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Abstract—In this paper we consider the probability logic over
Rational Pavelka logic (RPL), denoted FP(RPL), and we explore
two possible approaches to reason from inconsistent FP(RPL)
theories in a non-trivial way. The first one amounts to replace
the logic RPL, that is explosive, by its paraconsistent degree-
preserving companion RPL. The second one consists of suitably
weakening the formulas in an inconsistent theory T , depending
on the degree of inconsistency of T .

Index Terms—Probabilistic reasoning; Łukasiewicz fuzzy logic;
Paraconsistent reasoning models; Inconsistency measures

I. INTRODUCTION

Reasoning about probability can be properly handled
in a fuzzy logical setting by expanding the language of
Łukasiewicz fuzzy logic with a unary modality P and in-
terpreting, for every classical formula ', the modal formula
P' as “' is probable”. Clearly, P' is a fuzzy proposition,
whose truth-degree can be taken as the probability of '. More
precisely, the fuzzy modal logic FP(Ł), as firstly introduced in
[4] and improved in [3], extends the language of Łukasiewicz
logic Ł by the unary modal operator P that applies only to
classical propositions and uses the ground logic Ł to express
the basic properties of a probability function (in particular the
finite additivity). Very recently, in [1] the authors have studied
in depth the relationship of this fuzzy logic-based approach to
more traditional probability logics after Halpern et al. see e.g.
[5]. In this paper we will rather consider the probability logic
FP(RPL) over Rational Pavelka logic (RPL), the expansion of
Łukasiewicz fuzzy logic with rational truth-constants.

In this paper we explore two possible approaches to reason
from inconsistent FP(RPL) theories in a non-trivial way. The
first one amounts to replace the external logic RPL, that is
explosive, by its paraconsistent companion RPL. The second
one amounts to suitably weaken formulas of an inconsistent
theory T depending on the degree of inconsistency of T .

II. THE PROBABILITY LOGICS FP(Ł) AND FP(RPL)
Based on a first formalisation in [4], the probability logic

FP(Ł) (FP for Fuzzy Probability) was introduced in [3] and
defined as a sort of modal extension with a unary operator
P over the well-known Łukasiewicz fuzzy logic Ł (see e.g.
[3] for details on both Ł and FP(Ł) logics). FP(Ł) allows for
reasoning about the probability of classical propositions.

Let L denote the language of classical propositional logic
(CPL) built from a countable set V of propositional variables
using the classical binary connectives ^ and ¬ Then, the
language of FP(Ł) is defined as follows. Formulas of FP(Ł)
are of two types:
(1) Non-modal: they are the classical logic formulas of L and
will be denoted by lower case Greek letters ', , . . ..
(2) Modal: they are built from basic modal formulas of the
form P', where ' 2 L using the connectives of Ł (!L,¬),
and denoted by upper case Greek letters �, , . . ..

This is a two-layer language, neither nested modalities nor
formulas combining non-modal and modal subformulas are
not allowed.

Axioms and rules of FP(Ł) are as follows:
(CPL) Axioms and rules of CPL for non-modal formulas;
(Ł) Axioms and rules of Ł for modal formulas;
(P) Axioms and rules for the modality P :

(P1) P ('!  )!L (P (')!L P ( ))
(P2) P (¬')$L ¬P (')
(P3) P (' _  )$L [P (')� (P ( ) P (' ^  ))]1

(Nec) if `CPL ', derive P (').
Models of FP(Ł) are probability Kripke structures K =

hW, e, µi, where: W is a non-empty set of possible worlds;
e : V ⇥ W ! {0, 1} provides for each world a Boolean
(two-valued) evaluation of the proposition variables, that is,
e(p, w) 2 {0, 1} for each propositional variable p 2 V ar and
each world w 2W ; and µ : 2W ! [0, 1] is a finitely additive
probability measure on a Boolean algebra of subsets of W
such that for each p, the set {w | e(p, w) = 1} is measurable
(cf. [3] 8.4.1). A truth-evaluation e is extended to non-modal
formulas in the classical way, to elementary modal formulas
as follows:

e(P', w) = µ({w0 2W | e(', w0) = 1}),

and to compound modal formulas by using the truth-functions
of Ł logic. Actually e(P', w) does not depend on w and
we will write e(�).2 We will also denote by eµ the truth-
evaluation on modal formulas determined by the model
h⌦, e, µi, where ⌦ is the set of classical models for L.

1Recall that �� := ¬�!L  and �  := ¬(�!L  ).
2Recall e(� !L  ) = min(1 � e(�) + e( ), 0), e(¬�) = 1 � e(�),

e(�� ) = min(e(�)+ e( ), 1) and e(�  ) = max(e(�)� e( ), 0).
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Soundness and completeness of the logic FP(Ł) w.r.t. to
the class of probability Kripke models reads as follows: if
T [{�} is a finite set of modal FP(Ł)-formulas, then T proves
� in FP(Ł), written T `FP �, iff for any probability µ on ⌦,
eµ(�) = 1 whenever eµ( ) = 1 for all  2 T .

If one wants to formalise reasoning with numeric
probabilistic expressions, then one has to replace in FP(Ł)
the (external) logic Ł by its expansion with rational truth-
constants, the so-called Rational Pavelka logic (RPL for
short). So we add to the language of Ł a rational truth
constant r for every rational r 2 [0, 1]. As Hájek shows [3],
Rational Pavelka logic can be then axiomatized by adding
to the axioms Łukasiewicz the following bookkepping axioms:

(BK) r ! s ⌘ min(1, 1� r + s)

for any rational numbers r, s 2 [0, 1]. The resulting probabil-
ity logic, FP(RPL), inherits the soundness and completeness
results from FP(Ł), where now FP(RPL)-evaluations eµ are
further equired to correctly interpret the truth-constants, that
is, e(r) = r for every rational r 2 [0, 1].

III. DEALING WITH INCONSISTENT FP(RPL) THEORIES

As the probability logic FP(RPL) is grounded on the RPL
logic, the latter being explosive, the logic FP(RPL) is explosive
as well. This means that, for any formula � in the language
of FP(RPL), {�,¬�} `FP ?, and thus {�,¬�} `FP  for
any  . Our contribution consists in presenting two approaches
to escape the explosion principle in FP(RPL) and to handle
inconsistent probabilistic theories in a non-trivial way, briefly
introduced below.

A. A paraconsistent probability logic
The first approach consists in replacing RPL by its “degree

preserving companion”, denoted by RPL. Conforming to the
usual way of defining deductions in degree-preserving logics,
given two modal formulas we define � and  , � `FP  
iff for every probabilistic Kripke model M = (W, e, µ) of
FP(RPL), k�kM  k kM. This generalises to the more
general case in which T = {�1, . . . ,�n} is any finite set of
modal formulas by defining T `FP  iff for all probabilistic
Kripke model M,

k�1 ^ . . . ^ �nkM  k kM.

Let us notice that the logic FP(RPL) is not explosive,
and hence paraconsistent. Indeed, for each classical formula
' that is neither a classical theorem nor a contradiction,
P ('),¬P (') 6`FP ? because, semantically, one can find
a probability µ that assigns µ(') = 1/2 and this gives

min{µ('), µ(¬')} = 1/2 > 0.

B. An inconsistency-tolerant probabilistic logic
Recall that, from a semantical point of view, the logic

FP (Ł) is defined as follows: for any set of FP(Ł)-formulas
T [ {�}, T |=FP � if, for every probability µ on Boolean
formulas, if µ is a model of T then eµ(�) = 1, where by

µ being a model of T we mean that eµ( ) = 1 for every
 2 T . We will denote by kTk the set probability measures
on formulas that are models of T .

Of course, the above definition trivializes in the case T
is inconsistent, i.e. when kTk = ;. But in FP(Ł) one can
take advantage of its fuzzy setting and consider the notion of
(in)consistency as being fuzzy as well. Indeed, even if T has
no models, a situation where, for every probability µ there is
always a formula � in T such that eµ(�) = 0, is qualitatively
different from a situation where there is a probability µ such
that eµ(�) � ↵ for all � 2 T , for some value ↵ close to 1.
In the former case T is clearly inconsistent, while in the latter
case one could say that T is close to being consistent.

This observation justifies to define, for each threshold ↵,
the set of ↵-generalised models of T as follows:

kTk↵ = {probability µ | for all  2 T, eµ( ) � ↵}.

Note that the set kTk1 coincides with the set of usual models
of T . Moreover kTk↵ is a convex set of probabilities.

Definition 3.1: Let T be a theory of FP (Ł). The consistency
degree of T is defined as Con(T ) = sup{� 2 [0, 1] |
kTk� 6= ;}. Dually, the inconsistency degree of T is defined as
Incon(T ) = 1�Con(T ) = inf{1� � 2 [0, 1] | kTk� 6= ;}.3

The idea we explore in this paper is to use ↵-generalised
models instead of usual models to define a context-dependent
inconsistent-tolerant notion of probabilistic entailment.

Definition 3.2: Let T be a theory such that Con(T ) = ↵ >
0. We define: T |⇡⇤ � if eµ(�) = 1 for all probabilities
µ 2 kTk↵.
Note that if Con(T ) > 0, then T |6⇡⇤ ?, hence |⇡⇤ does
not trivialize even if T is inconsistent (Con(T ) < 1). As
an example, if T = {P' $L 0.4, P' $L 0.3}, that is
inconsistent, then Con(T ) = 0.95 and T |⇡⇤ 0.35$L P'.

The following are some interesting properties of the conse-
quence relation |⇡⇤: clearly, |⇡⇤ is not monotonic, while |⇡⇤

is idempotent, that is, if S |⇡⇤' and T |⇡⇤ for all  2 S,
then T |⇡⇤'.
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