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ABSTRACT
Decentralized energy production is meant to reduce generation and
distribution inefficiencies, leading to major economic and environ-
mental benefits. This new model is meant to be supported by smart
grids, electricity networks that can intelligently integrate the ac-
tions of all users connected to them —generators, consumers, and
prosumers (those that do both)— to efficiently deliver sustainable,
economic and secure electricity supplies. A major research chal-
lenge is the design of markets for prosumers in smart grids that
consider distribution grid constraints. This paper introduces a novel
market that allows prosumers to trade electricity while satisfying
the constraints of the grid. Our market’s allocation rule is imple-
mented by means of the so-called RadPro, an efficient dynamic
programming algorithm that assesses in polynomial time how much
energy each prosumer trades as well as how energy must be dis-
tributed throughout the grid. Our empirical results show that Rad-
Pro significantly outperforms both CPLEX and Gurobi in solv-
ing time when computing the optimal allocation over acyclic net-
works. Furthermore, the message-passing nature of RadPro offers
the possibility of running our market in a decentralized (peer-to-
peer) manner.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Algorithms; Economics; Performance

Keywords
smart grid; energy market; prosumers; RadPro

1. INTRODUCTION
Our centralized model of production and transmission wastes

enormous amounts of energy. According to [7], "...an astonish-
ing two-thirds of primary energy inputs". Since power stations are
generally far from centers of demand, much of the produced heat
is not used, but vented up chimneys or discharged to rivers. Addi-
tional losses come about as the electricity travels along the wires
of the transmission and distribution systems [7, 28]. As argued
in [28], favoring the decentralized generation of energy over tradi-
tional centralized electricity generation will reduce generation and
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distribution inefficiencies and will facilitate increased contributions
from renewables. This new model is meant to be supported by
smart grids.

Following [4], a smart grid is an electricity network that can
intelligently integrate the actions of all users connected to it —
generators, consumers, and prosumers (those that do both)— to
efficiently deliver sustainable, economic and secure electricity sup-
plies. In the smart grid the consumer can be either an individual or
a household, but also a community or an SME. In its more general
form, a smart grid is populated by prosumers capable of both gen-
erating and consuming energy. Therefore, smart grids clearly play
the central role in the integration of all these prosumers (electricity
grid users) by means of the enactment of a system that satisfies a
number of societal goals. Out of these goals, there is that of setting
market-based prices for electricity taking into account grid system
constraints. Thus, a major research challenge in the heart of sev-
eral roadmaps for the Smart Grid [4, 5] is the design of markets
for prosumers in smart grids that consider distribution grid con-
straints. This vision will allow prosumers to directly trade over the
smart grid [9]. Following [21], market operations will involve a
large number of heterogeneous prosumers, distributed throughout
the network (closer to the point of use of electricity), and trading
much smaller amounts of energy that are nowadays traded. The
distribution of electricity employs one of the three common types
of network topologies: radial, ring main, and interconnected [6, 8,
26]. On the one hand, radial networks are acyclic. On the other
hand, as observed in [14], though ring main and interconnected
networks contain cycles, they are configured into acyclic networks
by means of switches to supply power [8, 26].

The smart grid vision has spurred a wealth of research on the de-
sign of markets and trading agents for the smart grid. The state-of-
the-art has mainly considered to employ different types of auctions
for this endeavor. Thus, the market-based trading of energy is typ-
ically addressed by the literature by having prosumers participate
in a double auction where energy is traded on a day-ahead basis [9,
10, 11, 15, 18, 24]. Submitted buy and sell orders for energy are
matched either by means of either a continuous double auction [11,
18, 24] or a call market [9, 10, 15]. Exceptions to this common
approach are represented by the tailored multi-unit auctions in [27]
and the simultaneous combinatorial reverse auctions employed in
[19] to match demand and supply.

To the best of our knowledge, none of the market mechanisms
employed in the literature so far takes into account grid system
constraints. Thus, the clearing of the market occurs disregarding,
for instance, that the transmission of energy is carried out along
capacity-constrained distribution networks (which is an actual-world
constraint [26]). Therefore, trading and distribution are considered
as decoupled activities. Furthermore, the bidding language offered



to grid users is not expressive enough to express a prosumer’s en-
ergy profile. With the exception of [19], which supports combi-
natorial bids, double auctions limit a grid user to submit a single
price-quantity bid to either buy or sell. This does not allow a pro-
sumer to express a full energy profile encompassing a combination
of all her buy and sell offers.

Against this background, the main goal of this paper is to de-
sign a novel market that allows prosumers to trade electricity in a
smart grid while satisfying the grid’s distribution constraints. More
precisely, we make the following contributions:
• We formally introduce the energy allocation problem (EAP) as

the problem of deciding how much energy each prosumer trades
as well as how energy must be distributed throughout the grid
so that the overall benefit is maximized while complying with
the grid constraints and the prosumers’ preferences. Thus, on
the one hand, we consider that the capacity of the distribution
network is limited [26]. On the other hand, since a prosumer can
both generate and consume energy, our formulation considers
that each prosumer can encode her preferences as a combination
of offers to both buy and sell energy. Solving the EAP amounts
to clearing our prosumer-oriented market.

• We show how to encode the EAP as a mixed-integer program
so that it can be optimally solved for any distribution network
topology by means of off-the-shelf commercial solvers such as
CPLEX or Gurobi.

• We propose a novel dynamic programming algorithm to effi-
ciently solve acyclic instances of the EAP, the so-called Radial
Energy Network Algorithm for Prosumer Market (RadPro). Rad-
Pro is a message-passing algorithm that manages to optimally
solve the EAP on acyclic electricity networks in polynomial time.
Our empirical results show that RadPro significantly outperforms
both CPLEX and Gurobi in solving time when computing the
optimal allocation, namely when clearing the market, as the size
of the market grows, being 15.8 times faster than the runner-up
in the largest scenario tested. Furthermore, they also show that it
largely overcomes the limitations of message-passing algorithms
such as Acyclic-Solving [3], reducing several orders of magni-
tude the computation thanks to its efficient message assessment.

• Finally, since the EAP defines the allocation rule of our market,
we also touch upon the design of payment rules that together
with our allocation rule can help design a mechanism for our
prosumer-oriented market.
The rest of the paper is organized as follows. Section 2 reviews

the dynamic programming algorithm on which our algorithm Rad-
Pro is based. Section 3 formally defines the allocation rule that we
propose to clear prosumer-oriented electricity markets. Thereafter,
section 4 shows how to implement the clearing of the market as a
mixed-integer program (MIP), whereas section 5 introduces Rad-
Pro, our novel computationally-efficient algorithm for the same
purpose. Next, section 6 empirically analyses RadPro, section 7
touches upon how to cope with prosumers’ strategic behavior, and
section 8 concludes and sets paths to future research.

2. BACKGROUND
We start the section by introducing constraint optimization prob-

lems and then we review Acyclic-Solving: the dynamic program-
ming algorithm that is used as the basis for RadPro.

In the following, let X = 〈x1, . . . , xn〉 be a sequence of variables,
with each variable x j taking states in a finite setD j known as its do-
main. The joint domainDX is the Cartesian product of the domain
of each variable. We use x j to refer to a possible state of x j, that is
x j ∈ D j. Given a set of variables Y ⊆ X, a tuple XY assigns a possi-
ble state to each variable in Y , that is XY ∈ DY . A utility function f

Algorithm 1 The Acyclic-Solving algorithm
Each vertex j of the tree executes
1: From each child k of j, receive a message µk→ j.
2: if j is not the root then
3: Assess µ j→p j using equation 1
4: Send message µ j→p j to its parent p j

5: Receive message X∗s j
from its parent p j

6: end if
7: Assess the best assignment X∗j using equation 2
8: To each child k of j, send message X∗↓sk

with scope Y is a function f : DY → R.We use s( f ) for the scope of
f . The sum of two utility functions f and f ′ with scopes Y and Z re-
spectively is a new utility function h = f + f ′ with scope Y∪Z, such
that h(T) = f (T↓Y ) + f ′(T↓Z) where T↓Y stands for the projection
of tuple T to scope Y . The projection of a utility function f with
scope Y to scope Z, is f ↓Z(Z) = max{ f (Y) | Y ∈ DY ,Y↓Z = Z}.
Formally, a COP is an optimization problem whose input is a tuple
〈X,D, F〉, where F is a set of utility functions and whose objective
is to find the tuple X∗ that maximizes the sum g =

∑
f∈F f of the

utility functions, that is to find X∗ = argmaxX g(X).
Given a COP problem, the constraint network is defined as the

graph that has a vertex for each constraint and an edge between
two constraints if their scopes share at least one variable. When the
constraint network is acyclic, the Acyclic-Solving algorithm can
solve the COP problem efficiently [3], provided that the scope of
the utility functions is small. Acyclic-Solving selects one vertex as
the root. Each vertex j but the root is assigned a parent p j and one
utility function f j (representing its own stake at the problem). The
scope of a vertex j is the scope of f j. The separator s j between j
and p j is the intersection of their scopes.

Acyclic-Solving, shown in Algorithm 1, runs two phases: (1)
costs are sent from the leaves up to the root; (2) optimal assign-
ments are decided and communicated down the tree. More in de-
tail, it determines the optimal solution using the following scheme.
First, each leaf vertex starts by sending its own utility to its par-
ent. When a vertex has received the messages from all its children,
it combines them with its own utility to produce the aggregated
utility of its whole subtree, and then sends it to its parent. Once
the root has received messages from all its children, it assesses
the aggregated utility of the whole problem and then it decides the
best assignment (maximum cost tuple) for its variables. Finally, it
broadcasts this assignment to its children, who assess their best as-
signments and send them down the tree. After the execution of the
algorithm, each agent knows the optimal values for the variables in
its scope. The message sent from each vertex to its parent is

µ j→p j = g↓s j
j (1)

where g j = f j +
∑

k µk→ j and the best assignment for the variables
in each vertex is assessed as

X∗j ← argmax
X j

g j(X∗s j
,X j) (2)

Since Acyclic-Solving can be expressed as a message passing
algorithm, it can be easily applied to distributed COP systems1,
where it can be seen as a particular case of DPOP [20] or Action-
GDL [23]. The computational complexity of each agent in Acyclic-
Solving is exponential on the number of variables in its scope, due
fundamentally to the assessment of the message in equation 1. Usu-
ally bookkeeping is used during that process to make the assess-
1In those scenarios where each agent is assigned a single constraint,
and the constraint network is acyclic.



ment of the best assignment in equation 1 computationally inexpen-
sive. The communication complexity of each agent j is exponential
on the number of variables in the separator s j with its parent.

3. THE ENERGY ALLOCATION PROBLEM
The aim of this section is to provide a simple mathematical model

for the energy market in a prosumer network, and the allocation
rule proposed for that market. We start by providing an example of
an energy trading scenario that illustrates the model of prosumers
and the model of energy network that we will consider. Thereafter,
we provide the allocation rule for that market as the solution to an
optimization problem: the energy allocation problem (EAP).

3.1 Example: energy trading scenario
Figure 1 shows an example of an energy trading scenario in-

volving four prosumers, each one represented by a circle. Each
edge connecting two prosumers means that they are physically con-
nected. Moreover, each link is labeled with its capacity, namely
with the amount of energy it can transport. For instance, prosumer
1 is connected to prosumer 2, and their link can transport up to 2
energy units. Each prosumer can offer to either buy, sell or transmit
energy. The offer of each prosumer is represented as a table next
to each prosumer in Figure 1, where each entry in the table is a
pair (units, price). As a convention, a selling offer is expressed by
means of a negative number of units and a negative price, whereas
a buying offer is encoded with a positive number of units and a pos-
itive price. For instance, prosumer 4 offers (among other options):
to buy 2 energy units and pay 1.75ce, to sell 3 units and get paid
11ce, and to transmit energy for free (0 units at price 0). In Fig-
ure 1, we observe that prosumer 1 only sells energy, and prosumer
2 only buys energy, while prosumers 3 and 4 can either buy or sell.

There are two important aspects to consider about the semantics
of a prosumer’s offer. First, notice that the entries in a prosumer’s
offer table represent mutually exclusive offers. Thus, for instance,
prosumer 4’s offer indicates that it can either buy 2 energy units or
sell 3 energy units, but it cannot do both at the same time. Second,
a prosumer’s offers may be non-linear since the prosumer fixes a
specific price for each number of units.

3.2 Problem definition
Now the problem faced by the prosumers in Figure 1 is to decide

how much energy to trade and with whom so that the overall benefit
is maximized while the energy network’s capacity constraints are
fulfilled. This means that: (i) each prosumer must choose a single
offer in its offer table (how much to trade); and (ii) each pair of
prosumers connected by a link must agree on the amount of energy
to be transferred by their link together with the direction of the
transfer (with whom). In what follows we cast this problem as an
optimization problem, and we put off the solution to this problem
to sections 4 and 5.

Following example 1, we consider that the energy network con-
necting a set of prosumers P can be modeled as an undirected graph
(P, E), where the vertexes stand for the prosumers and each edge in
E connects a pair of prosumers. An edge {i, j} ∈ E means that
prosumer i and j are physically connected to trade energy. When
{i, j} ∈ E, i < j we say that i is an in-neighbor of j and that j is an
out-neighbor of i. The set of in-neighbors (resp. out-neighbors) of
j is in( j) (resp. out( j)).

Each prosumer j expresses her offers to buy and sell energy by
means of an offer function o j : Z→ R∪{−∞}. For instance, o j(3) =

2 indicates that prosumer j is willing to buy 3 energy units at 2ce,
while o j(−4) = −2 indicates that she is willing to sell 4 energy
units if paid 2ce. Furthermore, we allow a prosumer to express

1

2 4

3

2 5

3

Units     Price
   0            0
   4            9
   5           11.5

Units     Price
   2          1.75
   1          1.25
   0          0 
  -2         -6
  -3         -11

Units     Price
   2          2
   1          1.25
   0          0 
  -2         -4
  -3         -6

Units     Price
   0          0
   -1        -2
   -2        -3.5 
   -3        -5

Figure 1: Energy trading scenario.

that she is willing to let energy go through it by selling to her output
prosumers as much energy as she buys from her input prosumers.
Hence, we assume that o j(0) , −∞ for all j ∈ P. Notice that
offer functions capture prosumers’ constraints. To communicate
her offer function, each prosumer sends a table like the ones in
Figure 1 making explicit her feasible energy states and their values.
If an offer for k units does not appear in the table, it means that such
energy state is unfeasible for the prosumer and thus its value o j(k)
is −∞. Formally, the offer function is a valuation.

Definition 1. A valuation α is a function α : Z → R ∪ {−∞}.
It is interesting to divide the domain of α in two parts: the finite
valued domain FVD(α) is the subset of Z in which α takes finite
values. The size nα of a valuation is the number of elements in
FVD(α). We define the empty valuation � as the one that maps 0 to
0 and any other element to −∞.

Besides prosumers’ offers, we also consider that the energy net-
work is physically constrained by the capacity of the connections
between prosumers. We will note as ci j the capacity limit of edge
{i, j}, namely the maximum number of energy units that the link
between prosumers i and j can transmit. An allocation specifies
the number of units that each prosumer trades with each neighbor-
ing prosumer. We will encode an allocation by means of a set of
variables Y = {yi j | i ∈ P, j ∈ out(i)}, where yi j stands for the num-
ber of units that prosumer i sells to prosumer j and is bounded
by the capacity limit ci j. That is, the domain of variable yi j is
Di j = [−ci j .. ci j]. Thus, if yi j takes on a value k greater than 0,
it means that prosumer i sells k energy units to prosumer j. Oth-
erwise, if yi j takes on a negative value −k, we say that prosumer
i buys k energy units from prosumer j. From this follows that yi j

represents a trade from prosumer i’s perspective.
Now we want to assess the value of a given allocation. Before

that, we will define the local value of a given allocation for a single
prosumer. We need to assess the amount of energy that a prosumer
acquires and sells according to an allocation Y. Prosumer j will
only consider its local view of the allocation, represented by Y j =

y. j ∪ y j.. We can assess the net energy balance for prosumer j as

net(Y j) =
∑

i∈in( j)

yi j −
∑

k∈out( j)

y jk, (3)

where each yi j and y jk are added with different signs because j takes
the role of buyer in yi j and that of seller in y jk. And therefore, the
local value v j of an allocation Y for prosumer j can be assessed as
the value of her net energy balance by means of her offer function

v j(Y j) = o j(net(Y j)). (4)

Therefore, the value of an allocation Y can be obtained by adding



up the local value of the allocations for each prosumer.

Value(Y) =
∑
i∈P

v j(Y j). (5)

Now, we are ready to define the energy trading allocation as that
of finding the allocation of maximum value that satisfies the capac-
ity of the energy network.

Problem 1. Given a set of prosumers P, their offers {o j| j ∈ P},
and an undirected graph E where each edge is labeled with its ca-
pacity ci j, the energy allocation problem (EAP) amounts to finding
an allocation Y that maximizes Value(Y). Whenever the graph E
is acyclic we say that the EAP is acyclic.

At this point we can consider again the example in Figure 1.
When solving the EAP defined by Problem 1, we obtain the vari-
able assignment shown in Figure 2. The solution indicates that pro-
sumer 1 transfers 2 energy units to prosumer 2 (y12 = 2), prosumer
2 also receives 3 energy units from prosumer 4 (y24 = −3), and
prosumer 3 transfers 3 energy units to prosumer 4. Within each
offer table, we underline the offer chosen by each prosumer. For
each prosumer, the underlined number of units corresponds to the
net energy balance (Equation 3), while the underlined price corre-
sponds to the local value of the allocation (Equation 4). Thus, the
allocation that maximizes Equation 5 has a value of 2.

1

2 4

3

2 5

3

Units     Price
   0            0
   4            9
   5           11.5

Units     Price
   2          1.75
   1          1.25
   0          0 
  -2         -6
  -3         -11

Units     Price
   2          2
   1          1.25
   0          0 
  -2         -4
  -3         -6

Units     Price
   0          0
   -1        -2
   -2        -3.5 
   -3        -5

y24 = -3

y34 = 3y12 = 2

NET VALUE = -3.5 + 11.5 + 0 - 6 = 2
Figure 2: Solution to the EAP represented by the energy trad-
ing scenario.

Notice that prosumer 2 obtains 5 energy units by aggregating the
energy units received from prosumers 1 and 4. However, prosumer
4 does not sell anything to prosumer 2. The role of prosumer 4 is to
relay to prosumer 2 the energy transferred from prosumer 3, which
is the one that does sell energy. In general, our model supports
that each prosumer either: (i) aggregates energy received from its
neighbors when buying energy; (ii) splits and distributes energy
to its neighbors when selling energy; or (iii) relays energy so that
other prosumers can satisfy their demand.

4. SOLVING THE EAP THROUGH MIP
Solving optimization problems by mapping them to Mixed Inte-

ger linear Programs (MIPs) has become a standard practice when-
ever such a mapping can be found. Through the advance of soft-
ware capabilities (including CPLEX and Gurobi), this practice turns
out to be difficult to beat even for problems, such as combinatorial
auctions, that have attracted a stream of research in specific algo-
rithms [12]. Along this line, in this section we show how the EAP
can be encoded as a MIP.

Before translating the EAP as a MIP, recall that the offer of pro-
sumer j is expressed as a valuation o j containing no j offers. Without
loss of generality we can assume that the offers in each offer func-
tion o j are ordered. Then we will refer to the l-th offer in o j by the
pair (ql

j, o
l
j), where ql

j stands for the number of units offered to buy
or sell, and ol

j stands for the offered price.
To encode our optimization problem, we will consider two types

of decision variables. On the one hand, as described in section 3,
for each edge (i, j) in the trading energy network an integer variable
yi j will take on as a value the number of units that prosumer i sells
to prosumer j (when yi j > 0), or that she buys from prosumer j
(when yi j < 0). Notice that yi j may also be zero if there is no
trading between i and j. In general, the value of yi j is within the
domain Di j.

Since the prosumer value v j(Y j) of equation 4 cannot be encoded
as a linear function in terms of these variables, for each prosumer
j we introduce a set of auxiliary binary variables {xl

j| 1 ≤ l ≤ no j },
where variable xl

j indicates whether the l-th offer in o j is taken or
not. Since the offers of prosumer j are mutually exclusive, these
variables are linked by a constraint that enforces one and only one
of them to be active, namely

∑no j
l=1 xl

j = 1. The net energy balance
net(Y j) from equation 3 provides a connection between the flows of
energy in and out a prosumer and the offer selected. We can express
equation 3 for prosumer j by means of the constraint

∑
i< j yi j −∑

k> j y jk =
∑no j

l=1 xl
j · q

l
j. Finally, the prosumer value can be easily

written as a linear expression in terms of these variables:
∑no j

l=1 xl
j ·o

l
j.

Now we are ready to define the MIP that solves the energy allo-
cation problem introduced in the previous section.

maximize
∑|P|

j=1

∑no j
l=1 xl

j · o
l
j

subject to
∑no j

l=1 xl
j = 1 ∀ j ∈ P, 1 ≤ l ≤ no j∑

i< j yi j −
∑

k> j y jk =
∑no j

l=1 xl
j · q

l
j ∀ j ∈ P

yi j ∈ Di j ∀(i, j) ∈ E

xl
j ∈ {0, 1} ∀ j ∈ P, 1 ≤ l ≤ no j

Where the first two constraints enforce the correct representation
of the net value in terms of xl

j variables. Furthermore, we enforce
that the quantity of energy exchanged between two prosumers can-
not exceed the capacity of the edge in the third constraint – the do-
main constraints for variables yi j. The fourth one is the domain con-
straint for the binary variables xl

j. Hence, solving the EAP amounts
to solve this linear program.

Let us consider again the example in Figure 1, and its solution in
Figure 2. As presented in the previous section, the optimal alloca-
tion Y is the one where the decision variables’ values are y12 = 2,
y24 = −3 and y34 = 3. This allocation corresponds to set the x’s as
follows: x−2

1 = x5
2 = x−3

3 = x0
4 = 1 (otherwise xl

j = 0). This leads to
the following evaluation of the allocation:

Value(Y) = o2
1 + o5

2 + o−3
3 + o0

4 = −3.5 + 11.5 + 0 − 6 = 2

5. MESSAGE PASSING FOR ACYCLIC EAP
This section presents RadPro, an alternative algorithm for acyclic

EAP that relies on message passing, and thus can be easily imple-
mented in a distributed way. As explained in section 2 the Acyclic-
Solving algorithm relies on message passing to solve acyclic COPs.
The purpose of the section is twofold. First, section 5.1 details how
to employ Acyclic-Solving directly to solve the problem. Since the
assessment of messages in Acyclic-Solving is known to have ex-
ponential complexity, section 5.2 details the mathematical theory
that underlies the assessment of Acyclic-Solving messages with



polynomial complexity. Due to lack of space, we formulate the
lemmas and theorem and leave the proofs in an anonymous tech-
nical report [1]. Finally, section 5.3 introduces RadPro and com-
pares the communication and computational complexity with that
of Acyclic-Solving.

5.1 Direct message passing solution
Note that the value of an allocation, as defined in equation 5, is

a sum of utility functions, one per prosumer. Thus, we can directly
map the EAP into a COP. When the EAP is acyclic, so is the con-
straint network and we can directly apply Acyclic-Solving as it is
described in section 2.

Note that the separator s j between each node j and its parent
p j corresponds either with the single variable yip j if p j is an out-
neighbor of j or with yp j j if p j is an in-neighbor of j. In any case
the size of the message µ j→p j is the number of possible states of
the link between j and p j, and the message can be understood as
communicating the utility of each of these states to the network
composed by the prosumers in the subtree rooted at j. Thus, the
amount of communication needed to run Acyclic-Solving is very
small.

The expression of the message from j to its parent can be ob-
tained by particularizing the general Acyclic-Solving equation 1.
When the parent node p j is an out-neighbor, j sends the following
message:

µ j→p j (y jp j ) =

= max
Y j−p j

v j(y jp j ,Y j−p j ) +
∑

k∈out( j)\{p j}

µ j→k(y jk) +
∑

i∈in( j)

µi→ j(yi j)

 ,
(6)

and when the parent node p j is an in-neighbor, j sends the follow-
ing message:

µ j→p j (yp j j) =

= max
Y j−p j

v j(yp j j,Y j−p j ) +
∑

k∈out( j)

µ j→k(y jk) +
∑

i∈in( j)\{p j}

µi→ j(yi j)

 .
(7)

where Y j−p j stands for an assignment of values to each variable in
Y j except y jp j (or yp j j). Note that in agreement with section 2, the
assessment of messages takes time exponential in the number of
variables in the scope of the constraint, which in this case corre-
sponds with the number of neighbors of the prosumer. The com-
putational cost for a prosumer j of assessing the message to its
parent is bounded O((2C j + 1)N j ), where C j is the capacity of the
most powerful link between i and a neighboring agent and N j is the
number of neighbors of j. Again, as explained in section 2, we can
use bookkeeping during the assessment of the messages to reduce
the complexity of the assessment of the best assignment according
to equation 2 to constant time. Thus Acyclic-Solving will perform
efficiently as long as the degree of the nodes in the energy network
is small. This is likely to be so in rural scenarios [17], however in
urban areas [25] the degree of nodes has been seen to follow a geo-
metric distribution with some nodes’ degree reported to be over 35.
This hampers the direct application of Acyclic-Solving in such sce-
narios. Similar dynamic programming approaches for the problem
of CO2 reduction in energy networks have been reported functional
for nodes with a branching factor up to four [14].

In the following section we develop an algebra of valuations that
allows for a much more efficient computation of messages.

5.2 Efficient message computation
The assessment of messages using equations 6 and 7 takes time

exponential in the number of neighbors that the prosumer is con-
nected to. Thus, for densely connected energy networks, it can
severely hinder the applicability of the algorithm. To overcome
this problem, in this section we introduce an algebra of valuations
that the prosumers can take advantage of when assessing their mes-
sages. As a result, the message assessment complexity is severely
reduced.
Objects and Operations of the algebra of valuations. Our objec-
tive is to build an algebra that enables us to perform the assessment
of messages faster. The main mathematical object of the algebra,
namely the valuation has already been defined in definition 1.

Both the offers o j of each prosumer and the messages µ j→p j can
be directly mapped into valuations. Valuations can be efficiently
represented computationally by means of hash tables. In the fol-
lowing we will introduce the operations on valuations required to
assess the messages.

First consider the scenario of a prosumer j with a single in-
neighbor p j. The message to send according to equation 7 will
basically copy the offer o j. However, since the possible states of
yp j j are limited by the capacity of the link, we will need to have an
operation in the algebra that removes from valuation o j, those val-
ues which are out of the range. This operation is called restriction.

Definition 2. Given a valuation α, and a subset D ⊆ Z we de-
fine α[D], the restriction of α to D as

α[D](k) =

α(k) k ∈ D
−∞ otherwise.

Thus, the message of a prosumer j to its single in-neighbor p j can
be written as µ j→p j = o j[Dp j j].

Now consider the scenario of a prosumer j with a single out-
neighbor p j. In this case, the equation of the net energy flow for j
shows that net(y jp j ) = −y jp j . Thus, the message to send according
to equation 6 is a symmetric version of o j, restricted to the capacity
of the link. We refer to the operation that assesses the symmetric
version of a valuation as the complement.

Definition 3. Given a valuation α, we define α, the complement
of α as

α(k) = α(−k)

Thus, the message of a prosumer j to its single out-neighbor p j can
be written as µ j→p j = o j[Dp j j].

Finally take the scenario of a prosumer j such that its parent p j

is an in-neighbor and that it has an additional out-neighbor k. In
that case equation 7 is reduced to

µ j→p j (yp j j) = max
y jk

(
v j(yp j j, y jk) + µ j→k(y jk)

)
=

max
y jk

(
o j(yp j j − y jk) + µ j→k(y jk)

)
(8)

Note that for some of the assignments yp j j, y jk, it will happen that
o j is undefined for the net energy balance yp j j − y jk. We can avoid
considering these assignments by introducing a new operation for
valuations, the aggregation.

Definition 4. Given two valuations α, β, we define α · β, the
aggregation of α and β as

(α · β)(k) = max
i, j

k=i+ j

α(i) + β( j) (9)



Algorithm 2 Aggregation of two valuations
1: γ ← �
2: for i ∈ FVD(α) do
3: for j ∈ FVD(β) do
4: γ(i + j)← max (γ(i + j), α(i) + β( j))
5: end for
6: end for

Now the message of a prosumer j such that its parent p j is an in-
neighbor and that it has an additional out-neighbor k, can be written
as µ j→p j = (o j · µk→ j)[Dp j j].
Structure of the algebra of valuations. We have defined the math-
ematical objects (the valuations) and the operations (restriction,
complement and aggregation) of our algebra. The following two
results describe the algebraic structure we have created. First, we
concentrate on the aggregation operation.

Lemma 1. The set of valuations with the aggregation operation
forms a commutative monoid with � as the identity element. That
is, for any valuations α, β, and γ we have that

1. α · β = β · α
2. (α · β) · γ = α · (β · γ)
3. α · � = α

From a mathematical standpoint Lemma 1 enables us to write
expressions such as α · β · γ that do not establish a specific order
in which the aggregations should be performed. This allow us to
extend the definition of aggregation from pairs of valuations to sets
of valuations. We define the n-way aggregation of the valuations
in A = {α1, . . . , αn} as (

∏n
i=1 αi)(k) = max j1 ,..., jn∑n

i=1 ji=k

∑n
i=1 αi( ji). Note

that, as expected by the notation, we have that
∏n

i=1 αi = α1 · . . . ·
αn. Thus, the n-way aggregation of a finite set of valuations can
be assessed using only the (2-way) aggregations from definition 4.
From a computational perspective, Lemma 1 allow us to group the
aggregation operations in the way we prefer. Thus, we can follow
a sequential order, or assess them in a tree in case that is more
efficient.

Now we are interested in characterizing the relations between the
different operations.

Lemma 2. The complement defines a self-inverse automorphism
of the commutative monoid of valuations. That is, for any two val-
uations α and β we have that

α · β = α · β α = α

� = � · : Φ→ Φ is a bijective mapping.
Furthermore, α[D] = (α)[−D] where −D = {−x|x ∈ D}.

Some of these properties will come in very handy when working
with expressions that involve aggregations, complements and re-
strictions.
The efficiency of aggregation. Next, we are interested in deter-
mining the computational cost of aggregating a set of valuations.
Algorithm 2 can be used to implement aggregation, with the fol-
lowing result:

Lemma 3. The aggregation of two valuations α and β can be
done in time O(nα × nβ). Furthermore nα·β ≤ nα × nβ.

From here we can show that assessing the aggregation of M valu-
ations of size N can be done in time O(NM). Our objective was to
speed-up the computation by aggregating the messages. However
we see that in the more general case, the aggregation of M messages
takes exponential time. Next we take advantage of a particularity

of the messages we need to aggregate that allow us to compute the
aggregation in polynomial time. Notice that the FVD of a message
µi→ j always lies in a small range Di j = [−ci j..ci j] around 0. We say
that a valuation α is of restricted capacity C if FVD(α) ⊆ [−C..C].
For restricted capacity valuations we get the following result.

Lemma 4. The aggregation of two valuations α and β of re-
stricted capacity C, can be done in time O(C2). Furthermore α · β
is a valuation of restricted capacity 2C.

Note that whilst for general valuations, the size of the aggregated
valuation grows quadratically, for restricted capacity valuations, it
only grows linearly. This turns out to be fundamental to prove the
following result, which tell us that we can aggregate valuations in
polynomial time as long as they are of restricted capacity.

Lemma 5. Given a set of M valuations A of restricted capacity
C we can assess its aggregation

∏
α∈A α in time O(M2C2).

The proof uses the associative property to divide the aggregation
into two smaller aggregations each with one half of the valuations,
to assess those smaller aggregations and to finally aggregate the
results.
Using the algebra of valuations to assess messages. The follow-
ing theorem shows that we can provide an expression for Acyclic-
Solvingmessages in equations 6 and 7 in terms of valuation algebra
operations and that this can done in polynomial time.

Theorem 1. The message from prosumer j to its in-neighbor
parent p j defined in equation 7 can be assessed as

µ j→p j =

o j ·
∏

k∈out( j)

µ j→k ·
∏

i∈in( j)\{p j}

µi→ j

 [Dp j j] (10)

and the message from prosumer j to its out-neighbor parent p j de-
fined in equation 6 can be assessed as

µ j→p j =

o j ·
∏

k∈out( j)\{p j}

µ j→k ·
∏

i∈in( j)

µi→ j

 [−D jp j ]. (11)

Furthermore, the computational complexity of assessing each mes-
sage is O(N jC jno j + N2

j C
2
j ) where N j is the number of neighbors of

j and C j is the largest capacity of any of the links connected to j.

The proof relies on transforming the expressions in equations 6 and
7 into a k-way aggregation which is then mapped to 2-way aggrega-
tions and manipulated with the help of Lemma 2. The complexity
result relies basically on Lemma 5.

5.3 RadPro message passing solution
Theorem 1 shows that Acyclic-Solvingmessages can be assessed

in polynomial time for the EAP. We name RadPro, the new algo-
rithm resulting from running Acyclic-Solving as described in Algo-
rithm 1 but assessing messages using equations 10 and 11, instead
of the usual Acyclic-Solving expression in equation 1. Note that
we are only modifying the algorithm that we use to assess the mes-
sages. Since the messages exchanged are exactly the same for both
algorithms, the number and the size of the messages exchanged is
exactly the same. Both Acyclic-Solving and RadPro, send 2n mes-
sages, being n the number of prosumers. Furthermore, the size of
each message is bounded by 2Cmax + 1, where Cmax is the largest
capacity of any link in the network. Thus the number of values
exchanged by both algorithms is O(nCmax).

Regarding computational complexity, as reported in section 5.1
in Acyclic-Solving the complexity for a prosumer j of assessing



Acyclic-Solving RadPro
Communication O(nCmax) O(nCmax)
Computation O(n(2Cmax + 1)Nmax ) O(nN2

maxC
2
max)

Table 1: Complexities of Acyclic-Solving and RadPro

the message to its parent is O((2C j + 1)N j ) where C j is the largest
capacity of any link connected to prosumer j and N j is the num-
ber of neighbors of the prosumer. Thus the overall computational
complexity is bounded by O(n(2Cmax + 1)Nmax ) where Nmax is the
number of neighbors of the most connected prosumer and n is the
overall number of prosumers. On the other hand, the computational
complexity for assessing a message in RadPro, as shown in The-
orem 1 is O(N jC jno j + N2

j C
2
j ). Since the number of messages as-

sessed is equal to the number of prosumers in the network, the over-
all complexity of the algorithm is bounded by O(n(NmaxCmaxnmax +

N2
maxC

2
max)) where nmax is the size of the largest offer of any pro-

sumer. Assuming the common case that nmax < NmaxCmax, we
can simplify the expression to a final computational complexity of
O(nN2

maxC
2
max).

6. EXPERIMENTS AND EVALUATION
In this section we evaluate the running time of RadPro and com-

pare it with that of Acyclic-Solving and that of MIP solvers through
the mapping proposed in section 4.
Comparison with MIP solvers. The first experiment compares
RadPro performance against commercial MIP solvers (in particu-
lar against IBM CPLEX and Gurobi). To do so, we generate acyclic
EAP instances whose network structure mimics that of radial net-
works. According to Wang [25], a good fit for the empirical dis-
tribution of node degrees in real-world power grids is obtained by
using a geometric distribution. Thus, we generate trees whose node
degrees follows a geometric distribution, with p = 0.5 to emulate
the shape of acyclic urban distribution networks. Each vertex in the
tree represents a prosumer and is randomly assigned to be either
a producer (10% of the prosumers) or a consumer (the remaining
90%). For each consumer j, the offer o j is

o j(t) =


t · price j t ∈ [min j..max j]
0 t = 0
−∞ otherwise

where min j and max j are the minimum and maximum number of
units allowed for prosumer j, and price j is the price per energy unit
for that prosumer. The maximum number of units max j is sampled
from a normal distributionN(κ, κ2 ) where κ is a capacity parameter.
Then, the minimum number of units of the offer min j is sampled
from a uniform distribution U(1,max j). We sample price j from
a normal distribution N(1, 0.5). Producers are generated follow-
ing the very same procedure, but the offer is defined in the interval
[−max j.. − min j]. The capacity of a link between two nodes is de-
termined as the maximum number of units produced or required by
both prosumers. Experiments have been executed on Intel Core i7
2.66GHz, with 8GB RAM. RadPro has been implemented in Java.
The code for the experiments will be made publicly available upon
acceptance for the sake of reproducibility.

We analyze two different capacities κ = 10 and κ = 100. The
number of prosumers in the network n varies in steps of 100 up to
2000. For each κ and n we generated 100 different random prob-
lems. Figure 3 shows the median and the 5%-95% interquartile
range of the running time for κ = 10, and Figure 4 for κ = 100. In
both cases, CPLEX and Gurobi are faster when the number of pro-
sumers is small. However RadPro scales better and for n = 2000 it
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Figure 3: Runtime of RadPro in geometric distribution net-
works compared to that of CPLEX and Gurobi, κ = 10.
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Figure 4: Runtime of RadPro in geometric distribution net-
works compared to that of CPLEX and Gurobi, κ = 100.

is more than one order of magnitude faster than CPLEX, which in
turn outperforms Gurobi. In the more stringent scenario (networks
of size n = 2000 and capacity κ = 100), RadPro requires in me-
dian below 2.3 seconds whilst CPLEX needs over 35.8 seconds and
Gurobi more than two minutes.
Evaluating efficient message assessment. To highlight the benefit
of efficient message assessment as the degree of the vertex grows,
we run RadPro on simpler instances based on star-shaped networks
(one central vertex with several neighbors). Offers are generated as
in the previous experiment, except for min j and max j that instead
of being sampled are now fixed to min j = 1, and max j = κ. Since
prosumers are bidding over every value of its capacity, this repre-
sents a worst case scenario. Furthermore, this results on fixed-edge
capacities (all the links have the same maximal capacity κ), thus
easing the analysis of the results.

Figure 5 shows the speedup –i.e. the ratio time(Acyclic-Solving)
time(RadPro) . For

instance, at size n = 7 (one agent connected to 6 others agents), for
κ = 50, RadPro is 5, 000 times faster than Acyclic-Solving. This
clearly highlights how the efficient message computation presented
in the previous section allows RadPro to scale up polynomially,
while Acyclic-Solving runtime grows exponentially: at size n = 7
and κ = 50, RadPro takes approx. 1 second while Acyclic-Solving
takes approx. 83 minutes to solve the problem.

Figure 6 illustrates how RadPro’s runtime is affected by the ca-
pacity for much larger degrees (these scenarios are unreachable for
Acyclic-Solving). There, we see that RadPro solves a problem
with capacity 100 and 100 neighbors in less than 1 minute. These
results make RadPro a good candidate to tackle large-scale EAP
with high branching factor, as it is the case in urban areas.
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Figure 5: Speedup of RadPro (wrt Acyclic-Solving) in star-
shaped trees.
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Figure 6: Runtime of RadPro in large star-shaped trees.

7. MECHANISM DESIGN
Up to now, we have concentrated on how to provide an efficient

and distributed solution to the EAP, disregarding the strategic be-
havior of prosumers. Here we skim through some game-theoretic
considerations.

Mechanisms are composed of both a choice rule and a payment
rule [22]. From a mechanism design point of view, the EAP can
be understood as the choice rule that selects the energy trades in
our network based on the valuations provided by the prosumers.
Theorem 1 shows that this choice rule can be assessed in polyno-
mial time. However, we have not proposed any payment rule that
establishes how much should each agent pay/receive afterwards.

In their classical work from 1983, Myerson and Satterthwaite
[16] proved the impossibility of having an efficient, individual-
rational, incentive-compatible, and budget-balanced mechanism in
a simple exchange environment in which a buyer and a seller trade
a single unit of a given good. This very simple case is isomorph to
an energy network with two connected participants where one has
available an energy unit that the other one wants to buy. Thus, the
impossibility result [16] extends to our setting.

On the other hand, the central result in mechanism design, on
the incentive-compatibility of the Vickrey-Clarke-Groves (VCG)
mechanism, carries over to our model. Recall that the VCG mech-
anism allocates goods in the most efficient manner and then deter-
mines the price to be paid by each bidder by subtracting from their
offer the difference of the overall value of the winning bids and the
overall value that would have been attainable without that bidder
taking part. That is, this “discount” reflects the contribution to the
overall production of value of the bidder in question. The VCG
mechanism is strategy-proof: submitting their true valuation is a

(weakly) dominant strategy for each bidder. As an inspection of
standard proofs of this result reveals [13], this does not depend on
the internal structure of the agreements that agents make. Hence, it
also applies to our model.

Furthermore, assessing the VCG payment for each prosumer only
requires solving a new EAP problem where that particular pro-
sumer is not present. Since solving an EAP with n prosumers has
complexity O(nN2

maxC
2
max), assessing the VCG payments for all par-

ticipants can be done in O(n2N2
maxC

2
max). Thus, the complete VCG

mechanism can be assessed in polynomial time.
Further studying mechanism design properties of such markets

(including alternative payment rules that could lead to asymptotic
efficiency along the lines of [2]) remains as future work.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have investigated how to enable energy trading

in prosumer networks taking into account grid system constraints.
We propose to cast the energy trading problem as an optimisation
problem, the energy allocation problem (EAP). We then show that
the EAP can be formulated as an MIP so that it can be optimally
solved for any network topology by commercial solvers. Given
the acyclic configurations of distribution network topologies (radial
networks are acyclic, and although ring main and interconnected
networks contain cycles, they are configured into acyclic networks
by means of switches to supply power), we design RadPro, a novel
dynamic programming algorithm to optimally and efficiently solve
the EAP over acyclic electricity networks. RadPro is based on the
Acyclic-Solving algorithm because this relies on a tree-shaped net-
work, which perfectly fits radial networks. However, because of the
exponential message computation required by Acyclic-Solving, it
cannot be employed in practice to solve the EAP. We endowed Rad-
Pro with an efficient message computation machinery based on a
novel algebra of valuations. Thanks to this algebra, RadPro can
efficiently compute messages in polynomial time, hence overcom-
ing the limitations of Acyclic-Solving by reducing several orders
of magnitude its computation time. Furthermore, our empirical re-
sults show that RadPro significantly outperforms both CPLEX and
Gurobi in solving time when computing the optimal allocation for
the EAP, namely when clearing the market, as the size of the mar-
ket grows, being 15.8 times faster than the runner-up in the largest
scenario tested. In general, our experiments demonstrate that the
communication and computation complexities of RadPro clearly
position it as a scalable, optimal algorithm for large networks.

There are several paths to future research. First, notice that the
message-passing nature of RadPro offers the possibility of solv-
ing the EAP in either a centralised or a decentralised (peer-to-peer
manner). This is in line with the research challenges posed in [4],
and opens the possibility of investigating the economic and envi-
ronmental impacts of the deployment of a peer-to-peer trading pro-
tocol. Second, since future smart grid infrastructures are likely to
contain cyclic structures (e.g. mesh), we plan to investigate how to
help RadPro effectively cope with cycles. Third, the speed of Rad-
Pro together with the convergence of another technologies (like
smart metering) makes real-time energy awareness possible. Alter-
natively to centralized auctions, which operate a day-ahead basis,
RadPro’s speed makes us consider second- or minute-long time
windows, hence allowing prosumers to carry out trades according
in (quasi-)real time.
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