,
C(V ) = XV ,

C(f (r1, . . . , rn, V )) = XV (C(f (r1, . . . , rn))),
C(f (r1, . . . , rn)) = @(C(f (r1, . . . , rn−1)),C(rn)), where n ≥ 1 and rn /∈ VS,

C(r ?
= l) = C(r)

?
≈ C(l).

C(〈〉) = •,

C(〈r1, . . . , rn, V 〉) = XV (C(〈r1, . . . , rn〉)),

C(〈r1, . . . , rn〉) = @(C(〈r1, . . . , rn−1〉),C(rn)), where n ≥ 1 and rn /∈ VS

with f ∈ ΣU, v ∈ VI, V ∈ VS, r1, . . . , rn ∈ T (ΣU,V), and af , xv , and XV being the associated
counterparts of f , v, and V , respectively.
We define the currying function C to transform IS-substitutions into FC-substitutions as follows:

for every v ∈ VI, C(σ )maps the first-order variable C(v) to C(σ (v)), for every V ∈ VS, C(σ )maps
the context variable C(V ) to C(σ (V )), and any other variable to itself.
Example 5. The curryfication of

σ = [v 7→ f (a, V ), U 7→ f (a, u), W 7→ 〈V , a, b〉, V 7→ u]
results in

C(σ ) = [xv 7→ XV (@(af , aa)), XU 7→ @(•,@(@(af , aa), xu)),
XW 7→ @(@(XV (•), aa), ab), XV 7→ @(•, xu)].
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Remark 6. Notice that C is not defined for non-singleton sequences, and for singleton sequences:
@(•, af ) = C(〈f 〉) = C(f ) 6= C(f ) = af .
It is interesting to notice that currying sequences of unranked termswithC produces contexts.We

have the following lemma:
Lemma 7. The function C for sequences and the function C for individual terms satisfy the following
equalities:

C(f (r1, . . . , rn, r ′1, . . . , r
′

m)) = C(〈r ′1, . . . , r
′

m〉)[C(f (r1, . . . , rn))]

C(〈r1, . . . , rn, r ′1, . . . , r
′

m〉) = C(〈r ′1, . . . , r
′

m〉)[C(〈r1, . . . , rn〉)].

Proof. By induction on m. When m = 0, the equalities are straightforward. Assume they hold for
m = k and prove form = k+ 1. First, assume that r ′m+1 = V for some V . Then we have:

C(f (r1, . . . , rn, r ′1, . . . , r
′

m, V )) = (by the definition of C)

XV (C(f (r1, . . . , rn, r ′1, . . . , r
′

m)) = (by the induction hypothesis)

XV (C(〈r ′1, . . . , r
′

m〉)[C(f (r1, . . . , rn))]) = (a property of context application)

XV (C(〈r ′1, . . . , r
′

m〉))[C(f (r1, . . . , rn))] = (by the definition of C)

C(〈r ′1, . . . , r
′

m, XV 〉)[C(f (r1, . . . , rn))].

Now, assume that r ′m+1 = r is an individual term. Then

C(f (r1, . . . , rn, r ′1, . . . , r
′

m, r)) = (by the definition of C)

@(C(f (r1, . . . , rn, r ′1, . . . , r
′

m),C(r)) = (by the induction hypothesis)

@(C(〈r ′1, . . . , r
′

m〉)[C(f (r1, . . . , rn))],C(r)) = (since C(r) is not a context)

@(C(〈r ′1, . . . , r
′

m〉),C(r))[C(f (r1, . . . , rn))] = (by the definition of C)

C(〈r ′1, . . . , r
′

m, r〉)[C(f (r1, . . . , rn))].

The second equality can be proved analogously. �

In particular, we have C(f (r1, . . . , rn)) = C(〈r1, . . . , rn〉)[af ].
The ‘‘shape’’ of the contextsC produceswill play a crucial role to prove the final result. In particular,

the hole always occurs in a left-most inner-most position. We will only consider instantiations of
context variables that correspond to ‘‘curry forms’’ of sequences. This fact will allow us to prove that
Context Unification restricted to this kind of unifiers is decidable.
It is easy to see thatC is injective, thereforeC

−1 is uniquely defined. Aswemention in the previous
remark, the contexts produced by C have a special form, what means that C−1(C) is not defined for
all contexts C ∈ T (ΣC

U ∪{•},V
C). For instance, it is not defined for @(aa, XV (•)).Moreover, C−1(t) is

not defined for all terms t ∈ T (ΣC
U ,V

C). In particular, t cannot contain subterms of the form XV (xu)
or @(xu, t ′).3 This motivates the following definition.
Definition 8. Given a ranked term t ∈ T (ΣC

U ,V
C), we say that it is legal (w.r.t.ΣU and V), if C−1(t)

is defined, i.e. if there exists an r ∈ T (ΣU,V) such that C(r) = t .
Given a context C ∈ T (ΣC

U ∪ {•},V
C), we say that it is legal (w.r.t. ΣU and V), if C

−1
(C) is

defined, i.e. if there exists a sequence 〈r1, . . . , rn〉, with ri ∈ T (ΣU,V), for 1 ≤ i ≤ n, such that
C(〈r1, . . . , rn〉) = C .
Let ϕ be an FC-substitution such that ϕ(z) ∈ T (ΣC

U ∪ {•},V
C), for all z ∈ VC . We say that ϕ is

legal (w.r.t.ΣU and V), if ϕ(z) is legal for all z ∈ VC .
Lemma 9. For any IS-substitution σ and for any unranked term r and sequence of unranked terms r̃ over
ΣU and V , we have C(σ )(C(r)) = C(σ (r)) and C(σ )(C(r̃)) = C(σ (r̃)).

3 In Section 5 by extending the set of sequence terms and the domain of the curry function, it will become exhaustive.
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Proof. By structural induction on r and r̃ , using Lemma 7. �

Lemma 10. If the Sequence Unification problemΓ overΣU andV is solvable, then the Context Unification
problem C(Γ ) overΣC

U ∪ {•} and VC is also solvable.

Proof. Let σ be a unifier of Γ . Then, by Lemma 9, it is easy to prove that C(σ ) is a unifier of C(Γ ). �

In fact, with the previous lemmas we have proved a stronger result: given a unifier σ of l ?= r , we
can find a unifier C(σ ) of C(l ?= r) that satisfies the property C(σ (l)) = C(σ )(C(l)). This property is
represented by the commutativity of the following diagram:

l ?= r
C- C(l ?= r)

C
=⇒

σ(l)

σ

?
C- C(σ )(C(l))

C(σ )

?

Unfortunately, although we can currify a unifier of a Sequence Unification problem Γ to obtain a
unifier of the Context Unification problem C(Γ ), the converse is not true: f (V ) ?

= g(f ) is unsolvable,
but its curry form, XV (af )

?
≈ @(ag , af ), is solvable: the substitution [XV 7→ @(ag , •)] solves it.

In general, solvability is not preserved by currying, i.e. the currying function is injective, but not
surjective.

Example 11. The Sequence Unification problem

f (V1, V2)
?
= f (f (a, V2), f (V2, a), b)

has these two unifiers:

σ1 = {V1 7→ 〈f (a), f (a), b〉, V2 7→ 〈 〉},
σ2 = {V1 7→ 〈f (a, b), f (b, a)〉, V2 7→ 〈b〉}.

When currying the problem we get the Context Unification problem:

XV2(XV1(af ))
?
≈ @(@(@(af , XV2(@(af , aa))),@(XV2(af ), aa)), ab)

that has the following four solutions:

ϕ1 = {XV1 7→@(@(@(•,@(af , aa)),@(af , aa)), ab), XV2 7→ •},
ϕ2 = {XV1 7→@(@(•,@(@(af , aa), ab)),@(@(af , ab), aa)), XV2 7→@(•, ab)},
ϕ3 = {XV1 7→@(@(@(af ,@(•, aa)),@(af , aa)), ab), XV2 7→ •},
ϕ4 = {XV1 7→@(@(@(af ,@(af , aa)),@(•, aa)), ab), XV2 7→ •}.

It is easy to see that solutions ϕ1 and ϕ2 correspond respectively to σ1 and σ2: ϕ1 = C(σ1) and
ϕ2 = C(σ2), while ϕ3 and ϕ4 do not have any such ‘‘corresponding’’ solutions.

In the previous example, substitutions for the variable XV1 in solutions ϕ3 and ϕ4 are not legal, i.e.
they are not the curry form of any sequence of unranked terms. In ϕ1, the variable XV1 is mapped to
the context @(@(@(•,@(af , aa)),@(af , aa)), ab) that is the curry form of the sequence 〈f (a), f (a), b〉,
whereas in ϕ3 the variable XV1 is mapped to the context @(@(@(af ,@(•, aa)),@(af , aa)), ab), that
would be the curry form of something like f (〈a〉, f (a), b) which is not a sequence. In fact, C−1 is
not defined for @(@(@(af ,@(•, aa)),@(af , aa)), ab). Thus, we cannot assert that we can always
reconstruct a unifier for the original problem from the unifier that we get for its curry form, unless
the unifier of the curry form is legal.

Lemma 12. For any legal FC-substitution ϕ, C−1(ϕ) is defined and satisfies the equality (C−1(ϕ))(v) =
C−1(ϕ(C(v))) for all v ∈ VI, and (C−1(ϕ))(V ) = C

−1
(ϕ(C(V ))) for all V ∈ VS.
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Proof. By definition of C for IS-substitutions and of legality. �

Lemma 13. Let Γ be a Sequence Unification problem over ΣU and V , and let C(Γ ) be its curried form.
Assume that ϕ is a legal (w.r.tΣU) unifier of C(Γ ), then C−1(ϕ) is a unifier of Γ .

Proof. By structural induction, from (C−1(ϕ))(w) = C−1(ϕ(C(w))) (Lemma 12), for variables w ∈
V , we can prove (C−1(ϕ))(r) = C−1(ϕ(C(r))) for any unranked term r ∈ T (ΣU,V).
Similarly, we can prove that, if the FC-substitution ϕ and the ranked term t are legal, then ϕ(t) is

also legal.

Let C(l)
?
≈ C(r) ∈ C(Γ ). Then ϕ(C(l)) = ϕ(C(r)). Since ϕ, C(l), and C(r) are legal, we get

that ϕ(C(l)) and ϕ(C(r)) are legal as well. Therefore, C−1(ϕ(C(l))) and C−1(ϕ(C(r))) exist and
C−1(ϕ(C(l))) = C−1(ϕ(C(r))). From this, we obtain (C−1(ϕ))(l) = (C−1(ϕ))(r), i.e., C−1(ϕ) is a
unifier of l ?= r ∈ Γ . �

Thus, to preserve the set of solutions and to ensure soundness in our transformation, i.e, tomake the
diagram commute, we can only consider legal unifiers. Now, we want to characterize these unifiers.
As we have already argued in Remark 6, to be able to obtain a sequence from a context with C

−1, the
contexts must have a certain ‘‘shape’’.

Definition 14. A left-hole context is a context that has the hole in its left-most position, i.e. that can
be built with this grammar:

L ::= • | X(•) | @(L, t)

for context variable X and hole-free ranked term t .

Lemma 15. Let ϕ be a ground FC-substitution such that ϕ(z) ∈ T (ΣC
U ∪ {•},∅), for all z ∈ VC . Then, ϕ

is legal iff ϕ(X) is a left-hole context for all context variables X ∈ VC .

Proof. By structural induction, from Definitions 4 and 8. Notice that ground and hole-free terms are
always legal, therefore the legality requirement only applies to instances of context variables. �

Now we define a variant of Context Unification, called Left-Hole Context Unification, as follows:

Definition 16. Left-Hole Context Unification (LHCU) is a variant of Context Unification that requires
instances of context variables to be left-hole contexts.

Theorem 17. Sequence Unification is P-reducible to Left-Hole Context Unification.

Proof. The proof follows from Lemmas 10, 13 and 15. The C function is polynomial in the sum of the
sizes of the terms of the equations. �

Hence, currying preserves solvability: Γ is a solvable SU problem, iff C(Γ ) is a solvable LHCU
problem. Moreover, from each unifier of a Sequence Unification problemwe can reconstruct a unifier
of the corresponding left-hole Context Unification problem, and from each ground left-hole context
unifier we can get a unifier of the original Sequence Unification problem. Notice that some non-ground
left-hole context substitutions, like [X 7→ @(•,@(y, a))], are not legal. The currying function is not
onto, hence there are LHCU problems that are not the translation of any SU unification problem
(see Section 5). This makes the reduction of Left-Hole Context Unification to Sequence Unification
impossible by means of curryfication.
Notice also that we assume that a LHCU problem is solvable, iff it has a ground left-hole context

unifier. In fact, this is true, if we assume that the signature ΣR contains at least a constant symbol. If
a LHCU problem has a non-ground unifier, andΣR contains a constant a, we can get a ground unifier
instantiating every first-order variable by a, and every context variable by @(•, a).
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4. Left-Hole Context Unification decidability

In this section we reduce LHCU to Word Unification (WU) with Regular constraints, which is
decidable (Schulz, 1990). Therefore, this reduction proves decidability of LHCU. The reduction is
based on some ideas from Levy and Villaret (2001). There, it is proved (see Corollary 21) that if the
rank-bound conjecture is true, then CU is decidable. The conjecture has never been proved, and the
decidability of CU remains as an open question. Here (see Lemmas 23 and 25) we prove a stronger
result for left-hole unifiers, which leads us to prove decidability of LHCU. Like in Levy and Villaret
(2001), the reduction will be done via the traversals of the terms that allows us to encode LHCU
equations into word equations. We need the regular constraints to make this encoding sound and
ensure that the solutions of the word equations really encode solutions of the corresponding LHCU
problem.
In Levy and Villaret (2002) it is proved that Context Unification is reducible to Context Unification

with constants and only one binary symbol. A similar reduction could be applied to LHCU. Therefore,
from now on, we will assume thatΣR only contains constants and a binary symbol that we represent
as @. We also assume that ΣR contains at least one constant. This is necessary to ensure that any
solvable LHCU problem has a ground unifier. Moreover, we will also assume w.l.o.g. that we have just
one initial context equation.

A naive encoding of a LHCU equation like X(@(a, b))
?
≈ @(a, X(b)) into a WU equation could be

done using a postorder traversal of the terms of the equation as follows4:

αa αb α@WX
?
=w αa αbWX α@

where αa, αb and α@ are letters corresponding to a, b and @ respectively andWX is the word variable
that encodes the postorder traversal of the instantiation of the context variable X .
Then, some of the word solutions are:

ψ1 = [WX 7→ ε],
ψ2 = [WX 7→ α@],

where ε is the empty word. Notice that ψ2(WX ) does not correspond to a postorder traversal of a
context, while ψ1(WX ) is the postorder traversal of the empty context •. The fact that some of the
word unifiers do not correspond to a context unifier leads us to impose regular constraints to this
encoding. In what follows we will show that with regular constraints we can get a sound encoding.
We will focus on ground unifiers. Moreover, we will only consider size-minimal ground unifiers,5

defined as follows.

Definition 18. Given a LHCU problem ∆, we say that ϕ is a minimal unifier, if there exists a most
general unifier ρ such that

ϕ = [x1 7→ a, . . . , xn 7→ a, X1 7→ •, . . . , Xm 7→ •] ◦ ρ

where {x1, . . . , xn, X1, . . . , Xm} = vars(ρ(∆)) and a is a constant ofΣR.

Notice that, since ΣR contains at least one constant and LHCU is infinitary, any solvable LHCU
problem has a minimal unifier. This means that we can reduce the decidability of LHCU to the
decidability of the existence of a minimal unifier.

4 We use ?
=w to denote word equations.

5 In the study of Context Unification, Word Unification and related problems, it is usual to restrict the study to size-minimal
ground unifiers, that in the case of Word Unification enjoy nice properties like the bound for the exponent of periodicity (see,
e.g., Makanin (1977); Kościelski and Pacholski (1996); Schmidt-Schauß and Schulz (1998)). Here, we define minimal unifiers
in a different way, without proving that they correspond to the usual definition. This is not important since we only need to
ensure that solvable problems have a minimal unifier.
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4.1. Properties of LHCU minimal unifiers

In this subsection we prove an important property of LHCU minimal unifiers, Lemma 23, that will
be used in Section 4.3 to reduce LHCU to Word Unification with Regular Constraints. We start with
an adaptation of the sound and complete set of rules for Linear Second-Order Unification (Levy, 1996,
Definition 4) to themore specialized case of LHCU.Wewill use this procedure to predict what ‘‘shape’’
minimal unifiers have (see Lemma 21). From the form of these unifiers, we will prove Lemma 23, that
is the main ingredient needed to prove decidability of LHCU. Notice that Lemma 23 corresponds to
the conjecture described in Levy and Villaret (2001) for general Context Unification (that has never
been proved), but restricted to LHCU. For those interested in general Context Unification, we describe
this correspondence in Section 4.2.

Definition 19. The unification procedure for LHCU is described by a set of problem transformations,
where every transformation has the form

〈∆ ∪ {s
?
≈ t}, ϕ〉 =⇒ 〈ρ(∆ ∪∆′), ρ ◦ ϕ〉

and is characterized by a rule s
?
≈ t =⇒ ∆′ and a substitution ρ.

Simplification: s
?
≈ s =⇒ ∅,

@(s1, s2)
?
≈ @(t1, t2) =⇒ {s1

?
≈ t1, s2

?
≈ t2},

X(s)
?
≈ X(t) =⇒ {s

?
≈ t},

where ρ = [ ] in all three cases.

Projection: X(s)
?
≈ t =⇒ {s

?
≈ t} and ρ = [X 7→ •].

Imitation: X(s)
?
≈ @(t1, t2) =⇒ {X ′(s)

?
≈ t1} and ρ = [X 7→ @(X ′(•), t2)],

provided that X does not occur in t2,6 and X ′ is fresh.

x
?
≈ s =⇒ ∅ and ρ = [x 7→ s],
provided that x does not occur in s.6

Flex-Flex: X(s)
?
≈ Y (t) =⇒ {X ′(s)

?
≈ t} and ρ = [X 7→ Y (X ′(•))],

where X 6= Y and X ′ is a fresh context variable.
The transformations are applied nondeterministically, starting with 〈∆, [ ]〉, until we get a pair of

the form 〈∅, ϕ〉. Then, ϕ|vars(∆), is output as a unifier of∆.

Proposition 20. The unification procedure described in Definition 19 is sound and complete:

Soundness: If 〈∆, [ ]〉 =⇒∗ 〈∅, ϕ〉, then ϕ is a left-hole context unifier of∆.
Completeness: If ϕ is a most general left-hole context unifier of∆, then 〈∆, [ ]〉 =⇒∗ 〈∅, ϕ′〉, for some

ϕ′ satisfying ϕ = ϕ′|vars(∆).7

Proof. The proposition is a specialization of Theorems 5 and 6 in Levy (1996). Here we only sketch
the proof.
The soundness proof is done by induction on the length of the derivation. As induction step, we

prove that if 〈∆ ∪ {s
?
≈ t}, ϕ〉 =⇒ 〈ρ(∆ ∪∆′), ρ ◦ ϕ〉 and ϕ′ is a unifier of ρ(∆ ∪∆′), then ϕ′ ◦ ρ is

a unifier of ∆ ∪ {s
?
≈ t}. It is trivial for the simplification rule that transforms a set of equations into

another one with exactly the same set of unifiers. The other rules can be decomposed as follows: In
the first step an equation E is transformed into ρ(E) (hence, if ϕ′ unifies ρ(E), then ϕ′ ◦ ρ unifies E)
and then one or more simplification steps are made.

6 The violation of these provisos leads to an occur-check error in the equations.
7 Notice that, for completeness, unifiers are required to be most general, but, in the soundness part, we can get non-most
general unifiers.
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The completeness proof has two parts. First, we have to prove that, if ϕ is a most general unifier
of ∆, then there exists a transformation 〈∆, [ ]〉 =⇒ 〈∆′, ρ〉, where ρ �vars(∆) ϕ. This is done by
inspection of the rules. This property ensures that there exists a most general unifier ϕ′ of ∆′ such
that ϕ(X) = ϕ′ ◦ ρ(X), for any X ∈ vars(∆). We fix a most general unifier ϕ of ∆, this allows us to
construct inductively a sequence of transformations 〈∆, [ ]〉 =⇒ 〈∆1, ϕ1〉 =⇒ 〈∆2, ϕ2〉 =⇒ · · ·
where ϕi �vars(∆) ϕ.
Second, we will prove that (for a fixed most general unifier ϕ) this sequence terminates. The final

state is 〈∅, ϕ′〉, where ϕ′ is a unifier of ∆ and ϕ′ �vars(∆) ϕ. Therefore, ϕ′|vars(∆) is equal to ϕ modulo
renaming of introduced fresh variables.
The relationship=⇒ is in general not terminating. Therefore, to prove termination of these kinds

of transformation sequences requires further arguments. In particular, we will prove that if we
require second components, the substitutions ϕi, to satisfy ϕi �vars(∆) ϕ, for a fixed ϕ, then the
sequence cannot be infinite. Intuitively, startingwith the identity substitution, the second component
grows until becoming ϕ. Therefore, it seems that the size of the partially constructed substitution∑
X∈Dom(ϕ)

∣∣ϕi(X)∣∣ increases with instantiations. However, this is not always true for the projection,
that can make a term to decrease. Therefore, we have to measure the size of terms not counting the
variables that are projected later. We define inductively the size of a term t , or of a substitution ϕ,
w.r.t. a substitution ρ as follows:

|a|ρ = |x|ρ = | • |ρ = 1
|@(t1, t2)|ρ = |t1|ρ + |t2|ρ + 1

|X(t)|ρ =
{
|t|ρ if ρ(X) = •
|t|ρ + 1 otherwise

|ϕ|ρ =
∑
X∈Dom(ϕ) |ϕ(X)|ρ .

Notice that

|t|τ◦ρ ≤ |ρ(t)|τ
|σ |τ◦ρ ≤ |ρ ◦ σ |τ .

We will compare the states with respect to an order with three components. The first one is the
number of remaining variables. Notice that the projection strictly decreases the number of variables,
by projecting one of them, whereas imitation and flex–flex introduce one fresh variable and eliminate
another one. The second component is the difference between the size of the substitution ϕ that we
want to construct, and the size of the current partially constructed substitution ϕi. Imitation and flex–
flex increase the size of the partially constructed substitution, i.e. decrease this component. Notice
that the projection rule does not decrease this component when the projected variable does not
belong to the domain of ϕ. This is the reason why the first component is necessary. Finally, since
simplification does not modify the partially constructed substitution, we also consider the size of the
current problem as a third component.
Formally, we define the size of a state 〈∆i, ϕi〉, with respect to a fixed ϕ, as the triplet

|〈∆i, ϕi〉| =
〈
|vars(∆i)| , |ϕ| −

∑
x∈Dom(ϕ)

∣∣ϕi(x)∣∣ρ , ∑
t ?=u∈∆i

|t| + |u|
〉

where ρ satisfies ϕ(X) = ρ ◦ ϕi(X), for all X ∈ vars(∆).8 Then, the sizes of the states of 〈∆, [ ]〉 =⇒
〈∆1, ϕ1〉 =⇒ 〈∆2, ϕ2〉 =⇒ · · · , compared using a lexicographic ordering, strictly decrease. We
can easily see that the simplification decreases the sizes of the equations (the third component) not
increasing the previous components, the projection the number of variables (first component), and
the imitation and flex–flex, increase

∣∣(ϕi|vars(∆))∣∣ρ , not increasing the number of variables.
The most intuitive of the three components is the second one. It measures how far is the partially

computed unifier ϕi from the final most general unifier ϕ. �

8 Notice that the size of a state does not depend on the selection of the ρ satisfying this property.
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Notice that, for completeness, unifiers are required to be most general, but, in the soundness part,
we can get non-most general unifiers.
The following Lemma describes the ‘‘shape’’ of minimal LHCU unifiers.

Lemma 21. Given a LHCU equation s
?
≈ t, for any minimal unifier ϕ, and any context variable X ∈

vars(s
?
≈ t), we have ϕ(X) = @(. . .@(•, ϕ(tn)) . . . , ϕ(t1)), and for any first-order variable x ∈ vars(s

?
≈

t), we have ϕ(x) = @(. . .@(a, ϕ(tn)) . . . , ϕ(t1)), where a is a first-order constant and ti is a subterm of
s or of t, occurring as a second argument of an @, for all 1 ≤ i ≤ n.

Proof. We say that a term t right-occurs: in a set of equations∆, if they contain a subterm of the form
@(_, t); in a substitution ϕ, if there exists a variable X ∈ Dom(ϕ) such that ϕ(X) contains a subterm
of the form @(_, t); and in a state 〈∆, ϕ〉, if it right-occurs in∆ or in ϕ.
Now, we will prove that right-occurrences are preserved by the transformation rules: If

〈∆1, ϕ〉 =⇒ 〈∆2, ρ ◦ ϕ〉 and t right-occurs in 〈∆2, ρ ◦ ϕ〉, then there exists a term t ′ right-occurring
in 〈∆1, ϕ〉 such that t = ρ(t ′).
For the simplification rule, the preservation is trivial. For the other rules, we can decompose them

as an instantiation (I) followed by one or more simplifications (S):

〈∆ ∪ {s
?
≈ t}, ϕ〉 =⇒I 〈ρ(∆ ∪ {s

?
≈ t}), ρ ◦ ϕ〉 =⇒+S 〈ρ(∆ ∪∆

′), ρ ◦ ϕ〉.

For the instantiations, we can prove that:

(1) If t right-occurs in ρ(∆), then either t right-occurs in ρ, or there exists a t ′ right-occurring in ∆
such that t = ρ(t ′).

(2) If t right-occurs in ρ ◦ ϕ, then either t right-occurs in ρ, or there exists a t ′ right-occurring in ϕ
such that t = ρ(t ′).

Using these two statements, and since ρ does not contain right-occurring terms in the cases of the
projection, the flex–flex, and the second imitation rules, the result holds for these rules.
Finally, for the first imitation rule, ρ = [X 7→ @(X ′(•), t2)] contains the right-occurrence of t2, but

this is a term right-occurring in the equation X(s) ?
= @(t1, t2).

By induction on the length of the transformation we can prove the same result for any
transformation sequence, in particular, for 〈∆, [ ]〉 =⇒∗ 〈∅, ϕ〉. Therefore, using Proposition 20, for
any most general unifier ϕ of ∆, if t right-occurs in ϕ, then there exists a right-occurrence of some
term t ′ in∆ such that t = ϕ(t ′).
By definition of minimal unifier, we can prove that instances of variables have the form ϕ(X) =

@(. . .@(•, ϕ(tn)) . . . , ϕ(t1)) or ϕ(x) = @(. . .@(a, ϕ(tn)) . . . , ϕ(t1)). Now, since a minimal unifier is
the result of the composition of amost general unifier and another substitution that does not introduce
new right-occurrences, and the ti’s are right-occurrences in ϕ, we can conclude the statement of the
lemma. �

The previous lemma allows us to prove that, if ϕ is a minimal unifier of s
?
≈ t , then the number of

times that we can go to the right descending through any branch of ϕ(s), viewing the term as a tree,
is bounded on the number of subterms of s

?
≈ t .

Definition 22. The number of right accumulated branches (rab) of a ground term t ∈ T ({@} ∪Σ0,∅),
denoted rab(t), is defined as:

rab(a) = 0,
rab(@(t1, t2)) = max{rab(t1), 1+ rab(t2)}

for any a ∈ Σ0 and t1, t2 ∈ T ({@} ∪Σ0,∅).

Lemma 23. Let s
?
≈ t be a LHCU equation and ϕ a minimal unifier, then

rab(ϕ(s)) ≤ |s| + |t|.

Proof. Lemma 21 says that, for any first-order variable x [context variable X], terms occurring in ϕ(x)
[in ϕ(X), resp.] as second arguments of an @ have the form ϕ(t ′) where t ′ is a subterm of s

?
≈ t
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occurring as a second argument of an@. Therefore, all subterms ofϕ(s) occurring as a second argument
of an @ also satisfy this property. Since there are |s| + |t| subterms t ′ in s

?
≈ t , and we cannot repeat

the same subterm in a branch, rab(ϕ(s)) ≤ |s| + |t|. �

4.2. Relationship between rab and Strahler number in CU

As wementioned, Lemma 23 is a specialization for LHCU of a conjecture stated in Levy and Villaret
(2001), that in case of being true, would imply decidability of Context Unification. Here we look into
details of this relationship. Readers not interested in it can skip this subsection since it is not necessary
in order to prove decidability of LHCU.
The definition of rab is similar to the definition of the Strahler number of a term:

Definition 24. The Strahler Number of a term t built up from binary and nullary symbols, noted
Strahler(t), is defined recursively as follows:

Strahler(a) = 0

Strahler(f (t1, t2)) =
{
Strahler(t1)+ 1 if Strahler(t1) = Strahler(t2)
max{Strahler(t1), Strahler(t2)} otherwise

for any constant a and binary symbol f .
It is easy to prove that Strahler(t) ≤ rab(t), for any term t . This implies the following result.

Lemma 25. For eachminimal unifierϕ of an LHCU equation s
?
≈ t the inequality Strahler(ϕ(t)) ≤ |s| + |t|

holds.
In Levy and Villaret (2001), it is proved that Context Unification is decidable if, and only if,

there exists a computable upper bound for the Strahler number of some unifier of every solvable
CU problem. Here, Lemma 25 proves that this upper bound exists in the particular case of LHCU.
Therefore, we can conclude decidability of LHCU from a small modification of the results of Levy and
Villaret (2001). That proof was based on the use of traversals of terms, and on traversal equations.
These traversal equations were reduced to word equations with regular constraints. Here, we find
an easier way to constraint traversals of ϕ(s) with regular expressions. These regular expressions
define postorder traversals of terms with a bounded rab and allows us to avoid the use of traversal
equations which can be replaced by simpleword equations with regular constraints. What follows in
next subsection is then an alternative proof for the decidability of LHCU based on some ideas of Levy
and Villaret (2001).

4.3. From LHCU to WU with regular constraints

Now we will define the flattening function that will allow us to transform context equations into
word equations. Then, we will prove that traversals of rab-bound ground terms are regular. Finally,
we will show how to reduce LHCU to Word Unification with regular constraints.
Definition 26. Given a ranked signatureΣR = Σ0 ∪ Σ2, whereΣ0 6= ∅ andΣ2 = {@}, the flattened
alphabet ΣF

R contains a letter αf , for each symbol f ∈ ΣR. Similarly, given a set of variables X, XF

has a distinct word variableWz for each first-order or context variable z ∈ X.
The flattening functionF over ranked terms, left-hole contexts and context equations is defined as

follows:

F (a) = αa,
F (@(t1, t2)) = F (t1)F (t2) α@,

F (x) = Wx,
F (X(t)) = F (t)WX ,

F (•) = ε,

F (s
?
≈ t) = F (s) ?

=w F (t),
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where a is a constant and @ is the binary function symbol of ΣR and αa and α@ the corresponding
letters inΣF

R , x is a first-order and X a context variable inX andWx andWX the corresponding word
variables inXF , and ε is the empty word.
We extend the definition of the flattening function F to transform left-hole FC-substitutions into

word substitutions as follows: for an FC-substitution ρ the corresponding F (ρ) is defined as the
substitution that, for each variable z ∈ Dom(ρ), maps F (z) into F (ρ(z)).

Example 27. Using this definition we get for instance that the flattening of ρ = [x 7→ @(a, b), X 7→
@(•, b)] is F (ρ) = [Wx 7→ αa αb α@,WX 7→ αb α@].

Remark 28. Notice that the words resulting from the flattening of terms encode the postorder
traversals of these terms. For any ranked term t and context C , we have F (C[t]) = ω1 F (t) ω2 for
some wordsω1 andω2. However, when C is a left-hole context, we haveF (C[t]) = F (t) ω. With the
translation F (X(t)) = F (t)WX , and the induction step F

(
ρ(t)

)
= F (ρ)

(
F (t)

)
, we ensure that

F
(
ρ
(
X(t)

))
= F

(
ρ(X)

[
ρ(t)

])
= F

(
ρ(t)

)
F
(
ρ(X)

)
= F (ρ)

(
F (t)F (X)

)
= F (ρ)

(
F
(
X(t)

))
.

If contexts were not left-hole, then, to obtain the same commutativity result, wewould have to define
F (X(t)) = W ′X F (t)W ′′X , using twoword variablesW

′

X andW
′′

X for each context variable X .

Lemma 29. For any FC-substitution ρ and for any ranked term t (or context) over ΣR and X, we have
that F (ρ)

(
F (t)

)
= F

(
ρ(t)

)
.

Proof. By structural induction on t . See previous remark. �

Lemma 30. If ρ is a unifier of the Context Unification problem ∆ over ΣR andX, then F (ρ) is a unifier
of the Word Unification problem F (∆) overΣF

R andXF .

Proof. It is an easy consequence of Lemma 29. �

Lemma 30 ensures that, if the original LHCU problem is solvable, then the Word Unification
problem resulting from its flattening translation is also solvable. However, similarly to the
curryfication described in Section 3, the converse is not true: some solutions of theword equationmay
not correspond to translations of context unifiers. To avoid this problem,we add regular constraints to
the word equations. The reduction of LHCU is then toWord Unification with Regular Constraints. These
problems consist of a set ofword equations of the formω1

?
= ω2, whereω1, ω2 ∈ (Σ∪W)∗, and a set of

regular constraints of the formω ∈ R, whereω ∈ (Σ∪W)∗ and R ⊆ Σ∗ is a regular language, andΣ is
a finite set of letters andW a countable set of word variables. A solution is a substitutionψ : W → Σ∗

satisfyingψ(ω1) = ψ(ω2) for any equation ω1
?
= ω2, andψ(ω) ∈ R for any regular constraint ω ∈ R.

The problem of deciding whether a Word Unification problemwith regular constraints has a solution
was proved to be decidable in Schulz (1990). The regular constraints will be used to ensure that the
instances of word variables are in the image of the functionF , i.e. postorder traversals of terms. Given
a ranked signature ΣR = Σ0 ∪ Σ2, where Σ0 6= ∅ and Σ2 = {@}, the set of traversals of terms
define a context-free language, described by the grammar S → αf1 | . . . | αfr | S S α@. However, this
language is not regular. Fortunately, the set of traversals of rab-bounded terms is a regular language
(see Lemma 32), and according to Lemma 23, we only need to consider these classes of terms if we
restrict the search for minimal unifiers.

Definition 31. Given a ranked signatureΣR = Σ0 ∪Σ2, whereΣ0 6= ∅ andΣ2 = {@}, we define the
following family of regular languages on the alphabetΣF

R :

L0 = {αf | f ∈ Σ0},

L1 = L0 (L0 α@)∗,
· · ·

Ln = L0 (Ln−1 α@)∗.
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Lemma 32. The language Ln defines the set of postorder traversals of ground terms t ∈ T (ΣR,∅)
satisfying rab(t) ≤ n. In other words,

(a) for any t ∈ T (ΣR,∅), if rab(t) ≤ n, then F (t) ∈ Ln,
(b) for any ω ∈ Ln, there exists t ∈ T (ΣR,∅), such that F (t) = ω and rab(t) ≤ n.

Proof. (a) Weproceed by induction onn and structural induction on t . Forn = 0 it is trivial. Forn > 0,
let t = @(t1, t2) and rab(t) ≤ n+1.Notice that rab(t1) ≤ n+1 and rab(t2) ≤ n, hence by induction
hypothesis F (t1) ∈ Ln+1 and F (t2) ∈ Ln. Therefore, F (t) = F (t1)F (t2)α@ ∈ Ln+1Lnα@ ⊆ Ln+1.

(b) The existence of t is proved by induction on n. The base case is trivial. For the inductive case,
any ω ∈ Ln+1 = L0 (Ln α@) may be decomposed as ω = αf ω1 α@ . . . ωk α@, where ωi ∈ Ln.
By induction hypothesis, we can find ti ∈ T (ΣR,∅) with ωi = F (ti). We can construct t =
@(. . .@(f , t1) . . . , tk) satisfying F (t) = ω.
We also prove rab(t) ≤ n by induction on n and structural induction on t . If t = @(t1, t2) and

F (t) ∈ Ln+1, then, by definition of Ln+1, we have F (t1) ∈ Ln+1 and F (t2) ∈ Ln. By induction
rab(t1) ≤ n+ 1 and rab(t2) ≤ n. Hence, rab(t) ≤ n+ 1. �

Theorem 33. LHCU is P-reducible to WU with regular constraints.
Proof. We define the translation of LHCU problems into Word Unification problems with regular
constraints as follows.
Given a LHCU problem∆, we define its translation F ext(∆) as the set consisting of the set of word

equationsF (∆), the regular constraintsWx ∈ L|∆| for every first-order variable x of∆, and the regular
constraint αaWX ∈ L|∆| for every context variable X of∆, where a is any of the constants ofΣR. This
translation is polynomial.
We have to prove that∆ is solvable iff F ext(∆) is solvable.
(⇒) Lemma 30 ensures that, if ρ is a solution of∆, then F (ρ) is a solution of the word equations

F (∆). Assume without loss of generality that ρ is a minimal unifier. For any first-order variable x oc-
curring in∆, by Lemma 23, we have rab(ρ(x)) ≤ |∆|, since x occurs in some equation s

?
≈ t ∈ ∆, ρ(x)

is a subterm of ρ(s) with smaller rab number, and |s| + |t| ≤ |∆|. Similarly, rab(ρ(X(a))) ≤ |∆| for
any context variable X occurring in∆. Now, Lemma 32 entailsF (ρ(x)) ∈ L|∆| andF (ρ(X(a))) ∈ L|∆|,
henceF (ρ) is also a solution of the regular constraintsF (x) = Wx ∈ L|∆| andF (X(a)) = aWX ∈ L|∆|.
(⇐) For any solution ψ of F ext(∆), since it satisfies ψ(Wx) ∈ L|∆| and ψ(aWX ) ∈ L|∆|, by

Lemma 32, there exist a term tx such that F (tx) = ψ(Wx) and a left-hole context CX such that
F (CX [a]) = ψ(aWX ). We define the substitution ρ mapping x to tx and X to CX . Trivially, F (ρ) = ψ .
Therefore, by Lemma 29, ψ(F (t)) = F (ρ)(F (t)) = F (ρ(t)), for any term t . In particular, for any
equation s

?
≈ t ∈ ∆, since ψ(F (s)) = ψ(F (t)), we have F (ρ(s)) = F (ρ(t)). Finally, since F is

injective, we have ρ(s) = ρ(t) and, hence, ρ solves∆. �

Corollary 34. Left-Hole Context Unification is decidable.
Corollary 35. Sequence Unification is decidable.
With the following example we illustrate the whole reduction process from sequence equations to

word equations with regular constraints and from the resulting word unifiers to sequence unifiers.

Example 36. Consider the Sequence Unification problem
{
f (U, V ) ?

= f (a, f (U))
}
. To reduce it to

Word Unification with regular constraints we have to get its curry form and then to flatten the
resulting context equation obtaining the corresponding word equation with regular constraints:{

f (U, V ) ?
= f (a, f (U))

}
⇓ C{

XV (XU(af ))
?
≈ @(@(af , aa), XU(af ))

}
⇓ F extαaf WXU WXV

?
=w αaf αaa αa@ αaf WXU αa@

αaf WXV ∈ L9

αaf WXU ∈ L9

 .
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Some unifiers of the word equation and the regular constraints are:

ψ1 = [WXU 7→ ε, WXV 7→ αaa αa@ αaf αa@ ],

ψ2 = [WXU 7→ αaa αa@ ,WXV 7→ αaf αaa αa@ αa@ ].

They correspond to the traversal of the left-hole context unifiers:

ϕ1 = [ XU 7→ •, XV 7→ @(@(•, aa), af ) ],
ϕ2 = [ XU 7→ @(•, aa) XV 7→ @(•,@(af , aa)) ]

that, in turn, correspond to the curryfication of the sequence unifiers:

σ1 = [U 7→ 〈 〉, V 7→ 〈a, f 〉 ],
σ2 = [U 7→ 〈 a 〉, V 7→ 〈 f (a) 〉 ].

Notice that the substitution ψ3 = [WXU 7→ αaa αa@ αaf ,WXV 7→ αaa αa@ αaf αa@ ] solves the word

equation αaf WXU WXV
?
=w αaf αaa αa@ αaf WXU αa@ but does not satisfy the regular constraint αaf WXU

∈ L9 because αaf αaa αa@ αaf 6∈ L
9.

5. Back to the beginning

Nowwe look back at where we started from: Sequence Unification. Decidability of LHCU proved in
the previous section gives another decidability proof of SU. Looking at the proof closer, we notice that
we prove something stronger: decidability of unification for an extension of SU: Extended Sequence
Unification (ESU). This extension is obtained if we allow individual variables to occur in functional
positions, and a term to be applied to a sequence of terms. This is motivated by the fact that LHCU
problems may contain terms like, for instance, @(xv, a) and XV (xv) that could be considered as the
curryfication of v(a) and v(V ).
To define ESU more formally, we extend the notion of unranked terms overΣU and V = VI ∪ VS:

r ::= V | v(r1, . . . , rn) | f (r1, . . . , rn)

where v ∈ VI, V ∈ VS, f ∈ ΣU, and n ≥ 0.
We denote the set of such extended terms with T e

U (ΣU,V) and use l and r to denote its elements.
Terms of the form v() and f () are abbreviated respectively by v and f . Extended individual terms are
terms from T e

U (ΣU,V) \ VS.
We define the following operation on terms and sequences of terms.

Definition 37. Given an individual term r ∈ T e
U (ΣU,V) \ VS and a sequence of terms 〈r1, . . . , rn〉 ∈

T e
U (ΣU,V) the operation app is defined by

app(f (r ′1, . . . , r
′

m), 〈r1, . . . , rn〉) = f (r
′

1, . . . , r
′

m, r1, . . . , rn),

app(v(r ′1, . . . , r
′

m), 〈r1, . . . , rn〉) = v(r
′

1, . . . , r
′

m, r1, . . . , rn).

Notice that this operation is defined for any individual term and any sequence. In particular,
app(f , f ) = app(f (), 〈f 〉) = f (f ).
Application of IS-substitution to an extended unranked term has to take into account the term

application operation. We extend the definition of term instantiation as follows:

σ(v(r1, . . . , rn)) = app(σ (v), 〈σ(r1), . . . , σ (rn)〉).

For instance, if σ = [v 7→ f (a, b)], then σ(v(c, v)) = f (a, b, c, f (a, b)).
Now, ESU problems can be defined as a set of equations (unoriented pairs) of individual extended

terms, denoted {l1
?
= r1, . . . , ln

?
= rn}. The notions of unifier, solvability, etc. carry over from SU.
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Currying transformation can be extended in a straightforward way to T e
U (ΣU,V):

Definition 38. Definition 4 is extended to T e
U (ΣU,V)→ T (ΣC

U ,V
C) by adding the rules:

C(v(r1, . . . , rn, V )) = XV (C(v(r1, . . . , rn)))
C(v(r1, . . . , rn)) = @(C(v(r1, . . . , rn−1)),C(rn)) where rn /∈ VS.

With this extension, any ranked term from T (ΣC
U ,V

C) becomes legal, and we can prove the
following result.

Lemma 39. The extended function C : T e
U (ΣU,V)→ T (ΣC

U ,V
C) is bijective and preserves solvability

of problems.

Proof. The inverse of the function satisfies:

C−1(af ) = f ,

C−1(xv) = v,

C−1(@(s, t)) = app(C−1(s),C−1(t)),

C−1(XV (t)) = app(C−1(t), V ).

With this equations, proof of bijectivity is straightforward.
The preservation of solvability can be proved by techniques similar to the ones described in

Section 3. �

Since this extension of the curryfication preserves solvability, and it is bijective,C−1 also preserves
solvability, and we close the circlewith the following corollaries.

Corollary 40. Extended Sequence Unification (ESU) and Left-Hole Context Unification (LHCU) are
mutually P-reducible problems.

Corollary 41. Extended Sequence Unification is decidable.

5.1. Complexity results

If one of the sides of each equation in an ESU problem is ground, then we have an Extended
Sequence Matching (ESM) problem. This problem is NP-complete. It can be shown—similarly to NP-
completeness of Context Matching (CM) (Schmidt-Schauß and Schulz, 1998)—by reduction of positive
1-IN-3-SAT (Garey and Johnson, 1979) to ESM. A positive 1-IN-3-SAT problem is given by a set of
clauses {C1, . . . , Cm}where each clause Ci contains exactly three positive literals xp(i,1)∨xp(i,2)∨xp(i,3)
from a set of literals {x1, . . . , xn}. A truth assignment solves the problem if it maps exactly one literal
from each clause to true.
We describe two different reductions:

Reduction 1. We represent truth values as a (for false) and f (a) (for true). We have an individual
variable vi and a sequence variable Vi for each clause Ci, and an individual variable uj for each literal xj.
We encode each clause Ci = xp(i,1) ∨ xp(i,2) ∨ xp(i,3) as an ESM equation

vi(g(up(i,1), up(i,2), up(i,3)), Vi)
?
= h(g(f (a), a, a), g(a, f (a), a), g(a, a, f (a))).

This encoding proves NP-completeness of solvability of ESM problems where each sequence
variable and each head-position individual variable occurs at most once, and the number of
occurrences of other individual variables is not restricted. We can refine this encoding as follows.

Reduction 2. For the set of clauses {xp(i,1)∨xp(i,2)∨xp(i,3)}i=1,...,m, we have an individual variable vi and a
sequence variable Vi for each clause Ci with i = 1, . . . ,m, an individual variable uj and a sequence variable
Uj for each literal xj with j = 1, . . . , n, and an individual variablewki for each occurrence of a literal, with
i = 1, . . . ,m and k = 1, 2, 3.
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For each clause Ci, with i = 1, . . . ,m, we have the equation

vi(g(w1i , w
2
i , w

3
i ), Vi)

?
= h(g(f (a), a, a), g(a, f (a), a), g(a, a, f (a))).

To ensure that all occurrences of the same literal get the same value, we add the following equations.
For each literal xj, with j = 1, . . . , n, we have the equation

uj(g(w
k′1
k1
, . . . , w

k′nj
knj
),Uj)

?
= h(g(a, . . . , a), g(f (a), . . . , f (a))),

where literal xj occurs at position k′r of clause kr , for the nj occurrences of xj, i.e. p(kr , k
′
r) = j, for

r = 1, . . . , nj.

In this second encoding, the first type of equations set exactly one ofw1i ∨ w
2
i ∨ w

3
i equal to f (a).

The second type of equations set nj different individual variables to the same truth value, where nj is
the number of times that xj occurs in the instance of the problem. It is easy to see that the individual
variables corresponding to literal occurrences occur twice, once in an equation of the first type and
once in an equation of the second type.

Theorem 42. Extended Sequence Matching where each variable occurs at most twice (Varity 2 ESM) is
NP-complete.

Compare this encoding with the proof of NP-completeness of Varity 2 Context Matching (Schmidt-
Schauß and Stuber, 2004). In fact, what we show with this encoding is NP-completeness of the
fragment of ESM with linear sequence and head-position individual variables and at most two
occurrences of the other individual variables.
Currying transformation (bijectively) maps ESM to Left-Hole Context Matching (LHCM). This allows

us to transfer some of the other complexity results for ContextMatching (Schmidt-Schauß and Stuber,
2004) to ESM, because the proofs for the fragments of ContextMatching in Schmidt-Schauß and Stuber
(2004) are also valid for LHCM:

• Linear ESM (the fragment where each variable occurs at most once) is in O(n3)where n is the size
of the problem. It follows from the same result for Linear Context Matching.
• Shared Linear Context Matching (SLCM) is a fragment of Context Matching where all occurrences
of the same context variable are applied to the same term. Inverse currying transforms SLCM
into the fragment of ESM that we call prefix-closed ESM (PCESM). It can be characterized by the
following property: If a sequence variable V occurs in the subterms f1(r1, . . . , rn, V , . . .) and
f2(l1, . . . , lm, V , . . .), where f1, f2 ∈ ΣU, then f1 = f2, n = m, and ri = li for each 1 ≤ i ≤ n. It
means that prefixes of all occurrences of a sequence variable are the same. SLCM is in P, therefore
PCESM is in P.

It is hard to characterize a fragment of ESM obtained by inverse currying from Stratified Context
Matching. There is no obvious pattern in the form of such ESM problems.

5.2. Unification procedure for ESU

In the rest of the section we will be concerned with computing the solution set for ESU problems.
They, obviously, can be solved by the procedure in Definition 19, first transforming ESU problems
into LHCU problems and then translating the unifiers back. The other way is to extend the solving
procedure for SU (Kutsia, 2007) with the rules for head-position individual variables and obtain a
procedure for ESU. In this way we get a complete solving procedure that can be directly applied to
ESU problems without transforming them to LHCU. Below we will follow this idea and formulate
transformation rules for ESU.
To make the paper self-contained, we put here the relevant (slightly modified) SU transformation

rules from Kutsia (2007), which, for uniformity reasons, are formulated similarly to the rules from
Definition 19, and add two new rules for head-position individual variables. The notation r̃ below
stands for a sequence of extended unranked terms, and f is either a function symbol or an individual
variable (occurring in the functional position).
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Definition 43. The unification procedure for ESU is described by the set of problem transformations,
where every transformation has the form

〈∆ ∪ {l ?= r}, ϑ〉 =⇒ 〈σ(∆ ∪∆′), σ ◦ ϑ〉

and is characterized by a rule l ?= r =⇒ ∆′ and a substitution σ .

Simplification: r ?
= r =⇒ ∅,

f(l, l̃) ?
= f(r, r̃) =⇒ {l ?= r, f(l̃) ?

= f(r̃)}, l, r /∈ VS,
f(V , l̃) ?

= f(V , r̃) =⇒ {f(l̃) ?
= f(r̃)},

where σ = [ ] in all three cases.

Projection: f(V , l̃) ?
= f(r̃) =⇒ {f(l̃) ?

= f(r̃)} and σ = [V 7→ 〈〉].

Imitation: v
?
= r =⇒ ∅ and σ = [v 7→ r],
provided that v does not occur in r .9

f(V , l̃) ?
= f(r, r̃) =⇒ {f(V ′, l̃) ?

= f(r̃)} and σ = [V 7→ 〈r, V ′〉],
provided that V does not occur in r , (see footnote 9) and V ′ is fresh.

Head Variables:v(l̃) ?
= f(r̃) =⇒ {f(V ′, l̃) ?

= f(r̃)} and σ = [v 7→ f(V ′)],
where v 6= f and V ′ is fresh.

To solve an ESU problem ∆, we start with 〈∆, [ ]〉 and apply nondeterministically the
transformations above until we get a pair of the form 〈∅, ϑ〉. Then ϑ is returned as a solution of∆. To
prune the search tree, unsolvable problems are not transformed.
Proposition 44. The unification procedure described in Definition 43 is sound and complete:

Soundness: If 〈∆, [ ]〉 =⇒∗ 〈∅, ϑ〉, then ϑ is a unifier of∆.
Completeness: If ϑ is a unifier of∆, then 〈∆, [ ]〉 =⇒∗ 〈∅, ϑ ′〉 where ϑ ′ �vars(∆) ϑ .

Proof. Soundness is proved by induction on the length of transformation sequences. As induction
step, we prove that if 〈∆ ∪ {l ?= r}, ϑ〉 =⇒ 〈σ(∆ ∪∆′), σ ◦ ϑ〉 and ϑ ′ is a unifier of σ(∆ ∪∆′), then
ϑ ′ ◦σ is a unifier of∆∪{l ?= r}. For the head variables rule this can be easily shown, and for the other
rules it follows from the corresponding result in Kutsia (2007).
To prove completeness, first we have to construct a sequence of transformations 〈∆, [ ]〉 =⇒

〈∆1, ϑ1〉 =⇒ 〈∆2, ϑ2〉 =⇒ · · · where ϑi �vars(∆) ϑ . Such a sequence can be constructed recursively.
Assume 〈∆i, ϑi〉 belongs to the sequence. We have to find 〈∆i+1, ϑi+1〉 such that 〈∆i, ϑi〉 =⇒
〈∆i+1, ϑi+1〉 and ϑi+1 �vars(∆) ϑ . There are several cases depending on the form of equation from
∆i that we are going to transform. We consider here only the case when it has the form v(l̃)

?
= f(r̃).

First assume that f is not a variable. Then we transform the equation with the head variables rule
by the substitution σi = [v 7→ f(V ′)]. If f is a variable itself, we compare the lengths len1 and len2
of argument sequences respectively in ϑ(v) and ϑ(f). If len1 ≤ len2 then we use the head variables
rule with the substitution σi = [f 7→ v(V ′)], otherwise the same rule is used with the substitution
σi = [v 7→ f(V ′)]. In all cases ϑi+1 = σi ◦ ϑi �vars(∆) ϑ .
The second step in completeness proof is to show that this sequence terminates. We define

inductively the size of a term r , a sequence of terms 〈r1, . . . , rn〉, or of a substitution ϑ , with respect
to a substitution σ as follows:

|v|σ = 2.

|V |σ =
{
0 if σ(V ) = 〈〉,
1 otherwise.

|f (r1, . . . , rn)|σ = |r1|σ + · · · + |rn|σ + 2.
|〈r1, . . . , rn〉|σ = |r1|σ + · · · + |rn|σ .
|ϑ |σ =

∑
w∈Dom(ϑ) |ϑ(w)|σ .

9 The violation of these provisos leads to an occur-check error in the equations.
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Given ϑ and∆, we define the size of a pair 〈∆i, ϑi〉 as the quadruple
|〈∆i, ϑi〉| = 〈|hvars(∆i)|, |vars(∆i)|, |ϑ |[ ] − |(ϑi|vars(∆))|σ ,

⋃
l ?=r∈∆i

{|l|σ , |r|σ }〉

where σ satisfies ϑ(w) = σ ◦ ϑi(w) for all w ∈ vars(∆), and hvars(∆i) stand for the set of
variables that occur in a head position in ∆i. The sizes of the states of 〈∆, [ ]〉 =⇒ 〈∆1, ϑ1〉 =⇒
〈∆2, ϑ2〉 =⇒ · · · , compared using a lexicographic ordering, and a multiset ordering for the fourth
component, strictly decrease: The head variables rule decreases the first component, the projection
rule and the first imitation rule decrease the second component without increasing the first one, the
second imitation rule decreases either the third or the fourth componentwithout increasing the others
before that, and the simplification rules decrease the fourth component without increasing the first
three. �

Example 45. The ESU problem {f (a, V ) ?
= v(a, b)} has twomost general unifiers: σ1 = {V 7→ b, v 7→

f ()} and σ2 = {V 7→ 〈U, a, b〉, v 7→ f (a,U)}. A derivation that computes the substitution that
coincides to σ2 on the set of variables of the problem proceeds as follows:

〈{f (a, V ) ?
= v(a, b)}, [ ]〉 =⇒

〈{f (a, V ) ?
= f (U ′, a, b)}, [v 7→ f (U ′)]〉 =⇒

〈{f (V ) ?
= f (U, a, b)}, [v 7→ f (a,U),U ′ 7→ 〈a,U〉]〉 =⇒

〈{f (V ′) ?
= f (a, b)}, [v 7→ f (a,U),U ′ 7→ 〈a,U〉, V 7→ 〈U, V ′〉]〉 =⇒

〈{f (V ′′) ?
= f (b)}, [v 7→ f (a,U),U ′ 7→ 〈a,U〉, V 7→ 〈U, a, V ′′〉, V ′ 7→ 〈a, V ′′〉]〉 =⇒

〈{f (V ′′′) ?
= f ()}, [v 7→ f (a,U),U ′ 7→ 〈a,U〉, V 7→ 〈U, a, b, V ′′′〉,

V ′ 7→ 〈a, b, V ′′′〉, V ′′ 7→ 〈b, V ′′′〉]〉 =⇒

〈{f () ?
= f ()}, [v 7→ f (a,U),U ′ 7→ 〈a,U〉, V 7→ 〈U, a, b〉,

V ′ 7→ 〈a, b〉, V ′′ 7→ 〈b〉, V ′′′ 7→ 〈〉]〉 =⇒

〈∅, [v 7→ f (a,U),U ′ 7→ 〈a,U〉, V 7→ 〈U, a, b〉, V ′ 7→ 〈a, b〉, V ′′ 7→ 〈b〉, V ′′′ 7→ 〈〉]〉.

6. Conclusion

We have studied the relation between two generalizations of Word Unification: Sequence
Unification (SU) and Context Unification (CU). We have introduced a transformation function to
translate Sequence Unification problems into Context Unification problems over a signature with
constants and a single binary function symbol. The transformation preserves solvability in one
direction: from SU to CU. To preserve solvability in the other direction, we have added a restriction
on the form of solutions of Context Unification problems, obtaining the left-hole variant of Context
Unification. We have proved that a Sequence Unification problem is solvable iff the corresponding
Left-Hole Context Unification problem is solvable, and the unifiers can be reconstructed in both
directions. Moreover, we have also proved that Left-Hole CU is decidable, reducing it to Word
Unification with regular constraints. This result gives a decidability proof for an extension of SU, and,
in particular, a new proof of decidability of SU. The reduction is reversible, therefore Left-Hole CU
and Extended SU are equivalent problems. Based on the transformation, we have transferred some
complexity results from contextmatching to sequencematching. Finally, we have defined a procedure
for solving Extended SU problems and have proved its soundness and completeness.
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