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ABSTRACT problem is high (NP-complete). This has recently spurred research

Normative systems (norms) have been widely proposed as a tech-1© Petter cope with the size of the state space [2].

nique for coordinating multi-agent systems. The automated synthe- ML\ISC)net:eless, off-hn_e_de&gg Is not approprlste to co_pﬁ V.V'th opoen
sis of norms for coordination remains an open and complex prob- » Whose composition and state space change with time. On-

lem, which we tackle in this paper. We propose a novel mechanism line norm synthesis approqc_hes (such as e.g. [9]) try to overcome
called IRON (Intelligent Robust On-line Norm synthesis mecha- s_uch_llmltatlons by synthe_&smg norms that regulate a MAS at run-
nism), for the on-line synthesis of NOrMSRON aims to synthe- time instead of at design Flme. More rgcently, norm emergence has
sise conflict-free norms without lapsing into over-regulation. Thus, become a popular technique fo_r on-line norm synthesis (e.g., _[6’
IRON produces norms that characterise necessary conditions for8: 10, 11’.13])' It does not require any_global state representation
coordination, without over-regulation. In addition to defining the ©°" centralized cor_1tro|. Instead, it considers that agents collabora-
norm synthesis problem formally, we empirically show teoN tively choose their own norms out of a space of possible norms.

is capable of synthesising norms that are effective even in the pres-A norm is cons_idereq to have emerged when a majority of agents
ence of non-compliance behaviours in a system. adopt it and abide by it. Approaches based on norm emergence suf-

fer from several drawbacks. Firstly, convergence is highly seesitiv
to the initial conditions in the MAS. Secondly, there is the assump-

Categones and SUbJeCt Descrlptors tion that agents collaborate during the norm synthesis process and

1.2.11 [Artificial Intelligence ]: Distributed Atrtificial Intelligence that agents are endowed with the necessary machinery to partici-

—Multiagent Systems pate in the emergence process. Third, regarding the norm synthe-
sis process, although the utility of norms is eventually considered,

Keywords there are further aspects that, to the best of our knowledge, have

not been taken into account yet. On the one hand, it is not consid-
ered whether a synthesised norm is truly necessary or not (because
its regulation is subsumed by another norm). Thus, it might be the
1. INTRODUCTION case that a norm within a normative system is not really necessary,
Norms have been widely proposed as a technique for coordinat- gnd hence leads to over-regulation: agents must handle more norms
ing multi-agent systems (MAS). A norm can be understood as an than needed. On the other hand, the generalisation of a set of norms
established, expected pattern of behaviour [14]. Typically, these jnto a more general one is not considered either as part of the norm
behavioural patterns impose constraints on the behaviour of indi- synthesis process.
viduals in order to avoid conflicts (e.g., collisions in a traffic sce- Against this backgroundY we propose a novel mechanism called
nario). IRON (Intelligent Robust On-line Norm synthesis machine), for the
Since the seminal work of Shoham and Tennenholtz [12], the on-line synthesis of normsiRoN produces norms for the agents
problem of norm synthesis (i.e., determining the set of norms that j, 3 MAS that characterise necessary conditions for coordination,
aVOid ConﬂiCting States) ha.s attracted Considerable attention. Wewh"e avoiding Over_regu|ati0n.|RON Synthesises norms that are
differentiate two strands of work tackling this problem: tif€line both effectiveand necessary Furthermore, we endowroN with
andon-line norm synthesis approaches. On the one hand, off-line the capability of generalising norms. By generalising norms and
approaches (such as [12, 4]) aim at synthesising norms for a MAS giscarding unnecessary norms, we all@@N to yield concisenor-
that constrain the behaviour of agents while ensuring the achieve-mative systems. Finally, we empirically show thabN success-
ment of global system goals. Off-line approaches require detailed fy|ly synthesises norms that are effective and necessary, even in the
knowledge of a MAS, (e.g., its full state space), at design time. presence of non-compliance behaviours in a M&®N is resilient
Some refinements to the basic approach have included the imple+o a very high percentage of violations (up to 50%).
mentation costs of norms and multiple design goals with different  The paper is organised as follows. Section 2 formally introduces
priorities [1]. Following [12], the complexity of the norm synthesis  the norm synthesis problem that we tackle in this paper. Section 3
detailsiRON and Section 4 offers its empirical evaluation. Section
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S be the set of all possible states of the system, an@d' It S be a Given a NA-MAS, our aim is to generate a normative system that
set ofconflictingstates. For instance, consider a traffic scenario in satisfactorily avoids lapsing into conflicting states while avoiding
which the agents are cars. Each state of the traffic network would over-regulation. With this aim, given a normative system we must
correspond to each state of the MAS, and conflicting states would be able to measure: (i) the effectiveness of its norms in preventing
correspond to those states containing e.g., collisions or traffic jams. conflicts; and (ii) whether its norms are necessary or whether they
We will use a languag€ to describe the states of a MAS. This include redundancy. Furthermore, since the state of a NA-MAS
language, to be more formally defined later, is a logical language changes as agents interact, our goal is to fireladlenormative
containing the standard classical connectives, and a notion of con-system, namely a set of norms that are sufficiently effective and

sequence defined for it via a relatiop-=". Given a states € S, we necessary for a given period of time. We measure this sufficiency
let 7(s) denote an expression ifi that describes the state. Using by applying specific thresholdsc{y andax..) over effectiveness
the mappingr, we can capture the notion phrtial view of some and necessity measurement functionsy( and pi,..). Finally, we

states as a sub-expression ofs). For instance, if_ is a first-order are ready to define the problem that we address in this paper.

language and stands for a state of a traffic network(s) would

be composed of the predicates describing the state. A partial view DEeFINITION 3. Given a NA-MASV = (Ag, Ac,Q, L4, S),

of s could be a given junction, and its description a subset of the a set of conflicting state§' C S and functiongics, finec to assess

predicates inr(s). Hereaftery; will stand fori-th partial view of the effectiveness and necessity of a normative system, the norm syn-

states. We assume that views are correct, but incomplete. thesis problem (NSP) is that of finding a normative sysfesuch
From the agent perspective, each agent has her own local percepthat g (Q, M, C,t) > aeg and ppec(Q, M, C,t) > e for

tion of the state of the MAS she is part of. For instance, an agentatall ¢ € [tyegin, tend], Wherea g, ane. € [0, 1] are thresholds that

a junction has her owlocal viewof the state of the MAS. A local establish a satisfaction degree for both effectiveness and necessity,

view is an agent’s internal representation of a partial view (i.e., itS and [¢pegin, tena] iS a time interval.

belief). Agents express their local views in terms ofaaent lan-

guageLl 4,. Therefore, whileC is the MAS language representing .

a global, external observer’s perspectide, is the agent language 3. IRON: A NORM SYNTHESIS MECHA-

representing a local, individual perspective. Detail£qjf, are not NISM

significant for now, however, we will assume as above that we have |n this section we introduce the Intelligent Robust On-line Norm

a notion of consequence defined for the language via a relgtion  synthesis mechanism (IRON), a norm synthesis approach aimed

Henceforth, given an ageaty € Ag, we will refer to her local at solving the norm synthesis problem formalised by definition 3.

view as hercontext and we denote it by(ag). With this aim, given aNA-MAS, IRON operates by continuously it-
Now we are ready to introduce our notion of norm, which estab- erating the following steps: (1) it monitors the NA-MAS operation;

lishes obligations, permissions and/or prohibitions to an individ- (2) it decides upon the addition of brand new norms to the cur-

ual agent whenever some pre-conditions are fulfilled. Such pre- rent (initially empty}) normative system; (3) it evaluates whether

conditions are expressed by means of langudgg, namely in the effectiveness and necessity of the normative system are within
terms of an agent’s point of view. expected thresholds; (4) if required, it refines the normative sys-
tem; and (5) it makes the normative system available to the agents.
DEFINITION 1. Anormis a pair (¢, 8(ac)) wherep € La, Notice therefore thatRoON continuously searches for a normative
stands for the precondition of the norax; € Ac is an action, and systemon-line, while agents in the system are operating.
6 € {obl, perm,prh} is a deontic operator. IRON is based on four components: (i) a grammar to synthesise
new norms; (ii) the normative network (a data structure to repre-
An agentag € Ag evaluates whether a norm = (i, 6(ac)) sent normative systems and explored norms); (i) a set of operators
applies as follows. We say that the contextgf c(ag), satisfies that make it possible to transform one normative system into an-
the pre-condition of norm iff c¢(ag) = . Then, normn ap- other; and (iv) a strategy that specifies when to use such operators.
plies to agenug and the deontic expressidi{ac) will hold for We describe below each component in detail, and expkaim’s

her. For instance, within a traffic scenario, consider a norm that architecture and computational model.
establishes an obligation to stop for an agent that sees a car to .
its left that is heading towards its right. We represent this norm 3.1~ Grammar for norm synthesis
as(left(>), obl(stop)) where preconditioreft(>) is a proposition Our approach employs a grammar to synthesise candidate norms
that is true if there is a car heading to the right of the agent evaluat- of the form (p,0(ac)) (cf. Def 1). We have adapted our gram-
ing the norm and it is located at its left,op stands for the action to mar from [5], using as building blockstomic formulaeof the form
consider, andb! is the deontic operator. So, if agesy’s context p"(71,...,7n), p being an n-ary predicate symbol and ..., 7,
is left(>), then,c(ag) = ¢ holds andobl(stop) applies to the car. terms ofL 4.

In this paper, we focus on a particular type of MAS, namely

norm-aware multi-agent system (NA-MAS). A NA-MAS is a MAS Norm = (LHS, RHS

whose agents have their actions regulated by soonmative sys- LHS = LHS&LHS |«

tem(set of norms) they are aware of. Moreover, the MAS itself can RHS = 0(Ac)

assess whether and to whom norms in the normative system apply. 0 = obl | perm | prh

Formally: Ac = aci|ace | ... | acn
«@ = p™ (71, Th)

DEFINITION 2. A Norm-aware Multi-agent System (NA-MAS)
isatuple(Ag, Ac,Q, Lag4,5), where:(i) Ag is a set of agentg(ji)
Ac is a set of agent actiongjii) €2 is a normative system, whose

norms are expressed in the agent langudgg; and (iv) S is a set The approach would also work if the normative system is ini-
of states. tialised with a set of norms provided at design time.

If we consider further our traffic scenario, we can employ the gram-
mar above to synthesise:




create generalise Consider again a traffic scenario and the following norm:

//_\ /—\ ns : (left(>)&front(>), obl(stop))

NNg NN, NN, e Notice that the applicability condition of; is more general than

those ofn; andn, above because a car is obliged to stop if it finds a

car heading towards its right to its left and to the front, but no matter
@ @ @ o o what it perceives to its right position. Therefore; generalises
bothn andns.
In general, ifn; is generalisedy n;, then we also say tha; is

Figure 1: Evolution of a normative network along time. specialisecby n;. If there exists at least soms, € A such that
n; C n, C n; we say that,; is anancestorof n;, otherwisen;
n1 : {left(>)&front (>)&right(>), obl(stop)) is afatherof n;. If n; is notgeneralisedby n;, we denote it by
nga : (left(>)&front(>)&right(-), obl(stop)) n; € ni.

Normn enforces a car to stop (hence giving way) if there is a car ;
heading towards its right to its left, front and right positions. Norm 3.3 Operators for normative networks

n» enforces a car to stop if there is a car heading towards its right to  'RON Will search for a normative system that solves the NSP by
its left and front, but there is nothing (indicated by “-*) to its right. transforming an |r_1|t|al normative network over tlm_e, h_ence moving
Notice that norms:y, n2 only differ in their right position. from one normative system to another. With this aim, our norm
. ] synthesis mechanism implements a collection of normative net-
3.2 Arepresentation of normative systems work operators. Each operator transformeN’s normative net-

SincelroN will continuously synthesise norms in search for a WOrk (M, R, A, §) into another ong\”, R’, A',4’). More pre-
satisfactory normative system, it must be able to differentiate be- Cisely,IRON implements operators to perform:
tween the norms that are currently part of the normative system and
those that are not (i.e., they have been explored but they are Rot cur
rently active). For this purpose&gRoN employs a graph-based data
structure, which we call aormative networkto represent norma-
tive systems. A normative network is a graph whose nodes stand

for norms and whose edges stand for relationships (generalisations ¢ The generalisationof a set of norms in the normative sys-

in this papel’) between norms. Norms in a network may be either tem into a more genera| norm (e.g., Considering the examp|e
activeor inactive We consider that a normative network represents above, generalisingy, nz into ns3).

a normative system as its active norms.
Figure 1 illustrates the evolution of a normative network (and its e The specialisationof a norm in the normative system into

e Thecreationof a new norm using a grammar (as described
in Section 3.1) to add it to the normative system.

e Thedeactivationof a norm in the normative system.

corresponding normative system) over time poipts., t2. Atin- more specific norms. This operation reverses the result of a
stantt, the normative networkVN, has a single active norm; generalisation (e.gns can be specialised inte; andnz).
(represented as a white circle) aftd = {n1}. Atinstantt; a new -~
norm, ny, is added taN N, yielding NN, andQ, = {n1,n2}. Table 1 formally specifies each of these operators.
Finally, at instanttz, normsn; andn. are generalised as norm -
ns and deactivated (represented as grey circles) giving ris&\e Operator Specification ] -
andz = {ns}. Infact, Figure 1 illustrates the wagon performs create(NN, 9, n & synthesiseNorm (G, {v;,_,.v3,))
the norm synthesis process. In general the process will consist of ey _yo¥)) A,[ cNU {,"}
continuously operating over (applying changes to) the normative ‘]S\U(\ﬁ):{j\cﬁ“’gc; A8
network according to some strategy until it finds a normative sys- ~geactivate (NN, 1) | 6" (n) — nactive
tem that solves the norm synthesis problem (NSP). NN’ < (N, Rg, A, d")
Now we are ready to offer a formal definition of the normative ~ generalise(N N, N7 N'U {parent}

parent, children) Ry, < Rg U {(ch, parent)|ch € children}
&' (parent) + active

network employed byrRON.

DEFINITION 4. ANormative Networkl{N)is atuple(N, R¢, (]5\’[ xﬁ) exﬁact}'ve Afor;}" ch € children
A, &) where: (i) Vis a set of norms(ii) R C N xN is ageneral- — IN' (N7, R, A, 07)
. . ! . A X X specialise(NN, &' (parent) <+ inactive
isationrelationship between norméiii) A = {active, inactive} parent, children) | forall child € children
is the set of possible states of a norm) § : A — A is a function if (/child7 parent) € Rg
that returns the state of a norme . 6" (child) <+ active

NN’ « (N, Rg, A, ')

SincelRON considers that the current normative system is com-
posed of the norms that are currently active in the normative net-
work, we define€ = {n|n € N Ad(n) = active}. Table 1: IRON operators.

The Normative Network definition above considers generalisa-
tion as the only relationship between the normg\in Given two
normsn, n’ we say that’ is generalisedby n if the applicability 3.3.1 Creating norms
conditions ofn’ are more restrictive than the appllcablllty condi- The createoperator Synthesises a new norm, using gran@ar
tions ofn and if both modalities and actions are equal. Formally:  aimed at preventing a conflicting state. The new norm is added to

IRON’s normative network, and it is also activated. Observe that

DEFINITION 5. Given norms: = (p,0(a)), n’ = {¢’,0(a)), a pair(v{,_,,vi,) stands for a transition between two views of a
n' is generalisedby n, denoted by)’ C n, iff ¢’ # p andy’ = ¢. state at consecutive times. The differences between these views

captures the local changes that occurred when a NA-MAS evolved



fromt — 1 to¢. Consider viewsv?, ,,vi,) such thats, is a con- Algorithm 1 IRON functions
flicting state and{, contains some conflict (e.g., the collision of ~ 1: function Tl(views, NN, G, fappiy, feonfiicts foefrs finec, ©,T)

two cars at a particular junction). The create operator uses the func- 2: conflicts < conflictDetection(views, feongiict)
tion synthesiseNorm to synthesise a new norm aimed at prevent-  3:  forall (v;, |, v5,) € conflicts do
ing the conflict atg,. The implementation of this function is based  4: NN < create(NN,G, (vi, ,,v.))

on a Case-Based Reasoning (CBR) unsupervised approach along..
the lines of the one used in [7]. Thus, this approach is based on the
following principle: if we can prevent a conflict at a given situation
by enacting a norm, it is likely that we can prevent a conflict at a
similar situation by means of a similar norm. Once this new norm is
synthesised, it is added to the normative netwgvk & N'U {n}),

appNorms < normApplicability(NN , views, fapply)
(A, V) + normCompliance(appNorms, feonfiict)

U < updateUtilities(A, V, lefr , tnec)

: P <+ updatePerformances(U,T)

9: forall n € norms(A, V) do

and its state is set to activé’ (n) = active). 12 i w;zg%ggﬁ?ﬁ(ﬁj 11;2)(;!;%
L 12: else
3.3.2 Deactivating norms 13: L + validGeneralisations(NN, G, n, P)
The implementation of théeactivate operator sets the state of 14 for all generalisation € L do
a given norm tanactive Hence, although the norm remains in the 15: parent < getParent(generalisation)
normative network, it is no longer part of the normative system. 16: children < getChildren(generalisation)
17: NN <« generalise(NN, parent, children)
3.3.3 Generalising horms 18: Q< {n € NN|§(n) = active}
Thegeneraliseperator generalises a set of normisildren) into 19: return €2
a more general normpérend by: (i) adding the parent norm to  20:
the network; (i) establishing new generalisation relatidRg) be- 21: function SPECIALISEDOWN(NN, n, P, ©)
tween each generalised (child) norm and the parent norm in the22:  if isLeaf (n) then
normative network; (iii) setting the state of the parent to active and 23: NN < deactivate(NN,n)
the children’s to inactive. As a result, the child norms will no longer  24: else
belong to the normative system, but the parent norm will do. 25: children « getChildren(n)
26: NN < specialise(NN, n, children)
3.3.4 Specialising norms 27:  forall child € children do
The specialiseoperator undoes the result of a generalisation by 28 if isUnderPerforming(child, P, ©) then
setting to inactive the state of the parent (more general) norm and 29 specialiseDown (NN, child, P, ©)

setting to active the state of its children. Thus, thereafter all the 30: return L
child norms become candidates to belong to the normative system,
while the parent norm does not any longer.

contain conflicts. New norms to avoid conflicts are created by the

3.4 Astrategy to synthesise normative systems create operator (line 4), which uses gramnfato synthesise new

Operators are invoked by following a specific strategy. Our pro- norms and add them to the normative network.

posal is to monitor the evolution of the system at regular time in- 3. 4.2 Norm evaluation
tervals (i.e., ticks) and apply operators under certain conditions. At

every tick,IRON runs its strategy to perform three taski:synthe- evaluating them individually. Given a particular view and an agent

SIS o_f__new_norms(n) evaluation 9f the current normative syst_er_n, that is part of it, the agent may decide whether to follow the norm
and(iii) refinement of the normative system by means of specialisa- . . . .

. . N or violate it. In general, we will evaluate a norm depending on the
tions, generalisations and deactivation of norms. Once the strategy

outcome (e.g., a conflict) that either its application or violation lead
finishes, it outputs the normative system represented by the norma-,
to. Therefore, norm evaluation will solely consider the applicable

The strategy updates the effectiveness and necessity of norms by

tive net\{vork . , ) . . norms that have been either applied or violated in the transition
Algorithm 1 specifiesRON's strategy [I), which requires as in- from two consecutive states in time
put: (i) alist ofviews [(1/27%1 , l/gt>, oo (vey ven) wherewg, '

; , . - Norm evaluation is performed by steps 5 to 7 in algorithm 1.
andv;, stand for thei-th view of the state of a NA-MAS attime  ynction normApplicability (line 5) uses functionfayy, to as-

t — 1 and at timef respectively; (i) a normative networXN’; (iii) sess the norms in the normative netwoM\) that were applica-

a grammag; (iv) a function f, i, to check norm applicability (v) ble at tick¢ — 1. Thus, for each viewr!, ,v?,), this function
a function feon siic¢ t0 detect conflicts; (vi) two evaluation func- N

tions s 5, nec 10 assess the effectiveness and necessity of norms;

and (vii) ©, a set of satisfaction degree thresholds described below
deact deact an gen
(6%

(9 = {Cleﬁ, Olnem eff 7anec ’ eﬁ vy “'nec })

assesses the norms that are applicable at vigw,. Next, func-
tion normCompliance (line 6) partitions the selected applicable
norms into applied or violated norms. Moreover, it uses a conflict-
detection function fconsic¢) to determine which norms led to con-

. flicts during the last time step. As a result we obtain a partition of
3.4.1 Synthesis of new norms applicable norms into four multi-sets (sets that allow duplicate val-
The norm Synthesls process starts SearChlng for conflicts in all theues) (|) app“ed norms that led to Confhctﬁb) (||) app“ed norms
received views. Thereafter, for each pait, ,,v:,), the strategy  that did not lead to conflict4); (iii) violated norms that led to

detects whether there is a conflict in vied,. Finally, for each conflicts (V); and(iv) violated norms that did not lead to conflict
detected conflict, the strategy synthesises a new norm in order to(V). In the algorithmA = (Ac¢, As) andV = (Ve, V).
avoid it in the future. FunctiortonflictDetection (line 2) uses At this point we can evaluate norms. The strategy uses function

function feonpic: to identify the paws(ygt 1,1/%> in views that update Utilities (line 7) to compute the effectiveness and necessity



of each norm at timeé. On the one hand, we measure the effective- e A set of norms aregeneralisedprovided that: (i) they all

ness ofappliednorms based on their outcomes. In fact, we evaluate relate to the very same norm (parent) in the normative net-
the cumulativeeffectiveness of a norm according to the following work; (ii) they are all the possible child norms of the parent
principle: the higher the ratio cfuccessful application@pplica- norm; (iii) their effectivenesand necessities have all been
tions not leading to conflicts) of a norm, the higher the effectiveness good enough duringd'.

increase. We compute the effectiveness of narap to timet as:
On the one hand, we say that a natrhas not been good enough

@ within period of timeT’, and hence can be specialised if any of the

Heg (1) = (1= @) X preg (n,t = 1) + @ Xreg (m, 1) following conditions hold:

where: g (n, t — 1) stands for the effectivenesswofat timet — 1; . T + 4 T deact
. L e 5 e s < Qg 5
0 < a < 1is a parameter to trade off exploitation (of the ef- fieg (0, T) + fregg (n, T) < ey ®)

fectiveness obtained so far until— 1) with exploration (of the R cac
) p ( ﬂnec (n7 T) + ,U/nec(ny T) < aicc i (6)

effectiveness reward obtained fram- 1 to ¢) in the cumulative ef-
fectiveness; and.z (n, t) is a reward value based on the successful

applications of norm. We assess a norm’s effectiveness reward as where: fiegr (1, T) andjie (n, T') stand for the average and devia-

tion of the effectiveness of within T'; finec(n, T') @andfinec(n, T')

follows: L . :
oflo stand for the average and deviation of the necessity w@ifithin
reg(ns ) = wag X mag(n) @) T; ol € [0,1] andaic € [0,1] stand for thedeactivation
Wag X mag(n) +wac X mac(n) thresholddor effectiveness and necessity and bofff***, aee €

wherema (n) stands for the number of applications of norm
that did not end up with conflictsp.a,, (n) stands for the num-
ber of applications of norm that led to conflicts, and4,, > 0,

wa, > 0 are weights that measure the importance of successful
applications and unsuccessful applications:akespectively. No-

On the other hand, we say that a nornmas been good enough
within 7', and hence might be generalised to its parent if the fol-
lowing conditions hold:

. X . . . fic — [le > %%
tice therefore that our approach is akin to reinforcement learning. feg (1, T) = fieg (n, T) 2 Yo ™

On the other hand, we measure the necessitjiaated norms _ . en
/'Lnec('r% T) - ,U/nec(na T) 2 a%ec (8)

based also on their outcomes. Analogously to the above-described
approach, we assess themulativenecessity of a norm according

to the following principle: the higher the ratio barmful violations ~ Whereagg® € [0, 1] andagc: € [0, 1] stand for thegeneralisation
(violations leading to conflicts), the more necessary the norm. We thresholdsfor effectiveness and necessity and baflj’, afct €
compute the necessity of normup to timet as: O.
Next, we detail how algorithm 1 implements specialisations and
finee (s t) = (1 = B) X finec(nyt — 1) + B X Tnec(nyt)  (3) generalisations respectively. We start considering the specialisation
of a norm that is not performing well enough. This amounts to: (i)
deactivating the norm along with its child norms that are not per-
forming good enough either; and (i) activating the child norms that
are performing good enough. First, functigpdate Performances

where: .. (n, t—1) stands for the necessity ofat timet—1; 0 <
B < 1is a parameter to to trade off exploitation (of the necessity

obtained so far until — 1) with exploration (of the necessity reward line 8 tes th q fracti q
obtained fromt — 1 to ¢) in the cumulative necessity; ang..(n, t) (line 8) computes the upper and lower effectiveness and neces-

is a reward value based on the harmful violations of narm/e sity performar]ceskor each normin the pormative network, namely
assess a norm’s necessity reward as follows: feg (0, T) + fie (0, T), fieg (0, T) = fiegg (0, T), finec(n, T) +
finec(n, T), @aNdfinec(n, T) — finec(n,T). Next, for each norm
that was either applied or violated during the last state transition,
4) function is Underperforming (line 10) checks whether it satisfies
the deactivation conditions (equations 5 and 6) or not. If so, the
strategy calls functionpecialise Down (line 11) to specialise norm
n in the normative network. If the norm is a leaf in the normative
network (line 22), it is simply deactivated (line 23) using the
d activateoperator. Otherwise, if the norm has children, the func-
tion triggers the specialisation down the normative network: first,
it specialises the norm to its children using 8pecialiseoperator
3.4.3 Normative system refinement (line 26); second, the function calls itself recursively to specialise
The last task of our strategy is tnermative system refinement the children. _Notlce that Ilnes,_ 27-29 guarantee that those children
which yields a new normative system by transforming the norma- Whose effectivenessr necessity have not been good enough are
tive network via specialisations and generalisations. With this aim, deactivated. _ o
the strategy keeps track of the effectiveness and necessity of the Finally we consider the generalisation of a set of norms. In case
norms in the normative network during a period of tiffie Then, a normn must not be specialised (because it is good enough), the

the refinement task amounts to implementing the following rules: ~ Strategy considers whether the norm can be generalised (lines 12-
17). FunctionvalidGeneralisations (line 13) searches in the

e A norm isspecialisedor deactivatedf it has no children in normative network for valid generalisations involving norm A
the normative network) provided that either its effectiveness valid generalisation is composed of a parent notfnsuch that
or necessity have not been good enough duflingrhis oc- (n,n’) € Re and all possible siblings of (obtained from the
curs when the effectiveness necessity of some of its chil-  grammarG) whose parent is alsa’ . Furthermore, each of the
dren have not been good enough either. child norms in a valid generalisation must be active and satisfy the

Wy X My (n)
Wyg X myg (n) +wv, X my, (n)

Tnec (n7 t) =

wheremy,, (n) stands for the number of violations of norathat

led to conflicts,mv, (n) stands for the number of violations of
normn that did not lead to conflicts, angdy, > 0, wy, > 0 are
weights that measure the importance of harmful applications an
harmless applications of respectively.



generalisation conditions of equations 7 and 8. For each valid gen- £ Confiict detector
eralisation, the str_ategy applies theneraliseoperator (line 17) to -w"f"Ct ZEEETT IRON Machine 0
the parent and child norms. I U
Aplicability function | N | [Normative
. . f read | Control
3.5 Evaluatlng normative systems cielil utility functions | P network ‘Ejnmrto I
H H o Hesf, Mnec 4 P
We assess the effectiveness and necessity of a normative systen ot | 5%}) —— (on) U
Q as a whole over a period of tinié = [t.,, t] based on the aver- T — T T
age effectiveness and average necessity of each of its norms over ¢ @] Satisfactiondegrees| | == SENSORS fm%
& thresholds

periodT'. Then:

Z Heff (nv T) Z Hnec (’IL, T)

Normative
system (Q)

views

e (Q,T) = =2 i finee(,T) = "2 i \
(9) Norm-aware multi-agent system
These measures are employedign to determine whether a nor-
mative systenfl is good enough as a solution to the NSP in defini- Figure 2: IRON’s architecture.
tion 3. This occurs wheneverg (Q,T) > ey andpine:(2,T) >
Qlnec-
: : Vot
3.6 Architecture and computational model L M
. 1 1 2 3| Left Front Right
We now have all components for the architecture and compu- p== a0
tational model of our norm synthesis system. Figure 2 illustrates | g r ﬂ!
the architecture ofRON. As we mentionedJRON continuously =) o =
searche®n-line for a solution to the NSP, namely during the op- ]
eration of a NA-MAS. We regarcRoN as an external observer of 1 1 @Age"t

agents’ interactions. Moreover, we consider that such perceptions
are limited to partial views of the global state of the NA-MAS.

IRON receives as an input (i) a functioffict,, r1ic) to detect con-
flicts in the partial views it perceives; (i) a gramm@rto define
norms; (iii) a function to determine whether a norm applies to the
agents in a given viewf(,,,); (iv) evaluation functionstocompute 4.1 Empirical settings

Figure 3: Left: Junction. Right: Agent context.

the effectiveness(.;) and necessityy(...) of norms and norma- Our experiments simulate a traffic junction composed of two or-

tive systems; (v) the satisfaction degrees and thresft)dat well thogonal roads represented by@x 19 grid. Each road has two

as (vi) the time intervalT) considered when solving the NSP. 19-cell lanes (one per direction). Figure 3 shows the centre of the
Our norm synthesis mechanism is composed of: (ipanative junction. Each agent is a car that travels along the grid at one cell

network(/VN) to compactly represent the current normative system per tick by following a random trajectory (i.e., random entry and
and to store the norms synthesised (explored) so far; (i) a control gyit points). In order to favour a high frequency of collisions, we
unit in charge of directing the NSP solving. The control unit con- -5yse a high traffic density (from 41% to 48% of occupied cells)
tinuously perceives the NA-MAS to regulate by collecting partial - py having three cars entering the scenario every tick. At each tick,
views. After collecting views, the control unit calls the stratéy  each car decides whether to apply or violate norms. The probability
described in Section 3.4 to apply a collection of operators and t0  viplating norms is fixed at the beginning of each simulation and
eventually produce a new normative system that prevents the con-is the same for all cars.
flicts observed in the views. The normative systémig broadcast — Each experiment consists of a set of simulations until eithe
to the agents in the NA-MAS. Once the new normative system is conyerges to a stable normative system, solving the NSP, or the
deployed, the control unit collects new partial views of the NA-  gimylation reaches 50,000 tickszoN starts each simulation with
MAS to be analysed by the strategy. This cyclic process continues 5 empty normative system. As the simulation goes on, collisions
until the control unit receives from the strategy a normative system among cars occur, angoN synthesises a new normative system
that is evaluated effective and necessary enough, according to theg ayoid future collisions. We consider th&on has converged to
evaluation functions and satisfaction degrees set as input, during a5 normative system if during a 10,000-tick perigij:no collisions
period of timeT". Such normative system will represent a solution occur; andji) the normative system remains unchanged.
to the NSP. ) ) . Each norm is represented as 3 cells (see Figure 3), which repre-
Finally, we notice that, in general, the size of the search space t0gent the context of a reference car. Cells may have 6 values each: ei-
explore is at mos2™, wherem is the number of norms defined by her 5 car with its heading (>, €, A); a"-", representing the value

grammarg. of "nothing"; or the empty value (standing for a generalisation).
Therefore, the grammar that we employ can synthesi€g16)
4. EMPIRICAL EVALUATION different norms and the number of normative systems to consider

amounts t2%'% (larger than10°®). We setiRON’s parameters as
follows: (i) low deactivation thresholdsy(" = afe = 0.2)

to only deactivate norms performing very poorfy) high general-
isation thresholdso(;* = afi = 0.6) to only generalise norms
when performing very well(jii) wa, = 5 andwa, = 1to en-
sure that norm applications leading to collisions (ineffective norms)

In this section we empirically demonstrate thRON successfully
manages to solve the NSP. Moreover, we also showmttat can
solve the NSP despite a high non-compliant behaviour in the agent
population.



Avg. collisions/tick —e— Q cardinality - Norm | Pre-condition ) Modality | fieg | finec
Num. explored norms. - ny left(>) obl(stop) | 0.86 | 0.90
16 [ T e N2 left(<)&front(<) | obl(stop) | 0.87 | 0.73
14 | e 1 ns | front(>)&right(>) | obl(stop) | 0.86 | 0.81
12| PO | N4 front(A) obl(stop) | 0.83 0.33
10 - /E»-E--d“_l("“'n"i». i " |
gl A f‘”! o - | Table 2: A normative system upon convergence.
6l /l N |
')‘-I--l--i W W N W
4T | heading forward, which is a situation that exceptionally leads to
2 1 collisions. Therefore, when violated, this norm is exceptionally
0 \, T e ;;“:, evaluated as necessary, whereas most times it is evaluated as un-
@ v ?3{9‘979 *?97& necessary. As a result, its necessity continuously oscillates, with

a low average valuei,..). We say this norm ipreventive since
] ] ) agents should comply with it "just in case" if we want to totally
Figure 4: Norm synthesis along time. remove collisions.

To conclude, we showed thagoN can successfully synthesise a
normative system with high effectiveness and reduced cardinality.
Moreover, we observe that the synthesised norms in the resulting
normative systems are eithessentia(high effectiveness, high ne-
cessity) ompreventivg high effectiveness, low necessity).

Tick

are much more penalised than those avoiding collisions (effective
norm); (iv) wyv, = 2 andwy,, = 1 to ensure that violations lead-
ing to collisions (necessary norm) obtain a much higher reward than

those leading to no collisions (unnecessary norm).
4.2 Experiment 1: Norm Synthesis 4.2.1 IRON'’s regulat.lon versus trafﬁc lights .
Now we comparaRON with an alternative way of regulating

Next, we show thatRON manages to successfully synthesise ) g - - 2 .
norms which are effective and necessary within an acceptable rangetra]chC (traffic lights) as done in [3]. We simulated a traffic junction

of values. First, we performed 100 simulations with a 30% norm regula_ted by 4 traffic lights, one per lane coming frqm the 4 cardi-
violation rate, namely 30% of agent’s decisions do not comply with nal points. There are 4 green light tumns. Wh.en a light changeg to
the norms output byRON. As Figure 5 showsiRON successfully green, allowing cars to pass, the oth_er thrc_ag lights t“F”_ red, forcing
converged for all simulations to a normative system that avoids col- cars to stop. Thus, traffic lights avoid coliisions by giving pass to

e . . . the cars of one unique lane at the same time. Since we observed
lisions as_long ascars comply with norms. Regardlng the quality qf that bothiroN and traffic lights are 100% effective to prevent col-
the resulting normative systems, the average effectiveness was hlgr]iSionS we compare them in terms of traffic fluidity. Table 3 com-

89.73%), and the necessity as well (73.15%). One may think that, . L . )
EmcelRo)N converges, the gffectiven((ass shou)ld be 100%/0 This is Pares traffic fluidity between traffic lights and the normative system
' ' Sfound byIRON in the previous example.

not the case because of the way we evaluate norms when collision
occur. Notice that when several norms are involved in a collision
(because of their application or violation), we consider that all of
them led to the collision because we cannot distinguish which ones
actually did. Therefore, we take a very conservative evaluation ap-
proach in this case.

Figure 4 shows a prototypical simulation (out of the 100 per-
formed), with 30% violations, to analysRON'’s synthesis process.
At tick 13, the first collision arises an&koN synthesises the first
norm. From that tick onwardsRON keeps generating norms when
needed. At tick 41,RON performs the first norm generalisation, re-
ducing the cardinality of the normative system from 9 to 8 norms.
Attick 3215,IRON synthesises the last norm. By using the resulting

normative system, cars do not collide any longer provided that cars g | h i | han th h
comply with norms.IRON performs the last generalisation at tick "9 'RON'S norms are delayed three times less than they do when

3349, reducing the cardinality of the normative system to 4 norms. following the traffic lights (42.48% average vs. 142.6% average).
From tick 3349 onwards, the normative system remains stable. Af- 1 NUS\IRON'S synthesised norms are as effective as traffic lights, but
ter 10000 further ticksRON reaches convergence (tick 13349). At outperform them in terms of traffic fluidity.

the end of the simulationRoN explored 16 different norms (out

of 125 possible ones), which were generalised into 4 norms, and

Expected time| Average time| Delay
IRON 19 27.073| 42.48%
Traffic lights 19 46.094 | 142.6%

Table 3: IRON’s synthesised norms versus traffic lights.

Cars are expected to reach their destinations in 19 ticks average.
However, bothiRoN and traffic lights eventually require stops to
avoid collisions. Thus, cars followingRON norms invest 27.073
ticks on average to reach their destinations, while cars regulated by
traffic lights invest 46.094 ticks on average. Therefore, cars follow-

4.3 Experiment 2: Robustness analysis

20 different normative systems (out 2** possible ones) to find Next we explore the limits ofRON by testing its synthesis ca-
a 4-norm normative system that successfully prevents collisions asPabilities under different cars’ violation rates. Violation rates (i.e.,
long as cars comply with norms. the probability of each car violating a norm) ranged from 10% to

The 4-norm normative system thaon converged to is depicted ~ 90%. We performed 100 simulations per violation rate. Fig. 5
in table 2. Normn, is a left-hand side priority specifying that a car shows gveraged re§ults for the effectiveness and necessity of the
must stop when it perceives a car to its left heading to its right, and Synthesised normative systémdloreover, theconvergenceeries

no matter What_lt perceives in front or to |t_s right. It has very high 2For the sake of clarity, we do not plot standard deviations.

values of effectiveness (0.86) and necessity (0.90), what mhkes  However, it is worth mentioning that the standard deviations for

norm to beessential the effectiveness and necessity for each violation rate are within
Norm n4 forces a car to stop when it perceives a car in front [0.006,0.011] and[0.080, 0.0137] respectively.
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Figure 5: Robustness analysis depending on violations.

shows the number of runs that converged to a stable normative sys-

tem. With violation rates up to 50%&0N successfully converged
100% of the times to highly effective and necessary normative sys-
tems. Between 50% and 80% of violation rate, the convergence
decreases (due to oscillations in the normative systems)iaoti
cannot find a normative system beyond 80%.

Figure 5 shows the variability 9RON’s synthesis, namely whether
it yields different normative systems. Below the 50% violation rate,
the variability remains near 20 (i.e., 100 executions converged to 20
different normative systems). Since preventive nhorms become un-
stable (activated and deactivated back and forth) with high violation
rates,IRON takes longer to synthesise stable norms. This leads to
new, different normative systems, which were not required to be
explored with lower violation rates.

Overall,IRON proved to be highly resilient to non-compliant be-
haviours during the synthesis proces8ON managed to success-
fully synthesise norms despite up to a 50% violation rate of agents.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have described progress towards the automated

synthesis of normative systems. Firstly, we formally introduced
the norm synthesis problem. Secondly, we described, a novel
mechanism for the on-line synthesis of normsoN produces
norms that guarantee conflict-free coordination, while avoiding over-
regulation. For this purpose&zoN employs norm effectiveness and

necessity as the measures that characterise the quality of a nor-

mative system. Furthermore, we endavoN with the capability

of generalising norms. By keeping effective norms, generalising
norms, and discarding unnecessary norms, we alkmw to yield
effectiveandconcisenormative systems.

The machinery ofRON has been designed to operate: on-line
(while observing the NA-MAS to regulate); conflict-driven (con-
flicts trigger the evolution of the normative system); and without
requiring any prior normative knowledge. MoreoverpN uses a
data structure (the normative network) that represents the gener-
ated norms and their relationships. Finally, we empirically show
that IRON successfully synthesises norms even in the presence of
non-compliance behaviours in a MAS, being resilient to a very high
percentage of violations (up to 50%).

As future work, we plan to: (i) empirically study the sensitivity
of IRON to its parameters; (ii) investigate further relationships be-
tween norms in the normative network; and (iii) extend the norm
synthesis process to detect the cause of conflicts within a sequenc
of previous states instead of a single state as we do now.
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