Fublished 1n (Weiss (bd.), Listributed Artificitat fntetiigence meets achine
Learning, Lecture Notes in Artificial Intelligence, Springer Verlag, 1997.

Cooperative Case-Based Reasoning

Enric Plaza, Josep Lluis Arcos, and Francisco Martin

ITTA - Artificial Intelligence Research Institute
CSIC - Spanish Council for Scientific Research
Campus UAB, 08193 Bellaterra, Catalonia, Spain.
Vox: 4+34-3-5809570, Fax: +34-3-5809661
Email: {enric,arcos,martin}@iiia.csic.es
WWW: http://www.iiia.csic.es/Projects/FedLearn/CoopCBR.html

Abstract. We are investigating possible modes of cooperation among
homogeneous agents with learning capabilities. In this paper we will be
focused on agents that learn and solve problems using Case-based Rea-
soning (CBR), and we will present two modes of cooperation among
them: Distributed Case-based Reasoning (DistCBR) and Collective
Case-based Reasoning (ColCBR). We illustrate these modes with an ap-
plication where different CBR agents able to recommend chromatogra-
phy techniques for protein purification cooperate. The approach taken is
to extend Noos, the representation language being used by the CBR
agents. Noos is knowledge modeling framework designed to integrate
learning methods and based on the task/method decomposition prin-
ciple. The extension we present, Plural Noos, allows communication and
cooperation among agents implemented in Noos by means of three ba-
sic constructs: alien references, foreign method evaluation, and mobile
methods.

1 Introduction

We are investigating possible modes of cooperation among homogeneous agents
with learning capabilities. In this paper we will be focused on agents that
learn and solve problems using Case-based Reasoning (CBR), and we will
present two modes of cooperation among them: Distributed Case-based Rea-
soning (DistCBR) and Collective Case-based Reasoning (ColCBR). Before pre-
senting our approach it is relevant to state how we view the relation between
cooperation processes and learning processes in the framework of multiagent
systems (MAS).

1.1 On Cooperation and Learning

In a multiagent environment, where agents have learning capabilities, the dis-
tinction between learning and cooperation is sometimes blurred. Does communi-
cation involve learning (e.g. learning by being told)? Is any overall improvement
of a multiagent system performance some kind of learning? An answer to these

and related questions will require some more years of theoretical and experimen-
tal work in MAS learning. So instead of trying to answer these questions now
we will point out the relationship between cooperation and learning.

First of all we may ask two negative questions: Why is there at all a need to
cooperate? And why is there a need to learn? The answer to the second question
is rather obvious: some agent needs to learn whenever it lacks some knowledge
to perform some task— “perfect” knowledge has no room for learning. Learning
has to do with improvement according to some criteria—i. e. amending those
lacks for the task at hand. We can think the answer to the first question along
the same line of thought: an agent needs to cooperate with other agents because
it lacks some knowledge or some capability to perform a task. An agent with
“perfect” knowledge and “complete” capabilities for a given task has no need to
require the cooperation of other agents.

The parallelism of learning and cooperation stems from the fact that both
are ways to deal with a agent’s real shortcomings and lacks. We can summarize
this parallelism as follows:

Learning Why is there a need to learn?

— Improving individual performance

— Improving precision (or quality of solutions)

— Improving efficiency (or speed of finding solutions)

— Improving the scope of solvable problems
Cooperation Why is there a need to cooperate?

— Improving individual performance

— Improving quality of solutions

— Improving efficiency in achieving solutions

— Achieving tasks that could not be solved in isolation

We are interested in investigating the interplay of learning and cooperation
in this view. The approach presented in this paper explores a simple interplay
of both: agents require the help of other agents when they are not capable of
resolving a problem. In the future we hope to explore more complex interplays,
for instance, when an agent can decide not to improve itself (not to learn) in
situations when there is already a proficient agent in the MAS because it can
simply require the help of this cooperative partner. The next subsection explains
in more more details the approach we take.

1.2 Federated Peer Learning

We are investigating possible modes of cooperation among homogeneous agents
with learning capabilities. Specifically, in this paper we are interested in a coop-
erative setting that assumes coordination among agents fulfilling the following
conditions:

Homogeneous Agents The representation languages of the involved agents
are the same. Consequently, communication among agents do not require a
translation phase.

Peer Agents The involved agents are capable of solving the task at hand. In
other words, cooperating agents are not merely specialists at specific sub-
tasks. Instead, they are capable to solve the overall task by themselves (most
of time, at least). This condition implies a peer to peer communication form.

Learning Agents The agents solve the task based knowledge acquired by
learning from their individual, usually divergent, experience in solving prob-
lems and cooperating with other agents in solving problems.

We will call these conditions of agent cooperation a federated peer learning
(FPL) framework. The FPL framework define a class of cooperative settings
where learning can prove to have a clear leverage. In fact, we are focusing on the
issue of how learning agents, that may have either the same method or several
different methods for solving a given task and that moreover may can achieve a
cooperative problem solving behavior that improves the individual behavior. The
problem solving behavior of the agents will be biased by their individual learning
based on their separate experience—since different sets of problems will actually
occur in different locations. Consequently, even agents in principle similar can
diverge as result of the individual learning experience, and cooperation may
profit from these biasing by improving the overall performance of the involved
agents.

In the FPL framework, we will focus in this paper on two modes of cooper-
ation among case-based reasoning (CBR) agents. A CBR agent uses a form of
lazy learning where past experiences are “generalized” (so to speak) by means
of a similarity estimate between the current problem C' and the precedent cases
CB solved by the agent. The similarity-based reasoning (or analogical reason-
ing) involved follows the basic heuristic stating that the more similar a case C
15 to a precedent P € C'B the more similar the solution of C' is to the solution
of P. While in eager forms of learning—like inductive techniques—the general
descriptions for classes of solutions are built beforehand, lazy learning works in
an on-demand, case-by-case basis. Learning in CBR can be seen as enlarging by
means of a similarity estimate—thus, generalizing—a precedent case P until it
includes the current case C' [10]. We will show that the lazy nature of learning
in CBR is very amenable to take advantage of cooperation.

The approach taken to communicate CBR systems is to extend Noos, a repre-
sentation language developed at our Institute for integrating learning and prob-
lem solving that has been used to build several CBR systems [4]. The extension of
Noos, Plural Noos, allows communication and mobile (or “migrating”) methods
among agents that use Noos as representation language. In particular, we will
show two modes of cooperation among CBR agents: Distributed Case-based Rea-
soning (DistCBR) and Collective Case-based Reasoning (ColCBR). Intuitively,
in DistCBR cooperation mode an agent A; delegates its authority to another
peer agent A; to solve a problem —for instance when A; is unable to solve it ad-
equately. In contrast, ColCBR cooperation mode maintains the authority of the
originating agent: an agent A; can transmit a mobile method to another agent
Aj to be executed there. That is to say, A; uses the experience accumulated by
other peer agents while maintaining the control on how the problem is solved.

Before explaining both DistCBR and ColCBR modes of cooperation in more
detail, we will first introduce the task domain in which we are working.

1.3 The Task of Protein Purification

We have developed CHROMA, a system implemented in Noos that recommends
chromatography techniques to purify proteins from tissues and cultures [5].
CHROMA includes two learning methods (a case-based method and an inductive
method) and two problem solving methods (a CBR method and a classification
method that uses the induced knowledge). Moreover, a metalevel method is able
to prefer, for a particular problem, which problem solving method is more likely
to succeed. Currently, we are simplifying the system for the cooperative CBR ex-
periments and we will assume that CBR, agents for protein purification will only
embody one CBR method (see § 5 for future work on more complex situations).

CBR method
RETRIEVE SELECT REUSE
Goal-driven | (Domain) Sﬁi:ipotn
retrieval Preferences
“the same
protein” “preferences on
1) source
2) species
3) kingdom”

Fig. 1. The case-based reasoning method in cHROMA. The shaded part will be modified
to adapt this method to a multiagent system (see Figure 7).

Why choose this task domain? The protein purification task is amenable to
cooperative solutions since there are thousands of proteins and chromatography
techniques are in current use in hundreds of industrial chemical labs that have
their own bias as to the kinds of problems they regularly solve and the prob-
lems they seldom attack—but that can be regularly solved at another location.
Moreover, different locations may have different methods for case-based reason-
ing that rely on a knowledge modeling analysis of their particular problems and
their local expertise and biases.

The structure of the paper is as follows: first the Noos representation lan-
guage is introduced and then the Plural Noos extension is summarized. Next,
Distributed Case-based Reasoning (DistCBR) and Collective Case-based Rea-
soning (ColCBR) are discussed and their support by Plural Noos is explained.

Finally, some discussion about the generality of the approach and future work
closes the paper.

2 Representation and Communication

The approach taken to develop cooperative CBR is to extend Noos, a representa-
tion language for integrating learning and problem solving that has been used to
develop several CBR systems. In this section we first present some basic notions
of the language, and later the Plural extension that supports communication and
cooperation among CBR agents using Noos.

2.1 The Noos Representation Language

Noos is a reflective object-centered representation language designed to support
knowledge modeling of problem solving and learning [3,4]. Noos is based on
the task/method decomposition principle and the analysis of knowledge require-
ments for methods —and it is related to knowledge modeling frameworks like
KADS [15] or components of expertise [14]'. A method models a way to solve a
task. A method can be elementary or can be decomposed in subtasks. These new
(sub)tasks can be achieved by corresponding methods in the same way. For a
given task there may be multiple alternative methods (alternative ways to solve
the task).

For instance, a CBR method [1] is decomposed into the retrieve, select
and reuse subtasks and there are several possible methods to achieve each sub-
task. Decision-taking in Noos is modeled by a preference language that allows
the specification of the conditions in which an alternative is better than others.
Reasoning about preferences permits an agent to select a method from a set
of alternatives or to choose to cooperate with an agent from a set of associate
agents—as will be shown later.

The integration of learning and problem solving methods in Noos has two
aspects. First, whenever some knowledge required by a problem solving method
is not directly available there is an opportunity for learning. Secondly, learning
methods are methods with introspection capabilities that can be analyzed also
by means of a task/method decomposition. The basis for integrating learning
methods is the episodic memory. The episodic memory stores the decisions taken
during the inference—Ilike successful methods engaged to tasks, results obtained
by achieved tasks, and methods that have failed to achieve tasks. Noos provides
two ways to perform introspection: using metalevel methods or using a set of
retrieval methods provided by the language. Retrieval methods allow Noos to
inspect and analyse previous specific situations in the episodic memory. For
instance, case-based reasoning methods require to access stored cases, select one
of them according to some criteria, and finally reuse the solution. The reuse task

! For related approaches see the Knowledge Engineering Methods and Languages web
page at ftp://swi.psy.uva.nl/pub/keml/keml.html

reinstantiates the solution to the current problem or constructs a new solution
according the precedent solution and the current problem?.

An example of a case-based reasoning method used by CHROMA is the
analogy-by-determinationmethod. This method has a retrieve subtask with
aretrieve-by-determination method that uses protein as determination[13].
This method retrieves from the episodic memory the solved experiments that sat-
isfy the determination—purifying the same protein as the current experiment.
The next subtask selects the most relevant precedent case according to domain
knowledge criteria—Ilike the kind of sample from which the protein is purified
from. Finally, the last subtask reuse reinstantiates the purification plan of the
most relevant precedent to the current problem. The knowledge required in this
domain includes knowledge about proteins, chromatography techniques and pu-
rification plans.

Noos is an object-centered representation language based on feature terms.
Feature terms are record-like data structures embodying a collection of features.
Intuitively, a feature term is a syntactic expression that denotes sets of elements
in some appropriate domain of interpretation. In this way feature terms can be
viewed also as partial descriptions. The values of features are constants or other
feature terms. Our approach is close to the ¢-term [2,8] and extensible records
[7,9] formalisms.

The difference between feature terms and first order terms is the following:
a first order term, e. g. f(z,g(z,y),z), can be formally described as a tree and
a fixed tree traversal order—in other words, variables are identified by position.
The intuition behind a feature term is that it can be described as a labeled
graph—in other words, variables are identified by name (regardless of order or
position). This difference allows to represent partial knowledge.

Formally, we describe the Noos signature X as the tuple (S, M, F, <) such
that:

S is a set of sort symbols including L, T;

— M s a set of method symbols;

— F 1s a set of feature symbols;

— < is a decidable partial order on & such that L is the least element and T
is the greatest element.

Given the signature X and a set V of variables, we define a feature term
as an expression of the form:

v o= Xis[fizW - fu =W,

where X is a variablein V, sisasort in S, fi, - - -, fn are features in F, n > 0, and
each ¥; is either a feature term, a set of feature terms or a method application

#m.

2 In this paper we are focusing only in CBR learning methods—other learning methods
like inductive methods [5] and analytical methods have also been integrated in this
way.

Domain knowledge 1s represented in Noos by a collection of feature terms de-
scribing the concepts and their relations for a given domain. Feature terms have
a correspondence to labeled graphs representation as shown in the description
of an experiment in the chromatography domain of Figure 2.

Q\,O‘e'\“ Glycogen-Phosphorilase
/»ie_: . _kingdom
spe€l=®s 1 iza-Ramada Animal

s’ pl¢ Sample_1 057%
%—» Muscle

Experiment10 o Precipitation
= Step_1073 : :
g}n ae) P- re}(g_e;[»Acetlc—Amd
=X e
2 na Ton-Exchange
>, step2
= Plan_1066 ———— Step_1080

resin Deae-Cellulose

wm@

e 1 Affinity
25 /
Step_1085

5-Amp-Sepharose

resip

Fig. 2. A case description in CHROMA.

Methods are also represented as feature terms. The features of a method
description represent the subtasks in which that method is decomposed. Methods
are defined by refinement from a set of built-in methods. That is to say, a method
is a feature term

wm = Xm[flzwlfnzwn]

as above except that now m is a sort in M i. e. it is a refinement of a built-in
method.

The set of built-in methods in Noos are those of a general-purpose lan-
guage plus some constructs enabling introspection. The uniform representation
of methods as feature terms is what allows Plural Noos to transmit over the
network both domain knowledge and methods in the same way.

Inference in Noos is on demand and is engaged by queries. For instance,
solving the chromatography problem experiment10 is engaged by querying the
feature purification as follows: (>> purification of experimenti10). The
purification task is solved by the corresponding method associated with the
purification feature of the problem. In the CHROMA system this method is
the analogy-by-determination method explained below.

2.2 CBR in Protein Purification

We will introduce the CBR method used in our example domain of protein
purification. We have to remark that Noos is not a CBR shell with a built-in,

-~

fixed way of performing case-based reasoning. Noos allows the configuration of a
CBR system after a knowledge model analysis of the domain has been performed.
Such a configuration is done with the component blocks provided by Noos-like
generic retrieval methods—that are refined (or biased) in order to incorporate
the domain knowledge we have modeled. In ¢cHROMA the domain knowledge
is used to characterize which features are more important when judging the
similarity between a current problem and a precedent case. Noos allows to express
such a knowledge by means of retrieval methods and preference methods. This
abstraction permits to ignore implementation details like the indexing algorithms
and, most importantly, will permit the communication of such methods among
CBR agents. In this way a CBR agent can profit by lazy learning not only from
the cases in its own Case-Base but also those cases known by other agents.

The configuration of the specific CBR method used in cHROMA is the follow-
ing.

Goal-driven Retrieval The retrieval method is a generic method that se-
lects from memory all cases obeying a constraint declared as pattern.
Intuitively, it retrieves all cases subsumed by (all cases that match) the
pattern. Domain knowledge in CHROMA state that we are interested only
in cases where the protein feature has the same value as our current
problem—and the rest of cases should be dismissed as irrelevant. This
form of retrieval is called goal-driven retrieval (since the protein is the
goal in our process) and can be represented by a general method called
retrieve-by-determination.

Domain Selection Criteria A second component is a preference method
that allows to impose a partial order among retrieved cases. In CHROMA
there are three basic preferences:

Preference n. 1 Domain knowledge in CHROMA state that usually the most
important criterion for similarity is having the same value in the source
feature as in the current problem. This preference method imposes a
partial order from the retrieved cases with that value to the retrieved
cases that do not.

Preference n. 2 Another preference method is regarding the species
feature—i.e. the species of the sample tissue or culture (source) from
which the protein is purified. This preference discriminates the retrieved
cases that are incomparable with preference n. 1.

Preference n. 3 The final component is also a preference regarding the
kingdom taxon of the source, and it is applied to all retrieved cases that
are not preferred among them by the preceding preference methods.

In our extension of CHROMA to distributed agents, each lab will supple-
ment these general preferences with other specific preference criteria due to
the kinds of problems they regularly solve and their local expertise. For in-
stance, for a given tissues the specie criterion could be more relevant than
the source criterion. Thus, each CBR agent will possibly contain selection
criteria adapted to its own experience.

Reuse Finally, the last reuse method reinstantiates the purification plan of the
most relevant precedent according to the previous domain preferences.

Learning in CBR is lazy: a CBR system imposes a partial order among (a
relevant subset of) the past examples based on the current problem. The solution
of a problem is determined by the solution of the case(s) that is maximal in
the partial ordering established by preferences. Thus, solutions proposed by the
system are function of the individual experience of the CBR, system plus the
domain knowledge given by the system designers during the knowledge modeling
stage. Later in the paper we show how lazy learning plus method configuration
can be used to support cooperation modes that improve the performance of a
collectivity of CBR agents.

3 Agent Communication with Plural Noos

Plural provides a seamless extension of Noos that supports distributed scope and
reference for all the basic constructs in Noos. A Plural Noos agent is a particular
Noos application with a known address and with several acquaintances. An agent
address is composed of one IP address, a port number and one identifier. The
last 1dentifier is needed since more than one agent can coexist within the same
Plural Noos process. The acquaintances of an agent are those agents whose
address 1s known by the agent —as in the actors model. Each Plural agent can
have different acquaintances. If an agent A; belongs to the acquaintances of an
agent Aj;, then Ajalso belongs to the acquaintances of A;.

A Plural Noos agent can be involved in solving only one problem at a time.
Each problem solving process has a different identifier. When a Plural agent is
solving a problem only accepts requests related to the same process identifier. In
this way, possible deadlocks are avoided. Other deadlocks caused by circularities
inside the same problem solving process are detected by the Plural Noos im-
plementation. When an agent A; requires a service from another agent A;, and
this one is already busy solving another different problem, A; receives a busy
message. Then A; decides to wait some time to request the service to A; again
or ask it to another member of its acquaintances.

All Plural Noos agents taking part in an specific domain application share the
same signature Y. That is to say, the feature symbols, the sort symbols, and the
method symbols are shared among all Plural agents involved in an application. So
Plural Noos allows arbitrary Noos terms to be exchanged among one agent and
its acquaintances. In particular, cases and CBR methods are terms that can be
transmitted from a CBR agent to another. The CBR cooperation modes which
this paper describes will use three Plural Noos capabilities: alien references,
foreign evaluation, and mobile methods.

3.1 Alien References

Alien references extend Noos references to agents over the net. For instance, when
the term identifier experiment10in agent-1iis transmitted to agent-j, it is han-
dled as an alien reference and it becomes naturalized as experiment10@agent-i

by the agent-j. In the same way, a reference to a feature in agent-i, as
(>> purification of experimenti0), once transmitted to agent-j be-
comes an alien reference, (>> purification of experimenti0@agent-i), in
agent-j. Notice that feature symbols are shared among Plural Noos agents. If
the value referenced by an alien reference in agent-j is needed then a trans-
mission is automatically engaged asking for the value to agent-i. Agent-i is
responsible for inferring that value and transmit it as answer to the agent-j
request. Alien references avoid the problem of maintaining state when terms
with state are transmitted over the network. State is local to agents and
when an agent makes reference to a term which belongs to another agent, a
alien reference is established 3. Alien references are transmitted over the net-
work: if experiment10@agent-i is a value of the feature purification of en-
tity experiment21 in agent-j and a new agent agent-k has the reference
(>> purification of experiment21@agent-j) eventually agent-k will get
the alien reference experiment10@agent-i.

Alien references make up the basic mechanism that underpins the exchange
of terms among Plural Noos agents over the network. In essence, as Noos terms
can be seen as labeled graphs, and since Noos performs a lazy evaluation, not
all the nodes in a graph are transmitted when the root is referenced by a remote
agent. Instead, the transmission of a term from an agent agent-i to another
agent agent-j starts by sending the graph root (an identifier, the sort, and the
name of the root features). If the graph node sent to agent-j is a constant (a
number, a string or a sort) a local reference is established by agent-j. Otherwise,
agent-j establishes an alien reference to that node. When agent-j requires the
value of any of the features of that node, a new transmission is engaged asking
for it to agent—i. Then agent-1i inferres its value and sends it to agent-j. Path
equality (sharing) and circularities in the graph are preserved.

The next example describes how the term experiment10 (see Figure 2)
in agent-i is transmitted to agent-j. In the first step the term identifier
experiment10 and the names of its features sample and purification are sent
to agent-j. Since experiment10 is not a constant, an alien reference will be
established in agent-j, as showed in Figure 3. Then, if the value of the feature
sample is required by agent-j, it will be automatically requested to agent-i.
Next, agent-i will resolve that reference to sample_1057. This term identifier
and the names of its features protein, species and source will be sent back
to agent-j, and a new alien reference sample_10570@agent-i will be established
(see Figure 4) in agent-j, since sample_1057 is not a constant. Figure 5 shows
the state achieved once the values of features protein, species and source have
been required by agent-j. Values Glycogen-Phosphorilase, Liza-Ramada and
Muscle are all of them sorts, and since sorts are shared, a reference to the local
sorts has been established in agent-j, when they have been received. Finally,
as Figure 6 shows, when the value of feature kingdom of Liza-Ramada is re-

Our approach is similar to that of the distributed object-oriented language Obliq [6]
regarding the fact that alien references are local to a site (here, an agent). A major
difference is that Plural transmits terms over the net while Obliq transmits closures.

10

quired by agent-j, the value Animal is inferred in agent-j, without need to ask
agent-1i, since Liza-Ramada is local to agent-1i.

\e
s

Experiment1 0@agent-i

Fig. 3. An alien reference to experiment10 at agent-1i is established in agent-j.

v
&—»
pecies
P> Sample_1057@agent-i 2

. R SO,
Experiment10@agent-i “rce

Fig.4. An alien reference to Sample_1057 at agent-i is established in agent-j.

3.2 Foreign Evaluation

The Plural Noos foreign evaluation capability allows an agent to use a method
owned by another agent —as in remote procedure call (RPC). Specifically, for-
eign evaluation allows an agent agent-1i to ask another agent agent-j to execute
a specific method using the parameters given by agent-1i, as in the next expres-

sion of agent-i.

(define (foreign-eval)
(method (define (protein-purif-method)
(case experiment10)))
(at agent-j))

In this expression, an agent agent-1i asks to another agent agent-j to evalu-
ate the method protein-purif-method using as case the experiment10. Then

11

v‘,oxew Glycogen-Phosphorilase

o \¢ Sample_1057 @agent-i bp/” Liza-Ramada
S Muscle
Experiment10@agent-i itree
<
‘2:;.
=\
=)

Fig.5. Glycogen-Phosphorilase, Liza-Ramada and Muscle are references to sorts.
Since sorts are shared by all agents they do not require alien references.

&—* Glycogen-Phosphorilase

DeCS, 1 isa Ramada n&dom
s(y&—-»Sample_IOW@agem-ibp/’ Liza-Ramada Animal

5O Muscle
Experiment10@agent-i “rce

od

=n
=
(s}

\t

=)
(;.
%

Fig. 6. The value of feature kingdom is inferred from the local sort.

12

agent-j will start the evaluation of its own protein-purif-method method, an-
notating that this evaluation is being performed for the remote agent agent-i.
When the case feature of this method is required during the evaluation, it
will be automatically asked to agent-i. Then the experiment10 term will be
sent from agent-i to agent-j, such as was explained in the last subsection.
This value will be an alien reference in agent-j and will become naturalized as
experiment10@agent-i. During the evaluation, further references in agent-j
to features of experiment10@agent-i are interpreted as alien references as well.
And its values will be transmitted from agent-i as they are needed. Once
agent-j finishes the evaluation of method protein-purif-method the result got
will be sent back to agent-i, as answer to the evaluation of the foreign-eval
method.

3.3 Mobile Methods

For some cooperation modes it is necessary to support so-called mobile (or mi-
grating) methods. In Plural Noos a mobile method defined in an agent agent-i
can be transmitted to any member of its acquaintances. When an agent agent-i
sends a mobile method to agent-j, this process involves also transmitting
the whole task/method decomposition to agent-j—i. e. the subtasks of that
method, and the methods for those subtasks. The process of sending a mobile
method, called jump, consists of

1. sending the the name of the built-in of which the method is a refinement
2. the names of its features (i. e. the method’s subtasks)
3. Recursively, the methods defined for those subtasks

While foreign evaluation requires the remote agent to own a particular
method which can be used by the originating agent, the mobile methods ca-
pability of Plural Noos does not require it.

Mobile methods are supported by the Plural Noos capability of transmitting
method terms. A mobile method term is first defined in an originating agent
agent-i:

(define (jump)

(method (define (mobile-method-k)

(description (>> description of problem-13)))
(at agent-j))

When a method jumps to a remote agent, the whole task/method decompo-
sition of the mobile method is transmitted in a lazy way similar to that explained
in § 3.1. Nevertheless, there is a main difference between the jump process and
the transmission of a feature term resulting from an alien reference. In the jump
process, when a reference is made to a feature of a mobile method (i. e. a sub-
task), Plural Noos requests to the originating agent the method corresponding
to that feature name. In this way, the whole task/method decomposition of the
mobile method will be transmitted, on demand, from the originating agent to
the target agent.

13

4 Modes of Cooperation for CBR Agents

Since learning is lazy in CBR systems, cooperation involves expanding the set of
precedents to be used in similarity-based reasoning from the individual memory
of a CBR agent to the memories of a collectivity of CBR agents. We argue
that there are two general ways to do so: Distributed Case-based Reasoning
(DistCBR) and Collective Case-based Reasoning (ColCBR). Intuitively, both
DistCBR and ColCBR are based on solving a problem by reusing with the
knowledge learned by other CBR agents. Given an agent (the originator) trying
to solve a given problem, the difference between both modes is regarding which
similarity-based reasoning method is used: that of the originator or that of the
CBR agent that is helping the originator.
In other words, the difference is the following:

DistCBR. is based on an agent transmitting the problem and the task to be
achieved to another agent, and the CBR method used is that of the receiving
agent. In this sense, the CBR process is distributed since every agent works
using its own method of solving problems.

ColCBR is based on an agent transmitting also the method that is to be used
to solve that problem to another agent (and that method will use the knowl-
edge learnt by the receiving agent). In other terms, the originator is using
the memory of the other agents as an extension of its own—as a collective
memory—Dby means of being able to impose to other agents the use of the
CBR method of the originator.

From the standpoint of implementing those cooperation modes, we can say
that DistCBR is supported by the foreign evaluation capability and ColCBR is
supported by mobile methods (also called “remote programming”) capability of
Plural Noos.

Regarding the chromatography domain, the CBR method for cHROMA shown
in Figure 1 is modified as shown in Figure 7. Since the shaded part in both figures
is the part that an originating agent wants to ask other agents to perform over
their own case-bases, we introduce a new method, protein-purify-method,
that simply gathers together both tasks, retrieve and select, that have to
be distributed over other agents. In this way, DistCBR will be implemented
using protein-purify-method by foreign evaluation and ColCBR will be im-
plemented using protein-purify-method as a mobile method.

4.1 Distributed Case-based Reasoning

The DistCBR cooperation mode is, intuitively, a class of cooperation protocols
where a CBR agent A, is able to ask to one or several other CBR agents
{A1...A,} to solve a problem on its behalf. The cooperation mode definition
leaves to specific protocols designed for given task domains the specification
of which criteria an agent A,.;; uses to ask another to solve a problem, how
to choose which agents to ask and in which order. DistCBR is based on the

14

CBR method

Retrieve & Select

prote:.n—pur:.fy—method Adapt
/ \ solution

Retrieve Select

Goal-driven Domain
retrieval Preferences

Fig.7. The case-based reasoning method for DistCBR and ColCBR in cHROMA. The
shaded part is changed from that of Figure 1 and are the subtasks performed by other
agents on request of the originating agent.

Plural Noos capability of foreign evaluation. A specific protocol for the protein
purification task is given below. This is not a shortcoming or underspecification
of our framework: since these issues and decisions are domain-dependent they
are to be established by a knowledge modeling analysis of the task domain that
later implemented by Noos methods. The only difference is that these Plural
Noos methods will have references to —and will engage communication with—
other agents.

DistCBR involves two main cooperation tasks: a) Aoy;; sends the (identifi-
cation of the) current case Ciyrr to an agent A;, and b) asking A; to solve the
purification task on the case Ccyrr. As result, agent A,y receives a solution
inferred by A; based on its own C'BR — method; and its case-base C'B; —or a
failure token. Upon a failure of the agent A;, A,y can iterate the cooperation
tasks with the next agent of its preference.

An agent in DistCBR cHROMA has a set of acquaintances {A4;...A,} that are
agents having at least a CBR method for solving protein purification problems
and a case-base of such problems already solved. A,.;; can prefer to ask first
to an agent A; that has previously solved for it a problem regarding the same
protein (goal preference)?. In general, each CBR agent may have a different
protocol for deciding which agent to ask to solve the current problem.

In order to start a DistCBR cooperation, the originating agent only needs to
know the name (identifier) of the CBR method used by each acquaintance for

* This is the same preference that the stand-alone CHROMA system applies in the
retrieval task (prefer a case with the same protein as the current problem).

15

the task purification—by convention we will assume all agents use the same
public name protein-purif-method®.

AN /
/
N4

Fig.8. In Distributed CBR each agent uses its own retrieve-&-select method on
the current problem. The shaded areas represent a similarity degree centered around
the current problem (the black dot). The most similar case in each agent’s memory
is depicted as a shaded box. The shaded areas are in general different because the
criteria that specify what is “similar” may vary from one agent to another. Compare
to Figure 9 that shows the effect of using a unique mobile CBR method in ColCBR.

The cooperation tasks of DistCBR are achieved in the implementation by
requiring the foreign-eval of a M} (say protein-purif-method-k), for each
RMj, in the collection of methods for the retrieve-&-select task. The Plural
Noos syntax 1s as follows:

(define (foreign-eval)
(method (define (protein-purif-method-k)
(case case-33)))
(at agent-j))

This process can be iterated on other acquaintances until a solution can be
obtained for an agent that has an appropriate case precedent for the current
problem.

The current implementation of DistCBR cROMA has two strategies to select
the acquaintances to which an agent asks help. The first one, as mentioned,
simply asks other acquaintances in some specific order until one of them can
solve the problem requested using its own method. The results obtained in its

5 These method names can be easily acquired asking the acquaintances (>> method
of (task purification of purification-problem at agent-j)) but we have no
room for the discussion here.

16

strategy for DistCBR cooperation mode crucially depends on to ordering in
which an agent selects an acquaintance, and a more complex handling of it is
discussed at § 5. A second strategy, that we call conservative, allows more control
to the originating agent at the cost of more communication. The conservative
strategy of DistCBR involves the originating agent asking to solve the problem
to all its acquaintances and obtaining the best cases according to them. Then,
the originating agent can select with of them is best according to its own criteria,
for instance according to the Preferences in § 2.2.

4.2 Collective Case-based Reasoning

The ColCBR cooperation mode is, intuitively, a class of cooperation protocols
where a CBR agent A; is able to send a specific CBR method CBR — method;
of its choosing to one or several CBR, agents {A;...A,} that are capable of using
that method with their case-base to solve the task at hand. ColCBR is based on
the Plural Noos capability of mobile methods: an originating agent A; can define
a method C'BR — method;, bind it to the current problem C¢ypr, and migrate
it to another agent A; that has previously solved for it a problem regarding the
same protein (goal preference). The mobile CBR method, upon transmission to
A;, can perform the CBR subtasks (retrieve, select, reuse) using the case-
base C'B;. When the mobile CBR method finishes the result (or a failure token)
is sent back to A;. The originating agent A; can then decide if it 1s necessary to
send the mobile CBR method to a new acquaintance and start a new iteration.

In the chromatography domain, the cooperation tasks of ColCBR
are achieved as follows. First, a CBR method for protein purification
cbr-pp-mobile-method is defined in originating agent-i; then the method is
bounded to the current problem case-33 and sent to agent-j by the expression:

(define (jump)
(method (define (cbr-pp-mobile-method)
(case case-33))
(at agent-j))

This is equivalent to the following process:

1. The identifier of cbr-pp-mobile-method is sent to agent-j,

2. Since the method is defined in agent-i, agent-j requests the subtasks of
cbr-pp-mobile-method; as result agent-j will receive the methods for those
subtasks and (the identifier of) case-33.

3. Recursively, the methods of the subtasks will be transmitted and their sub-
tasks methods will be requested, until all the task/method decomposition is
transmitted to agent-j.

4. Finally, cbr-pp-mobile-method is executed by agent-j and the result is
returned to the originating agent-1i.

17

In general, the originating agent in ColCBR can have several mobile methods
for a task. In ColCBR an agent could have several mobile CBR methods with
a preference ordering among them from the more constrained CBR method to
the less constrained. In this way, the agent can assure that it can retrieve the
precedent cases from the distributed case-base that comply to the most relevant
requirements for the task, and only when no precedent is found, a second mobile
CBR agents searches for a less relevant precedent case in the distributed case-
base.

In the current implementation of ColCBR cHROMA the agents follow con-
servative strategy in asking for help to other agents the rationale of which is to
assure a result as close as possible to the original CBR method for a standalone
system. In particular, ColCBR CHROMA conservative strategy tries to find the
best precedent case known by a federation of agents (its acquaintances)—where
“best” is interpreted in the sense of the preferences explained in § 2.2.

In order to do so, an agent with this strategy has a collection of methods
{My, M, ..., M4, MJ*} for the task retrieve-&-select. The first two M; and
M7 are methods that considers the preferences in § 2.2 as restrictions: in this way
it can retrieve only the precedent cases satisfying all these conditions. Method
M retrieves cases from the case-base of the originating method. If this method
fails—i. e. there is no such a case in memory—Noos backtracks taking the second
option, namely M7{?, that is a mobile method version of method M;. M{" is sent
one by one to all the acquaintance—if the mobile method sent to an agent fails,
Plural Noos sends the mobile method to the next acquaintance. If one of them
returns such a case the retrieve-&-select task is finished. Otherwise it means
that all agents have failed—mnone of them have a precedent case satisfying all the
constraints in § 2.2. In this situation, Noos selects the next method, namely M.
Now both Ms and M3* are a less restricted version of M; and M{"® where the
less important constraint in § 2.2 (Preference 3) is dropped. Using M2 and MJ?
now DistCBR CHROMA can retrieve a precedent case from its memory or one of
its acquaintance receiving the mobile method MJ* can retrieve a precedent case
from 1ts memory. Again, if any mobile method retrieves a case complying to the
constraints the process stops, otherwise proceeds with M3 and M5 (that only
requires as constraint Preference 1 in § 2.2) and with M, and M}" (that only
performs Goal-driven Retrieval but enforces no preference).

It is easy to see that this strategy assures that the originating agent finds
the most preferred case according to the established preferences from any case
base of an acquaintance agent. Figure 8 shows intuitively the effect of a mobile
CBR method: the same retrieval and selection method is used in each agent,
the only difference being the case that is retrieved in each agent according to its
past experience.

5 Future Work on Cooperative Case-based Reasoning

The conservative strategy of last section is not obliged by neither by the ColCBR
mode of cooperation nor by the Plural Noos language. It is perfectly possible and

18

2\ /
/
N/

Fig. 9. In Collective CBR mobile methods assure that the similarity considered will be
the same in all agents. The shaded area represents a similarity degree centered around
the current problem (the black dot). The most similar case in each agent’s memory is
depicted as a shaded box. The shaded area is equal in the originating agent and in the
two agents that receive a mobile CBR method, while in DistCBR (see Figure 8) they
are different.

rational that the originating agent sends a mobile CBR method that embodies
the preferences in § 2.2 to the acquaintance agents. In this strategy, the first
acquaintance agent that has case satisfying some of the preferences in § 2.2 will
be retrieved. In this strategy, the order in which we take the acquaintance agents
to solicit them to solve a problem becomes crucial. There are two approaches
to solve this issue: instituting authority and learning competence models. Insti-
tuting authority involves selecting a priori the class of problems for which each
agent is competent on and giving him authority to solve them. This selection
can be typically established by the designer of a multiagent system (MAS) or
by the institution(s) that grant the cooperation of one of its agent into a MAS.
The second approach involves agents learning a model a competence model of
other agents in a MAS—i. e. each agent has to determine (learn) an individual
model of which problems other agents in a MAS are competent to solve. This
approach is high in our research agenda on federated learning.

Although the CBR cooperation modes we propose are quite general descrip-
tions, there are more options that those explained in this paper and that are
envisioned as future work. For instance, we plan use the full CHROMA applica-
tion which integrates induction and CBR. In this setting, DistCBR would use
the metalevel method of CHROMA that selects the appropriate problem-solving
method; while ColCBR the originating agent would be able to send to other
agents the method of its choosing.

A variant of the DistCBR and ColCBR, cooperation modes consists of ask-
ing k acquaintances to solve the problem instead of asking one by one until a
solution is achieved. This variant requires a new task on the originating agent

19

that performs some selection of the solution or consensus aggregation function.
Both selection and consensus require A,y;4 having a model of the reliability of
the agents involved —the model can be based on some learning method based
on the previous results of those agents. However, the selection and consensus
processes do not pertain to the cooperation mode as such, but to the knowledge
modeling analysis of the task domain. For instance, in our domain more than
one chromatography plan can effectively purify a protein, so it is possible to
recommend more than one correct solution (although a solution ranking is of
course highly desirable).

6 Discussion

We have presented two simple yet powerful cooperative modes of case-based rea-
soning and learning. Even assuming that all the participating agents start with
the same CBR method, the individuality of the learning agents (the separate
existence of agents having different memories given by disparate past experi-
ence) implies a distinct content (resulting from learning) for each agent. In the
DistCBR cooperation mode an originating agent delegates authority to another
peer agent to solve the problem. In contrast, ColCBR maintains the authority of
the originating agent, since it decides which CBR method to apply and merely
uses the experience accumulated by other peer agents.

In the protocols developed for the chromatography domain, since an agent
only cooperates with another agent when the originator is not able to solve a
problem (according to the domain knowledge constraints), the result of cooper-
ation is always better than no cooperation, and communication is engaged only
when need be. However, these protocols are domain dependent and are the result
of a knowledge modeling process. The cooperation modes are, we argue, general
for agents that capable of lazy learning.

The lazy nature of learning in CBR helps in the reuse and exploitation of
the experience of different agents in a cooperative setting. Since the implicit
generalization of similarity-based reasoning is performed on a case-by-case basis,
and the cooperation is also made on a case-by-case basis, both can be integrated
seamlessly. Eager learning, as induction, perform learning over sets of cases and
built new knowledge structures capable of solving new problems—and some of
them discard the particular cases after induction. In this setting the Distributed
Mode seems applicable, since every agent uses the induced knowledge structures
to solve a particular problem. However, the Collective Mode seems problematic—
inapplicable in fact if the agents discard the particular cases. This mode is based
on the idea of extending the memory of an agent to the memory of the rest of
agents by forming a collective memory. However, the distribution of agents and
experience can meaningfully exploit the collective memory in a lazy, on-demand
way. An eager use of collective memory, for instance, would be for an agent
to perform induction over all cases known to all associate agents. This option
implies a communication overhead and in the long run amounts to a centralized

20

view of learning where every agent is aware of all the accumulated experience of
every other agent.

Related work is KQML and CBR-TEAM. The communication capabilities
of Plural Noos are compatible to the basic constructs of KQML [11]. Since we
are dealing with homogeneous peer agents the rather general features of KQML
(like ontologies and representations translation) are not needed, there is no need
for Plural to use the KQML equivalent constructs®. It remains future work to see
if Noos agents communicating with agents using other representation languages
like Loom or KIF could actually use KQML constructs. The CBR-TEAM system
uses negotiated case retrieval as a form of cooperative CBR among heterogeneous
agents (subtask specialists) [12]. The overall task is a distributed constraint
optimization process over the shared interface parameters (parameters optimized
by more than one agent).

In this paper we have focused on modes of cooperation among agents able
to perform some lazy learning, but we focused the learning process on learning
about the task domain—chromatography techniques in our application. How-
ever, as a result we are quite aware that learning has also to play a major role
regarding the cooperation process itself. We plan to study this issue by the
agents being capable to learn competence models of other agents. We think this
approach can be useful for any MAS where the authority of an agent is not
predetermined by the system designer. In fact, we can think about Federated
Peer Learning as a framework in which the authority of each participating agent
is dynamically allocated by other participant agents assessing their scope and
degree of competence.

Acknowledgements

The research reported on this paper has been developed at the ITITA in the frame-
work of the ANALOG Project (CICYT grant TIC 122/93),the SMASH Project
(CICYT grant TIC 96-1038), a CSIC fellowship, and DGR-CIRIT fellowship
FI-DT/96-8472.

Updated information will be posted on the WWWwW
at URL http://www.iiia.csic.es/Projects/FedLearn/CoopCBR.html and
http://www.iiia.csic.es/Projects/FedLearn/plural.html.

References

1. Agnar Aamodt and Enric Plaza. Case-based reasoning: Foundational issues,
methodological variations, and system approaches. Artificial Intelligence Com-
munications, 7(1):39-59, 1994. Available online at <url:http://www.iiia.csic.es
/People/enric/ AICom_ToC.html>.

2. Hassan Ait-Kaci and Andreas Podelski. Towards a meaning of LIFE. J. Logic
Programming, 16:195-234, 1993.

% An example of equivalence is the following. KQML has an ask-all construct. Finding
all solutions of a task in Noos syntax is written (¥>> task of problem at agent).

21

10.

11.

12.

13.

14.
15.

. Josep Lluis Arcos and Enric Plaza. Integration of learning into a knowledge mod-

elling framework. In Luc Steels, Guss Schreiber, and Walter Van de Velde, editors,
A Future for Knowledge Acquisition, number 867 in Lecture Notes in Artificial
Intelligence, pages 355-373. Springer-Verlag, 1994.

Josep Lluis Arcos and Enric Plaza. Inference and reflection in the object-centered
representation language Noos. Journal of Future Generation Computer Systems,
12:173-188, 1996.

Eva Armengol and Enric Plaza. Integrating induction in a case-based reasoner. In
J. P. Haton, M. Keane, and M. Manago, editors, Advances in Case-Based Reason-
ing, number 984 in Lecture Notes in Artificial Intelligence, pages 3-17. Springer-
Verlag, 1994.

Luca Cardelli. Obliq, a language with distributed scope. Technical report, DEC,
Systems Research Center, 1995.

Luca Cardelli and John Mitchell. Operarions on records. In Carl A. Gunter and
John C. Mitchell, editors, Theoretical aspects of object-oriented programming: types,
semantics and language design, Foundations of computing series, pages 295-350.
MIT Press, 1994.

B. Carpenter. The Logic of typed Feature Structures. Tracts in theoretical Com-
puter Science. Cambridge University Press, Cambridge, UK, 1992.

. Laurent Dami. Software Composition: Towards an Integration of Functional and

Object-Oriented Approaches. PhD thesis, University of Geneva, 1994.

D. Dubois, F. Esteva, P. Garcia, I.. Godo, and H. Prade. Similarity-based conse-
quence relations. In Ch. Froidebaux and J. Kohlas, editors, Symbolic and Quali-
tative Approaches to Reasoning and Uncertainty, number 946 in Lecture Notes in
Artificial Intelligence, pages 171-179. Springer-Verlag, 1995.

Tim Finin, Jay Weber, and et al. Specificastion of the kqml agent-communication
language. Technical report, The DARPA Knowledge Sharing Initiative, 1994.
<http:/ /retriever.cs.umbc.edu/kgml/kgmlspec/spec.html>.

M V Nagendra Prassad, Victor R Lesser, and Susan Lander. Retrieval and rea-
soning in distributed case bases. Technical report, UMass Computer Science De-
partment, 1995.

S. Russell. The use of knowledge in Analogy and Induction. Morgan Kaufmann,
1990.

Luc Steels. Components of expertise. AT Magazine, 11(2):28-49, 1990.

Bob Wielinga, Walter van de Velde, Guss Schreiber, and H. Akkermans. Towards a
unification of knowledge modelling approaches. In J. M. David, J. P. Krivine, and
R. Simmons, editors, Second generation Fzpert Systems, pages 299-335. Springer
Verlag, 1993.

22

