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Abstract—Problems related to data privacy are studied in the
areas of privacy preserving data mining (PPDM) and statistical
disclosure control (SDC). Their goal is to avoid the disclosure
of sensitive or proprietary information to third parties. In this
paper a new synthetic data generation method is proposed
and the information loss and disclosure risk are measured.
The method is based on fuzzy techniques. Informally, a fuzzy
c-regression method is applied to the original data set and
synthetic data is released with an appropriate information loss
and disclosure risk depending on c. As other data protection
methods do, our synthetic data generation procedure allows
third parties to do some statistical computations with a limited
risk of disclosure. The trade-off between data utility and data
safety of our proposed method will be assessed.

I. INTRODUCTION

The digital age has enabled widespread access to col-
lections of data. While there are several advantages to
ubiquitous access to data, there is also the potential for
breaching the privacy of individuals. Data perturbation [14]
is a classical technique for solving the problem of simulta-
neously enabling access to data and preserving their privacy.
As data usually contains sensitive information about the
respondents, their release to third parties requires the applica-
tion of mechanisms to ensure data privacy. Information loss
measures evaluate in what extent the protected data is still
valid for analysis (data utility), and disclosure risk measures
evaluate in what extent data satisfy the privacy constraints
(data safety) [1].

Protection methods, which are studied in the areas of
privacy preserving data mining (PPDM) [1] and statistical
disclosure control (SDC) [18], can be classified into three
broad families of techniques depending on how they manip-
ulate the original data in order to obtain a protected data set.
This description is based on [17]

• Perturbative methods. Data perturbation involves
modifying confidential variables introducing some kind
of noise in them. E.g. noise is added to an attribute
following a N(0,a) for a given a. This method perturbs
the relationship between the variables from the original
data and it may create new relationships in the protected
data set. This obfuscation makes disclosure difficult to
intruders.

• Non-perturbative methods. Instead of perturbing the
original value it is replaced by another one that is not
incorrect but less specific. E.g. replacing a real number
by an interval. In general, non-perturbative methods
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reduce the level of detail of the data set, which means
a higher information loss and less disclosure risk.

• Synthetic Data Generators. In this case, new artificial
data is generated and used to substitute the original
values. Formally, synthetic data generators build a data
model from the original data set and, subsequently, a
new (protected) data set is randomly generated con-
strained by the model. Although it is possible to publish
the model, third parties usually prefer to receive the
artificial data.

Current approaches on synthetic data generation does not
permit to control the level of information loss or disclosure
risk. While for most perturbative methods there is a param-
eter to select an appropriate perturbation, this is not the case
for synthetic data generators.

In this paper we propose using the fuzzy c-regression
technique [11] to build a data model from an original data set,
when it consists of only continuous (numerical) attributes,
and then generate synthetic data. This model can be con-
trolled by c (number of classes) in order to get a desirable
level of information loss and disclosure risk. In order to
assess the risk, we used some of the most representative
and well-known disclosure risk measures based on record
linkage techniques, Distance Based Record Linkage (DBRL),
Probabilistic Record Linkage (PRL) and Interval Disclosure
(ID) [10]. In a similar way, to measure the information loss
caused by our approach, we compare some statistics [13]
computed on the original and the protected datasets.

The structure of this paper is as follows. In Section 2, we
describe a family of methods for synthetic data generation
named Information Preserving Statistical Obfuscation (IPSO)
and the fuzzy c-regression technique. In addition, we explain
the fuzzy c-means algorithm as it is used to bootstrap the
fuzzy c-regression. In Section 3, we explain the method
proposed to generate synthetic data by means of fuzzy c-
regression. In Section 4, we describe the experiments we
have performed and the results obtained. This paper finishes
with conclusions and future work.

II. PRELIMINARIES

The protection of datasets based on synthetic data gen-
eration is becoming a hot research topic. When protected
data is synthetic, the privacy of the respondents seems
to be protected because the published data is not ”real”.
Nevertheless both disclosure risk and information loss have
to be measured. On the one hand, it has been shown [16]
that some reidentifications are possible, so disclosure risk has
to be taken into account. On the other hand, the synthetic
data must keep some sufficient statistics from the original
values in order to minimize the information loss. Related



to information loss, synthetic data generators have to ensure
that the same analysis applied both on the original data and
on the synthetic data generated, obtain the same results.
As synthetic data are generated from a data model built
from the original data, those characteristics that are not
explicitly included in the model are not usually included in
the protected data.

A. The IPSO procedure

There have been proposed several methods for synthetic
data generation. One of them is the family of methods named
Information Preserving Statistical Obfuscation (IPSO) [4].
The aim of the IPSO procedure is to obscure the identity
of the data while preserving certain statistics. This family
comprises three methods IPSO-A, IPSO-B and IPSO-C,
where IPSO-C is the method with less information loss and
IPSO-A is the simplest of these three since it produces more
information loss. IPSO methods are based on dividing the
original data into sets of attributes X and Y. The attributes in
the set X are considered independent and Y are considered
as dependent. Then, a data model, e.g. multivariate normal
multiple regression model, able to represent the information
contained in Y is built and a protected set of attributes, say
Y ′, is computed from the conditional distribution Y |(T, x).
Because the model is constructed from the data Y, the
protection achieved is data dependent. Hence, the degree of
protection is a direct function of the data and cannot be
parametrized to obtain a balance between information loss
and disclosure risk. We detail the differences among IPSO-
A, IPSO-B and IPSO-C below:

• IPSO-A. In this method a multiple regression of Y
on X is computed and fitted values Y ′

A are used to
replace the attributes in Y. Then, the released data
is formed by attributes on X and Y ′

A instead of the
original set of attributes X and Y. The attributes in Y are
supposed to follow a multivariate normal distribution
with covariance matrix

∑
= σjk and a mean vector

xiB, where B is the matrix of regression coefficients.
The disadvantage of IPSO-A is the following, if a
multiple regression model is fitted to (y ′A, x) we will
get estimates B̂A and Σ̂A which in general, are different
from the estimates B and Σ obtained when fitting the
model to the original data (y, x).

• IPSO-B. In the next IPSO method, IPSO-B, the predic-
tion y′B is fixed in such a way that the estimated mean
vector B̂B obtained from (y ′B, x) is equal to B̂. Hence
the new value y′B can be used as a perturbed value for
the public data preserving the sufficient statistic B̂ so
that the information loss is decreased.

• IPSO-C. In the last IPSO method, IPSO-C, the pre-
diction y′C is fixed to obtain B̂C = B̂ and also
Σ̂C = Σ̂. This is obtained by fitting a multivariate
multiple regression model to (y ′C , x).

The IPSO procedure is similar to the General Additive
Data Perturbation (GADP) class of methods described by
Muralidhar and Sarathy [14]. They both attempt to preserve

features such as the means, variances and covariances of the
original data. The principal difference between GADP and
IPSO is that the latter preserves the values of the statistics
of a sample even in the case of small to medium samples.

B. Fuzzy c-means

The fuzzy c-means (FCM) algorithm [2] is one of the
most widely used methods in fuzzy clustering. It is based
on the concept of fuzzy c-partition, introduced by Ruspini
in 1969 [15]. The fuzzy c-means algorithm makes a fuzzy
partition of a given set of elements. From a conceptual point
of view, the underlying data categories are considered as
fuzzy. Then, with a set of objects X = {x1, x2, . . . , xN}
evaluated in terms of attributes A = {A1, A2, . . . , AM}
fuzzy c-means makes a fuzzy partition of the objects X .
Therefore, considering c categories (C = {C1, . . . , Cc}) the
problem turns out to be the determination of c membership
functions μ1, μ2, . . . , μc, where μi is the membership func-
tion corresponding to Ci. μi are such that for each object x
their membership to all category C adds to one. In addition, it
is required at least one element with a non zero membership
for every category. Thus, the membership functions have to
satisfy the following two conditions:

c∑
i=1

μi(x) = 1 for all x ∈ X

0 <
∑
x∈X

μi(x) < N for all Ci ∈ C

Once we have the membership’s restrictions, the problem
can be formulated as follows. The parameters to minimize
are μ and P , where μ is as above and P are the centroids
Pk of the clusters k = 1 . . . c

minimize FO(μ, P ) =
c∑

k=1

∑
x

(μk(x))m ‖A(x) − pk‖2

restricted to

μ ∈Mf =

{
(μk(x)) | μk(x) ∈ [0, 1] ,

c∑
k=1

μk(x) = 1, ∀x ∈ X

}

Where c is a constant value representing the number
of fuzzy categories allowed. The other constant value m,
which has to be grater than 1, is the fuzziness degree of
the categories. The greater the value of m, the fuzzier the
categories are. When m → ∞, all categories cover all the
points. In contrast, the smaller the m, the less fuzzy the
categories are. When m = 1 it corresponds to the c-means
algorithm.

The fuzzy c-means algorithm constructs a feasible solution
of the above problem as follows:

1) Define an initial partition μ and compute the centroids
P . This can be done randomly.

2) In this second step, for each element xi update the
membership of xi to every category Ck as follows:



• If ‖xi − pk‖2
> 0 then for each category Ck:

μk(xi) =

⎡
⎣ ∑

j=1..c

(
‖xi − pk‖2

‖xi − pj‖2

) 1
(m−1)

⎤
⎦
−1

• If there is any category Ck for which
‖xi − pk‖2 = 0 it means that xi has the
same value as some centroid pk. Hence, in this
case, the membership of xi must be randomly
shared with all the centroids that match xi.

3) The goal of next step is to update the centroid’s value.
So for each category Ck its centroid is defined as
follows:

pk =
∑N

i=1(μk(xi))mA(xi)∑N
i=1(μk(xi))m

and for the jth component, this is defined as

Aj(pk) =
∑N

i=1(μk(xi))mAj(xi)∑N
i=1(μk(xi))m

4) Stop when the convergence threshold is exceeded,
otherwise go to step 2. The convergence threshold
can be defined as the comparison of the membership
functions of two consecutive iterations. Considering
a threshold λ and also μ′ and μ as the membership
functions from two consecutive iterations, the stopping
condition can be defined as the follows:

λ > max
k=1,...,c

max
x∈X

|μ′
k(x) − μk(x)|

C. Fuzzy c-regression

Fuzzy c-regression models is a family of objective func-
tions which can be used to fit switching regression models
to numerical and continuous mixed data. For a given c (the
number of clusters, 1 < c < n), the fuzzy c-regression
algorithm is able to get an estimation for the parameters
of c regression models, together with a fuzzy c-partition
of the data. Let us consider a set of object data of size
n, S = {(x1, y1), . . . , (xn, yn)}, where each feature vector
(xi, yi) has a dependent observation yi ∈ R

t corresponding
to a certain independent observation xi ∈ R

s. The main dif-
ference between fuzzy c-regression models and the simplest
data fitting problems is that the latter assume that a single
functional relationship between x and y holds for all the data
while the former assume the data to be drown from c models:

y = fi(x;βi) + ε, 1 ≤ i ≤ c (1)

each βi ∈ Ωi ⊂ R
ki , and each εi is a random vector

with mean vector μi = 0 ∈ R
t and covariance matrix

Σi. It must be told that S is unlabeled, so, for a given
feature vector (xi, yi), it is not known which model from 1
applies. Hathaway and Bezdek published in [11] a feasible
solution for this problem. Their approach is based on fuzzy
clustering techniques and is able to produce good estimates
of {β1, . . . , βc} while labeling with a fuzzy label vector each
datum in S. The labeling problem is solved by means of fuzzy

clustering assigning constrained label vectors representing
the membership of each object (xi, yi) to each of the classes
c.

The algorithm for building the Fuzzy c-Regression Models
(FCRM) has similar steps to the ones in Fuzzy c-Means:

1) Step 1. Given a set of object data S =
{(x1, y1), . . . , (xn, yn)}. Set m > 1 (a reasonable
choice is m = 1.5), specify regression models 1,
and choose a measure of error E = {Eik} so that
Eik(βi) ≥ 0 for i and k and also satisfying the
minimizer property [11]. Pick a termination threshold
ε > 0 (a choice for ε in the range 0.0001 to 0.00001
usually yields good estimates) and an initial partition
U (0) ∈ Mf . In our experiments, we used the fuzzy
c-means algorithm to get such initial partition. Then
set a threshold for rmax, the maximum number of
iterations, so that r = 1, . . . , rmax in case FCRM does
not converge (in our experiments a value of rmax = 30
was used).

2) Step 2. Update the values for the c model parameters
βi = β

(r)
i and then the measure of error Eik(βi) in

fi(xk;βi) that globally minimize (over Ω1×Ω2×· · ·×
Ωc) the restricted function:

ψ(β1, . . . , βc) ≡ Em(U (r), β1, . . . , βc)

The most common example for the measure of er-
ror Eik(βi) is the squared vector norm Eik(βi) =
‖fi(xk;βi) − yk‖2 In our case this second step can
be specified by fixing Ωi = R

s, fi(xk;βi) =
((xk)Tβi) and 1 ≤ i ≤ c, so, the objective function
Em(U (r), β1, . . . , βc) becomes a fuzzy multimodel ex-
tension of the least squares criterion for model fitting:

Eik(βi) = (yk − (xk)Tβi)2.

In addition, the new values for the regression model
parameters β(r)

i , 1 ≤ i ≤ c can be computed using
the following explicit formula if the columns of X are
linearly independent and U (r)

ik > 0 for 1 ≤ k ≤ n:

β
(r)
i =

[
XTDiX

]−1
XTDiY (2)

where X denotes the matrix in R
n×s having xk as its

kth row. Y denotes the vector in R
n having yk as its

kth component, and Di denotes the diagonal matrix in
R

n×n having (U (r)
ik )m as its kth diagonal element.

3) Step 3. The aim of this step is to update U (r) →
U (r+1) ∈ Mf , interpreting Uik as the importance or
weight attached to the extent to which the model value
fi(xk;βi) matches yk (fuzzy membership on all c
models). The update is performed by the next formula:

Uik =

⎡
⎣ c∑

j=1

(
Eik

Ejk

) 1
m−1

⎤
⎦
−1

, if Eik > 0 for 1 ≤ i ≤ c

In case we encounter some Eik = 0, its value can be
replaced by adding a small positive number (we used



Fig. 1. Results of the models according to Equation 1 with c = 2 for the
data in the Example.

10−100 in our experiments), so step 3 can be performed
anyway.

4) Step 4. This step checks the termination of the algo-
rithm. If the difference between U r and U r+1 corre-
sponding to two consecutive iterations is greater than
the termination threshold, or r is less or equal to rmax

then r := r + 1 and go to step 2. Otherwise stop.

III. USING FUZZY C-REGRESSION TO GENERATE

SYNTHETIC DATA

Once we have introduced all the proper concepts relative
to our work, the next step is to combine fuzzy clustering and
switching regression models to generate synthetic data. In the
previous section we have pointed out the formulas we use to
implement the Fuzzy c-Means and the Fuzzy c-Regression
model and now we present the basic steps needed to generate
the synthetic data while preserving the privacy.

• The first step is to divide the dataset into independent
X and dependent Y attributes.

• Next step is to run the Fuzzy c-regression algorithm
bootstrapping it using the Fuzzy c-Means to compute
the initial partition U (0) ∈Mf .

• Once FCRM is finished the synthetic data generation
step comes up. For each feature vector (xs, ys) ∈ S,
1 ≤ s ≤ n, select the ith cluster with maximal
membership. I.e, select the arg maxc

i=1Uis. Now we
know which centroid pi best approximates each feature
vector. Hence, we can use the regression model β i cor-
responding to every centroid p i to forecast the synthetic
value y

′
s in order to replace the original one ys.

A. Example

Now we are going to show how to generate synthetic data
by means of FCRM with a simple example. We consider
two attributes, the first one is taken as independent and
the second one as dependent. Hence we can plot into a
two dimensional axis every feature vector labeled with the
class number that has a higher fuzzy membership value,
see Figures 1 to 3. As usual, the horizontal axis represents
the X coordinate and the vertical one represents the Y

Fig. 2. Results of the models according to Equation 1 with c = 3 for the
data in the Example.

Fig. 3. Results of the models according to Equation 1 with c = 5 for the
data in the Example.

coordinate. In this example we consider 2 ≤ c ≤ 10 and the
regression curve corresponding to each centroid is painted.
The set of object data S = {(x1, y1), . . . , (xn, yn)} is formed
by five independent clusters of feature vectors. For each c
we computed the Probabilistic Information Loss (PIL) [13],
the Disclosure Risk (DR) [10] obtained and the standard
score [20], [10] (computed as score = 0.5∗PIL+0.5∗DR).
In Table I and Figure 4, the relationship between c and
PIL/DR is shown: the largest the c, the smaller the in-
formation loss and the larger the risk. E.g., the lowest
risk and maximum information loss is with c = 2 where
PILmax = 40.41% and DRmin = 5.88%. For a c = 5 we
get a PIL = 20.11%, DR = 9.27%. Finally, the minimum
information loss and maximum risk is with c = 10 where
we get a PILmin = 12.79% and DRmax = 22.48% This
example shows how using fuzzy c-regression models we
can use c (number of centroids) in order to get a desirable
balance between information loss and disclosure risk. This
is a clear advantage between our approach respect to the
IPSO procedure which generates synthetic data with a fixed
information loss and disclosure risk.

IV. EXPERIMENTS

The test dataset used is one out of two reference
datasets [3] used in the European project CASC. We re-



C O.F. PIL DR SCORE
2 1.09E-04 40.41 5.88 23.15
3 1.62E-04 30.3 6.09 18.2
4 4.63E-03 23.97 8.03 16
5 1.46E-04 20.11 9.27 14.69
6 1.67E-04 18.89 9.98 14.43
7 1.07E-04 15.96 15.12 15.54
8 3.66E-03 15.24 16.17 15.7
9 1.12E-03 14.22 21.92 18.07

10 1.09E-01 12.79 22.48 17.64

TABLE I
EVALUATION IN THE EXAMPLE. C STANDS FOR NUMBER OF CLUSTERS,

O.F. FOR OBJECTIVE FUNCTION, PIL FOR PROBABILISTIC

INFORMATION LOSS, DR FOR DISCLOSURE RISK AND THE SCORE

CORRESPONDS TO THE AVERAGE OF PIL AND DR.

Fig. 4. Scatter plot showing the relationship between PIL and DR with
respect to the number of clusters for the Example.

fer to the ”Census” dataset which contains 1080 records
with 13 numerical attributes labeled from v1 to v13. This
dataset had been used in CASC and in several other pa-
pers [5], [6], [8], [9], [7], [12], [19]. We have consid-
ered two scenarios. In scenario S1 there are 9 dependent
variables v1, v3, v4, v6, v7, v9, v11, v12, v13, and 3 indepen-
dent variables, v2, v8, v10. The variable v5 is not con-
sidered because the attributes in the independent set are
not linearly independent and this causes the singularity
of [XTDiX ] in Equation 2. In scenario S2 there are 4
dependent variables v4, v7, v12, v13, and 9 independent vari-
ables, v1, v2, v3, v5, v6, v8, v9, v10, v11. For each scenario
we have generated the synthetic data using different values
for c and then we have computed the objective function
(O.F.), Probabilistic Information Loss, Disclosure Risk and
the standard score. As in the simple example, for small
values of c the information loss is maximum while the
disclosure risk is minimum. In contrast, for big values of
c the information loss is minimum, hence, the disclosure
risk is maximum. In addition there is a direct relationship
between the number of centroids and the information loss
because when c is incremented the PIL value decreases
and there is an inverse relationship between the number of
centroids and the disclosure risk because when c increases
DR decreases. This is a property accomplished in both
scenarios. I.e., in scenario S1 for a c = 2 we have a
PILmax = 44.677%, DRmin = 9.583% and for a c = 15
we have a PILmin = 7.164%, DRmax = 26.97%. Also
in scenario S2 for a c = 2 we have a PILmax =

C O.F. PIL DR SCORE
2 0.184 44.677 9.583 27.13
3 0.005 32.614 12.294 22.454
4 0.078 26.668 14.791 20.73
5 0.195 21.797 16.9516 19.374
6 0.104 18.357 17.137 17.747
7 0.191 16.249 18.791 17.52
8 0.031 13.495 20.492 16.994
9 0.683 12.941 22.999 17.97

10 0.362 11.424 24.256 17.84
11 0.295 10.249 24.255 17.252
12 0.993 9.104 23.969 16.536
13 0.405 8.449 25.374 16.912
14 0.208 8.551 25.408 16.98
15 0.753 7.164 26.970 17.067

IPSO-A - 49.163 10.044 29.603
IPSO-B - 49.164 10.04 29.602
IPSO-C - 9.522 6.392 7.957

TABLE II
EVALUATION IN SCENARIO S1: CENSUS DATA SET WITH 9 DEPENDENT

VARIABLES.

Fig. 5. Scatter plot showing the relationship between PIL and DR with
respect to the number of clusters for scenario S1.

94.053%, DRmin = 6.21% and for a c = 81 we have a
PILmin = 11.895%, DRmax = 24.662%. In this experi-
ment with the ”Census” dataset we wanted to study in detail
the evolution of the information loss and the disclosure risk
so we have increased c until PIL values become smaller than
DR values to point out the relationship of this two data mea-
sures. A good selection usually corresponds to the case with
minimum score,i.e. in scenario S1 SCOREmin = 16.912%
corresponding with c = 13. Note that in particular scenarios
(with very sensitive data) other c with less risk (smaller DR)
might be more adequate. That is why the availability of a
parameter is specially meaningful.

To compare FCRM and IPSO procedures we have evalu-
ated in both scenarios the information loss, disclosure risk
and standard score when using the IPSO-A, IPSO-B or IPSO-
C to generate the synthetic data. In scenario S1 we have
for IPSO-A and IPSO-B a maximum information loss of
49.16% related with a disclosure risk of 10.04% while using
FCRM with c = 2 the maximum information loss is 44.67%
corresponding to a disclosure risk of 9.58%. However, using
the IPSO-C procedure we obtained a best score of 7.95%
because it obtains a PIL = 9.52%, DR = 6.39%. With
respect to scenario S2, the IPSO-A and IPSO-B procedures
got a information loss of 44.44% and a disclosure risk of
14.493%, in contrast when using FCRM to generate the



C O.F. PIL DR SCORE
2 0,999945 94,053 6,210 50,132
4 0,999999966 81,792 6,428 44,110
5 0,999999715 61,834 7,782 34,808
6 0,999999995 72,550 7,424 39,987
8 0,999995425 59,113 10,152 34,633
9 0,9999968 38,990 11,042 25,016
10 9,917E-06 49,157 9,261 29,209
14 0,999895297 42,246 11,710 26,978
18 0,999992791 43,083 15,407 29,245
20 0,999993721 31,422 11,454 21,438
22 0,999995385 35,233 13,895 24,564
24 0,999910478 29,362 16,184 22,773
26 0,999999944 24,750 15,186 19,968
28 0,999999785 23,098 17,857 20,478
30 0,999713871 25,222 17,376 21,299
34 0,967993197 21,397 16,296 18,847
45 4,70034E-25 17,606 19,612 18,609
56 0,999999909 13,541 22,085 17,813
77 0,999832048 12,751 25,257 19,004
81 0,999997699 11,895 24,662 18,279

IPSO-A - 44,44 14,493 29,467
IPSO-B - 44,441 14,493 29,467
IPSO-C - 17,037 11,022 14,029

TABLE III
EVALUATION IN SCENARIO S2: CENSUS DATA SET WITH 4 DEPENDENT

VARIABLES.

Fig. 6. Scatter plot showing the relationship between PIL and DR with
respect to the number of clusters for scenario S2.

synthetic data we get for a c = 26 a similar disclosure risk
value but almost half the information loss. Also in scenario
S2, IPSO-C procedure obtains the best score because in
FCRM for a similar disclosure value it introduces twice as
much information loss.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed using fuzzy c-regression
models to generate synthetic data. We have assessed the
information loss and disclosure risk when using different
number of centroids as an input of the FCRM procedure.
Our proposal has been compared to a well known family
of methods named Information Preserving Statistical Ob-
fuscation (IPSO) also used to generate synthetic data. We
have presented the results of our approach that are better
than the ones obtained when using IPSO-A and IPSO-B and
worse when using IPSO-C. Also we have pointed out the
advantage of the parameter c (number of centroids) when
using our approach based on FCRM with respect to the IPSO
procedures, which always preserves the same level of data
privacy while in FCRM the aim of the parameter c is to
obtain the desirable balance between information loss and

disclosure risk. As future work we consider the extension of
the approach to deal with degenerate datasets which causes
singularity in FCRM and to use a Radial Basis Function
(RBF) network.
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