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Abstract. This paper presents an experience on solving DCOP instances in a
real, distributed scenario with up-to-date technology involving several machines
and comparing this process with their solving in a simulator. From the result
of this experience, we stress the importance of message communication time,
orders of magnitude higher than the elements used in other proposed metrics
to assess DCOP algorithms performance. Network latency, captured in message
communication time, has an important impact in final performance and it must
be necessarily taken into account to accurately approximate the elapsed time of
the solving process. The results of this paper are an indicator of this, and we
think they may be of interest for the Distributed Constraint Reasoning (DCR)
community.

1 Introduction

It is well known that the interest for solving distributed constraint problems started
in the 90’s. A strong motivation for this kind of problems was to avoid keeping all the
problem data in a single computer or in a single agent. Distributed solving assures some
kind of privacy, prevents a single point of failure and allows a higher autonomy. This
interest crystallized in the pioneer paper of Yokoo and colleagues [15], who introduced
the ABT algorithm for solving distributed constraint satisfaction problems (DisCSP for
short). Soon the same interest was applied to optimization problems, generating dis-
tributed constraint optimization problems (DCOP for short). There are several applica-
tions in multi-agent systems for DCOPs, since a wide range of combinatorial problems
that are naturally distributed can be modeled in this way [12], [6], [5], [9].

DCOPS are solved by the coordinated action of agents, which communicate through
messages, optimizing a global utility function composed by joint utilities of subsets of
agents. Decision making algorithms provide mechanisms for agents to explore possi-
ble solutions and choose the one that maximize their global utility. Several algoritms
has been proposed in this direction, following different strategies in communication,
such as ADOPT [10], DPOP [11], AFB [3], BnB-ADOPT [14] and BnB-ADOPT™"-
MAC/MFDAC [4].

Most —if not all- work done in the DCR community has been done using simulators,
running on a single computer but imitating the characteristics of a distributed environ-
ment; this allows us to work without requiring a pre-defined infrastructure. Usually
simulators make simplified assumptions that, in some cases, “’idealize” the distributed
environment they try to recreate.
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Typically, DCR algorithms have been evaluated along two dimensions: computation
and communication. Regarding computation, the number of non-concurrent constraint
checks (NCCCs) has been used to assess the longest computation chain that cannot be
executed concurrently [8]. Alternatively, other authors use simulated time (following an
approach similar to NCCCs but with clock tics instead of constraint checks, assuming
the same CPU per agent) [13]. Both ideas are based on the concept of logical clocks [7].
Regarding communication, the number of exchanged messages has been the main eval-
uation measure, under the assumption that messages do not have very different lengths;
otherwise, the total number of bytes exchanged can be used to compare algorithms. The
use of logical metrics is convenient in many cases because it allows to compare differ-
ent algorithms regardless of their specific implementations or the speed of the hardware
where they are executed.

In this paper we present a communication protocol for real distributed DCOP solv-
ing and describe a simple experiment: the real execution of a DCOP algorithm —BnB-
ADOPT - solving a set of random instances on a real network. Ideally each computer
is dedicated to a single agent but overloading a computer with more than one agent is
also possible (we loose in distribution though) so we test this as well. Such experiment
could be envisioned because we were in full control of the computer network. We en-
counter a significant number of technical difficulties that we try to clarify in this paper,
however final results are robust and with them we try to give a first step to close the gap
between simulation and real execution.

The rest of the paper is structured as follows. In Section 2, we review the main evalu-
ation measures performed in the field of DCR. In Section 3 we describe the experiment
done, regarding the hardware, the communication software used, the communication
protocol designed, the algorithm —-BnB-ADOPT— and the instances tested. In Section
4 we present the results obtained, including a discussion taking into account the main
differences observed between simulation and real execution. Finally, in Section 5 we
conclude the paper.

2 Related Work

As stated before, usually DCR algorithms are evaluated along two dimensions: commu-
nication and computation. In the case of communication, a counter for the number of
exchanged messages is typically used. In the case of computation, the most influential
metric proposed is the non-concurrent constraint checks (NCCCs) [8]. To calculate NC-
CCs, every agent has a counter that is incremented every time a constraint is evaluated.
This counter is sent in every message. When an agent receives a message, the counter
of the agent is updated with the higher value between its own counter and the counter
of the received message. When execution ends, the NCCCs metric is calculated as the
highest value among all agent counters. This value can be seen as the longest sequent
of constraint checks performed non-concurrently.

While NCCCs encompass properly the computational issues regarding concurrency,
it presents some weaknesses regarding the measure of computational effort. Basically,
the criticisms regarding constraint checks in centralized are also applicable to NCCCs
in distributed, namely:
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— As we move from simple extensional constraints, where a constraint check is sim-
ply a table lookup, constraint checks may have quite different costs and their ag-
gregation may not give a fair estimation of the computation effort performed by an
algorithm.

— Propagating global constraints is a central part of current constraint technology and
it is also considered in distributed constraint solving [1]. However, this propagation
does not cause constraint checks. Ad-hoc recipes —none entirely satisfactory— have
been used to incorporate the propagation cost into the NCCC counter.

As alternative there is the simulated run time metric [13]: an approach similar to NC-
CCs but with clock tics instead of constraint checks. Each agent has an internal clock.
When an agent sends a message, it includes the value of its internal clock. When an
agent receives a message, if the message clock value is higher than the agent’s internal
clock, the agent updates its clock with the message clock value. When the algorithm
terminates, its runtime is then defined as the latest time indicated by any agent’s clock.
However, this metric is dependent of the programming language used, the speed of the
CPU, etc., so it may be difficult to compare two algorithms (in fact, using simulated
time is comparing the implementations of these algorithms on a particular platform).

When messages are not instantaneous, the issue of measuring distributed perfor-
mance becomes complex. The importance of latency of messages has motivated in some
authors variations in the concept of NCCCs, proposing combinations between NCCCs
and communication time, such is the case of LTC[16] or ENCCC [2], trying to use
these metrics to approximate elapsed time (the time period since the solving process
starts until the last agent terminates).

Some authors have also introduced delays in simulated message communication,
evaluating their impact on running algorithms [16]. This approach allows to recreate
more realistic scenarios and to better understand algorithms behavior and robustness
with respect to simulated network latency.

3 Experiment

In this section we explain our hardware and software infrastructure and the instances
we use in our evaluation. Results are discussed in Section 4.

3.1 Hardware

The hardware used for running the experiments is an IBM BladeCenter HS22. This
platform provides shared storage and connectivity to six individual machines, the so-
called blades. Each blade has two quad-core processors Intel® Xeon®E5504 @ 2GHz
and 16GB RAM. The connectivity is done using the Broadcom BCM5709S dual-port
Gigabit Ethernet available in every blade through two redundant Nortel Networks L.2/3
GbESM switches.

This infrastructure allow us to run experiments on top of 48 processors which are
uniformly distributed over a six computer Local Area Network (LAN). This scenario
reproduces a typical distributed environment where different PCs are connected using
a network switch. Network latencies and communication bandwidths are equivalent to
what we find in labs, offices and other work or domestic network environments.
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3.2 Communication Middleware

We developed our communication protocol using the Java Messaging Service (JMS).
It is a middleware designed to help Java developers to build distributed applications.
The JMS API provides a collection of methods for sending and receiving messages in
a distributed scenario.

The basic roles in JMS communication are producers and consumers. Messages
must be sent by a producer and must be read by a consumer. Communications is
achieved through a broker, which is a piece of software able to process (send/receive/store)
messages. The simplest scenario involves at least one broker and all the devices par-
ticipating on the JMS application send and receive messages from and to the broker
respectively (we use this approach in our experiments). Another relevant aspect of IMS
communication is that it allows blocking and non-blocking message consumptions, im-
plemented by receive() and receiveNoWait() methods respectively.

We distinguish two types of communication:

— Topics: A JMS Topic is a broadcast-like communication, where a producer can send
a message to the topic and there can be one or more consumers, subscribed to the
topic, that receive it.

— Queues : A JMS Queue is a FIFO type queue where messages are inserted by a
producer and deleted by a consumer.

There are different implementations of JMS -known as JMS providers- which are
able to interact between themselves and share a common interface from the program-
mer point of view. Known JMS providers are Apache ActiveMQ, JBoss Messaging,
Websphere MQ, among others. Our algorithm is developed using Apache ActiveMQ,
which is a popular and powerful open source JMS provider.

With this communication API we are able to work with a number of desirable fea-
tures: we can exchange messages between any pair of agents (computers) using queues
regardless of their ordering (if there is any) or their constraints; it allows to broadcast
messages to a subset of agents or to all agents using topic subscription; message passing
assures the very common assumption in DCR algorithms that messages sent between
two agents can be delayed by a finite amount of time but are never lost.

3.3 Communication Protocol

In this section we describe how problems are distributed and solved along the net-
work, i.e. the communication protocol. Following this protocol, agents are distributed
in different computers, the optimal solution is calculated and statistics are collected
to compute the final evaluation metrics (total messages exchanged, NCCCs and total
elapsed time). The following protocol works for any problem specification regardless
of the number of computers available and the problem features (number of variables,
domain size, number of constraints). In many cases synchronization points are needed,
for example to determine if all agents are ready to start, if all agents have finished their
execution, etc. These synchronizations are achieved selecting a master computer which
is in charge of performing special checks and using topic subscription and special mes-
sages.
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Fig. 1. Communication structure between agents using ActiveMQ.

A flow diagram is shown in Figure 1, showing the main phases of communication.
A complete pseudocode of the protocol is show in in Figure 2. In words, the master
creates a topic to broadcast messages to the rest of computers in the network (from now
on, we call them client computers). It also creates an “Init” and “Finish” queue to syn-
chronize execution, and waits for client computers to subscribe to the topic and queues.
After this, it sends a ”Start” message to all subscribers. Client computers receiving the
”Start” message send their connection Id to the master using the “Init” queue. After
this, the master knows how many computers are active in the network, and it can send
messages to the clients directly, without the need to broadcast. The master assigns the
problem variables to the clients and to itself in a round-robin way, so that variables are
proportionally assigned among all computers.
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If there are more variables than computers, computers are overloaded with more
than one variable. Observe that we can obtain here three possible scenarios (we consider
all three in Section 4):

1. Fully simulated execution in one computer. This is, only one computer is used and
it handles all problem variables/agents. In this case we have a classic simulation
involving all agents.

2. Fully distributed. This is the case where we have the same number of variables or
less than computers. In this case, only one variable/agent is assigned to a computer
and we obtain a fully distributed execution.

3. Partially distributed/simulated: In this case, several computers may be overloaded
with more than one variable/agent. A real distributed execution occurs between the
computers, although a simulation is taking place inside each computer involving its
agents.

Once agents have been assigned and informed to all computer with an Init” mes-
sage, execution begins. Depending on the nature of the solving algorithm, we might
need some extra synchronization at this point. In this case, we work with an asyn-
chronous algorithm where all agents can start execution at the same time, so no further
synchronization is needed. In other case, a possible solution to start agents in a given
order is to use special messages as seen above.

The solving algorithm starts communication using a separate queue for each agent.
Execution ends in a computer when all its agents terminate. The statistics calculated
in each computer are local. To obtain the total number of messages, the highest non-
concurrent constraint check value and the highest elapsed time among all agents, we
gather the statistic from all computers in a single machine. Therefore when a computer
terminates, it sends a “Finish” message with all its logical metrics to the master. When
the master ends its execution and receives a “Finish” message from all the client com-
puters, global statistics are calculated. After this, the next problem can be executed.

3.4 Algorithm

In this paper we focus on the BnB-ADOPT+ algorithm. In the case of distributed exe-
cution, we replace its logical message structures by ActiveMQ queues, and use the send
and receive functions from ActiveMQ.

Since we may have more than one agent in a computer, we need to use the re-
ceiveNoWait() ActiveMQ function (non-blocking message consumption). This func-
tion, unlike the receive() function, checks the queue and, if it is empty, it continues the
execution and does not wait for a message to arrive. An agent needs to check its queue in
this way because otherwise, if the queue is empty, it may prevent other agents occupy-
ing the same computer to check their queues. Such behaviour may lead to a deadlock in
execution, easily solvable by using the receiveNoWait() function which iterates through
all the agent’s queues in the computer.

3.5 Instances

As described in section 3.1, we run our experiments in a platform with six individual
machines sharing hard disk storage (where the problem instances are stored and seen
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01 procedure executeDistributedProblem(problem)
02 Statistics.clear();

03 //Init connections and clean all queues;

04 if master then

05 /[Create a control topic to broadcast messages to client computers, and create the Init and Finish queues
06 topic = createT opic(” Control”);

07 initQueue = createQueue(” Init”);

08 finishQueue = createQueue(” Finish”);

09 /IWait for client computers to subscribe to the topic and queues

10 System.wait(somemilliseconds);

11 numClients = topic.getSubscribers() + 1;

12 //Send Start message to all the clients subscribed to the Control topic
13 topic.sendMessage(” Start”);

14 /[Receives all the clients ids

15 do

16 msg = initQueue.receive();

17 clientsIds.add(msg.getld());

18 while (number of received messages less than numClients)

19 //Assigns problem variables to computers and informs with a message
20 msg = "";index = 0;

21 for each i in problem.variables.size()

22 msg.concat(clientsld[index],” handles”, problem.variable[i])
23 if index == numClients then index = 0;

24 topic.sendMessage(msg);

25 /IGet my variables, we assume one agent per variable

26 myAgents = get MyVariables(msg);

27 Statistics.initTime = getCurrentMilliseconds();

28 start AndProcess(myAgents);

29 Statistics. finishTime = getCurrentMilliseconds();

30 [receive finish message from every client with their local statistics before starting with a new problem

31 do

32 msg = finishQueue.receive();

33 updateGlobal Statistics(msg.getTime(), msg.get NCCC(), msg.getTotal Messages());
34 while (number of received messages less thann numClients)

35 if not master then
36 topic = getTopic(” Control”)
37 /IWait for Start message

38 do

39 msg = topic.receive();
40 while (msg is not received)

41 /ISend my client Id

42 initQueue = getQueue(” Init”);
43 initQueue.sendMessage(myld);

44 /IWait to receive my variables from master, we assume one agent per variable
45 do

46 msg = topic.receive();

47 myAgents = getMyVariables(msg);

48 while (msg is not received)

49 Statistics.initTime = getCurrentMilliseconds();

50 startAndProcess(myAgents);

51 Statistics. finishTime = getCurrentMilliseconds();

52 finishQueue = getQueue(” Finish”);

53 finishQueue.sendMessage(Statistics.getTime(), Statistics.get NCCC(), Statistics.getTotalMessages());
54 //Close connections and clean all queues;

55 procedure startAndProcess(myAgents)

56 do

57 for each agentin my Agents;

58 hasFinished = agent.ProcessQueue();
59 while (agents have not finished execution)

Fig. 2. Pseudocode of the communication protocol.



8 Francisco Cruz, Patricia Gutierrez, Pedro Meseguer

by all the computers in the network) and network connectivity (network connectivity
refers to the density of the problem and defines the ratio of existing constraints). We
generate 20 instances with 6 variables, domain size 10 and network connectivity 0.5.
Constrained variables are selected randomly until the specified network connectivity is
reached. Costs are selected randomly from the set 0-200 following a uniform distribu-
tion. Problem generation assures connected problems, so all agents are part of the same
constraint graph.

In order to explore all three scenarios described in Section 3.3, we use in our exper-
1ments:

— 6 computers for a fully distributed execution.

— 2 computers (overloading 3 agents per computer) for a partially distributed execu-
tion.

— 1 computer with the classic simulator for a fully simulated execution.

4 Experimental Results

Experimental evaluation appears in Figure 3. Results are given in three dimensions: the
number of exchanged messages, the number of NCCCs and the total elapsed time with
respect to each problem instance.

First thing to notice in the results is the contrast between the elapsed time graph and
the messages and NCCCs graph. While messages and NCCCs show a pretty similar
alignment in all three scenarios for each instance, in the elapse time graph we see clearly
that simulated and distributed solving show differences in several orders of magnitude.

Surprisingly, even though in the distributed resolution we have six times more com-
putational capacity, the time required to solve the instances distributively is significatly
higher than in the simulated case, where we only have a single computer. This is of
course the effect of network latency: since we are dealing with message exchange in a
real network, communication time is higher than in the simulated case, where sending a
message is just a logical operation in the computer CPU. A slowing effect in distributed
execution was expected, however we must say that we were surprised by how much
communication impacted final results.

In order to better understand this effect, we tried to reduce communication by in-
troducing a reading delay of 200 and 500 milliseconds in each agent. This is, each
agent was idle at each iteration during a random period of time (maximum 200 or 500
milliseconds), just before reading the input queue. Introducing this reading delay has
the following effect. If agents check their queue constantly, they are likely to change
value more often with each new piece of information they receive from the coordination
of neighboring agents. For each value change, they inform their neighbors generating
more messages (this is the case for BanB-ADOPT algorithm, for other solving algo-
rithms this might not be the case and others forms of communication reduction might be
tested). If we introduce a small delay before checking the message queue, we encourage
the probability that more than one message gets in the agent queue and is processed in
each iteration, generating less coordination demands. Results of this second experiment
are presented in Figure 4. We can see that messages and NCCCs are little affected by
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Fig. 3. Results of simulated and distributed execution without delay.

this delay and that the elapsed time increases as it is expected, obtaining therefore the
same kind of behavior as in our first experiment.

In the following subsections we discuss results in detail and provide our insight of
the observed metrics.

4.1 Number of Messages

The number of messages remains fairly similar between simulation and full/partial dis-
tributed execution. Small differences are more remarked in certain instances (instances
5 to 8, instances 12 and 13) where fully distributed execution is more message con-
suming and where, by introducing reading delays, we were able to soften this effect.
This indicates that, for some algorithms a roo eager response in a real scenario may
be counterproductive in terms of the total number of messages !. This appreciation has
to be carefully balanced though, since sending a message is a logical operation that is
an step forward in exploring the search space and delaying execution is normally not a
good idea (even if our logical metric decreases) as we can observe in the elapsed time
graph.

From this results we conclude that the number of exchanged messages can be seen
as a robust measure, somehow correlated with the size of the search space explored,
and relatively stable with respect to the degree of distribution of agents, communication
time and reading delay. On the other hand, as we know, it is not able to reflect how these
features impact in real execution time.

! This behavior may be explained in BnB-ADOPT™ as follows: at each iteration it reads all
messages until exhausting the input queue; a too eager reading means getting less messages
per iteration, which causes in reaction sending a higher number of messages (in this algorithm
agents send messages after reading their queue if, as result of incoming messages, they have
changed their value or new information about the current solution can be sent to other agents).

2 BnB-ADOPT™ messages are either constant or linear (at most the number of problem vari-
ables) size.
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Fig. 4. Results of simulated and distributed executions with reading delays.

4.2 NCCCs

For a more accurate idea of computation effort, NCCCs are generally used. In our ex-
periments the number of NCCCs remains fairly similar between simulation and real
execution. Small differences are more remarked in some instances (instances 7 and 12
and 13) but generally we obtain a similar trend.

NCCCs assess the longest sequence of non-concurrent constraint checks performed
in distributed constraint solving. Naturally, the execution flow in our simulated and
distributed executions is not exactly the same. Small differences in messages recep-
tion, caused by time synchronizations leading to different message orderings, might
cause variations in the agents coordination flow. However, we observe that within these
variations, optimal solutions are founded with approximately the same effort in each
execution (for example instance 4 is shown to be easy while instance 15 is shown to
be particularly hard in all executions, etc). The NCCCs metric has proved to reflect
robustly a measure of this effort, although it is not able to differentiate between a full
distribution of agents and a partial distribution, which can be, as we have seen, orders
of magnitude slower in elapsed time. This fact is relevant specially for partially dis-
tributed algorithms or for settings where one agents handles more than one variable,
whether the cost of network communication is measured in the same way as the cost of
local communication or it is not considered at all.

4.3 Elapsed Time

Elapsed time is the time measured since DCOP resolution starts until the latest agent ter-
minates. In simulation, generally, either message communication is assumed practically
instantaneous (fast network), or it costs a certain amount of NCCCs (slow networks).
Experiments revealed that communication time was quite large. A modern computer
with a clock speed of a few GHz and a reasonable communication network, sending a
message ° is at least 7 orders of magnitude more costly than performing a machine lan-

? Typical times of sending a message with current technology are: from 10° nanoseconds (local
area networks without routers) to 107 nanoseconds (communication networks with routers).

10 12 14 16 18 20
Instances
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guage operation, and from 3 to 5 orders of magnitude more costly than a table lookup
in main memory (without using any cache). This is the basic operation for a constraint
check (assuming constraints as tables). Differences are so large that, to assess elapsed
time, communication time has to be necessarily taken into account, either adding a
certain number to NCCCs (depending if communication is fast or slow), or the corre-
sponding times if we are measuring simulated time.

In simulation, if only NCCCs are used to approximate elapsed time, communication
effort is not fairly reflected and its usage to approximate elapsed time can be misleading.
The presented results show that communication time is significantly much larger that
we generally see in the literature, with a strong impact in the final execution time even
when disposing of a high computational capacity.

5 Conclusions

This experiment stresses the importance of communication time when DCOPs are solved
in a real scenario. To assess elapsed time, communication time has to be explicitly taken
into account, and it is orders of magnitude higher than the figures that have been used
in the literature to assess it in terms of equivalent NCCCs. It is also orders of magni-
tude higher than any reasonable computational effort done by an algorithm during one
iteration in a modern computer.

As future works, it remains to extend this experiment with a larger set of computers,
bigger size instances and other solving DCOP algorithms. Even though we are aware of
the limitations of these results and the fact that we have used a particular hardware and
a specific communication software, we believe that this work is an step forward trying
to close the gap between simulation and real execution. Its results may orientate DCOP
research, specially regarding those aspects based on empirical evaluations.
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