
Chapter 19

The Logic Behind Weighted CSP

The Weighted Constraint Satisfaction Problem (WCSP) is a well known soft
constraint framework for modeling over-constrained problems with practical
applications in domains such as resource allocation, combinatorial auctions
and bioinformatics. WCSP is an optimization version of the CSP framework
in which constraints are extended by associating costs to tuples. Solving a
WCSP instance, which is NP-hard, consists of finding a complete assignment
of minimal cost.

Global consistency WCSP algorithms such as Bucket Elimination [DEC 99]
solve WCSP instances without search. They obtain an optimal solution by
applying, to the original instance, transformations that preserve cost distribu-
tions. On the other hand, WCSP algorithms such as PFC [FRE 92], PFC-
MRDAC [LAR 96], Russian Doll Search [VER 96], MAC∗ [LAR 04], MFDAC∗

[LAR 03], and MEDAC∗ [GIV 05] perform a systematic search in the space of
all possible assignments following a branch and bound schema. They differ in
the method of computing a lower bound at each node of the proof tree to prune
some parts of the search space. Modern algorithms such as MAC∗, MFDAC∗

and MEDAC∗ enforce some extension of Arc Consistency (AC) to WCSP —
Soft AC (AC∗), Full Directional AC (FDAC∗) or Existential Directional AC
(EDAC∗)— when computing that lower bound.

In this chapter we relate ideas from three different research communities —
Multiple-Valued Logic, Satisfiability and Constraint Processing— with the aim
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of describing the underlying logic of WCSP. First, we define an encoding, called
signed encoding, that transforms any WCSP instance to a Signed Max-SAT
instance, where Signed Max-SAT is the Max-SAT problem of the multiple-
valued clausal forms known as signed CNF formulas. Second, we define a
complete resolution calculus for solving Signed Max-SAT. Third, we devise an
exact algorithm for solving WCSP from the completeness proof of the resolution
calculus. Fourth, we define several sound inference rules for Signed Max-SAT
that enforce some known arc consistency properties when applied to the signed
encoding of any binary WCSP instance.

The connection between recent results for Boolean Max-SAT [BON 06] and
the existing results for WCSP is established via the logic of signed CNF for-
mulas. Signed CNF formulas are clausal forms based on a generalized notion
of literal, called signed literal. A signed literal is an expression of the form S :p,
where p is a propositional variable and S, its sign, is a subset of a domain N .
The informal meaning of S :p is “p takes one of the values in S”. Signed CNF
formulas have their origin in the community of automated theorem proving in
many-valued logics, where they are used as a generic and flexible language for
representing many-valued interpretations [BEC 00, HÄH 01]. Nevertheless, in
this chapter we are interested in their use as a constraint programming lan-
guage between CSP and SAT that offers a good trade-off between expressivity
and efficiency [ANS 03, ANS 04, BÉJ 01, BEC 99].

The structure of the chapter is as follows. Section 19.1 contains preliminary
definitions and the signed encoding. Section 19.2 defines the inference rule
for signed Max-SAT and proves its soundness and completeness. Section 19.3
describes an exact algorithm for solving Weighted CSP. Section 19.4 defines four
derived rules that enforce soft local consistency properties. Finally, Section 19.5
presents the conclusions of our work.

19.1. Preliminaries

In this section we define the syntax and semantics of signed CNF formulas,
the concept of WCSP, and a reduction from WCSP to Signed Max-SAT.

Definition 19.1.– A truth value set, or domain, N is a non-empty finite
set {i1, i2, . . . , in} where n denotes its cardinality. A sign is a subset S ⊆ N of
truth values. A signed literal is an expression of the form S :p, where S is a sign
and p is a propositional variable. The complement of a signed literal l of the
form S :p, denoted by l, is S :p = (N \ S):p. A signed clause is a disjunction
of signed literals. A signed CNF formula is a multiset of signed clauses.

Definition 19.2.– An assignment for a signed CNF formula is a mapping that
assigns to every propositional variable an element of the truth value set. An
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assignment I satisfies a signed literal S :p iff I(p) ∈ S, satisfies a signed clause C

iff it satisfies at least one of the signed literals in C, and satisfies a signed CNF
formula Γ iff it satisfies all clauses in Γ. A signed CNF formula is satisfiable
iff it is satisfied by at least one assignment; otherwise it is unsatisfiable.

Definition 19.3.– The Signed Max-SAT problem for a signed CNF formula
consists of finding an assignment that minimizes the number of falsified signed
clauses.

Definition 19.4.– A constraint satisfaction problem (CSP) instance is de-
fined as a triple 〈X, D, C〉, where X = {x1, . . . , xn} is a set of variables,
D = {d(x1), . . . , d(xn)} is a set of domains containing the values the vari-
ables may take, and C = {C1, . . . , Cm} is a set of constraints. Each con-
straint Ci = 〈Si, Ri〉 is defined as a relation Ri over a subset of variables
Si = {xi1 , . . . , xik

}, called the constraint scope. The relation Ri may be repre-
sented extensionally as a subset of the Cartesian product d(xi1 )× · · ·× d(xik

).

Definition 19.5.– An assignment v for a CSP instance 〈X, D, C〉 is a map-
ping that assigns to every variable xi ∈ X an element v(xi) ∈ d(xi). An assign-
ment v satisfies a constraint 〈{xi1 , . . . , xik

}, Ri〉 ∈ C iff 〈v(xi1 ), . . . , v(xik
)〉 ∈

Ri.

Definition 19.6.– A Weighted CSP (WCSP) instance is defined as a triple
〈X, D, C〉, where X and D are variables and domains as in CSP. A constraint
Ci is now defined as a pair 〈Si, fi〉, where Si = {xi1 , . . . , xik

} is the constraint
scope and fi : d(xi1 ) × · · · × d(xik

) → N is a cost function. The cost of
a constraint Ci induced by an assignment v in which the variables of Si =
{xi1 , . . . , xik

} take values bi1 , . . . , bik
is fi(bi1 , . . . , bik

). An optimal solution to
a WCSP instance is a complete assignment in which the sum of the costs of
the constraints is minimal.

Definition 19.7.– The Weighted Constraint Satisfaction Problem (WCSP)
for a WCSP instance consists of finding an optimal solution for that instance.

Definition 19.8.– The signed encoding of a WCSP instance 〈X, D, C〉 is
the signed CNF formula over the domain N =

⋃

xi∈D d(xi) that contains for
every possible tuple 〈bi1 , . . . , bik

〉 ∈ d(xi1 ) × · · · × d(xik
) of every constraint

〈{xi1 , . . . , xik
}, fi〉 ∈ C, fi(bi1 , . . . , bik

) copies of the signed clause:

{bi1}:xi1 ∨ · · · ∨ {bik
}:xik

.

An alternative encoding is to consider signed clauses with weights instead of
allowing multiple copies of a clause. For the sake of clarity we use unweighted
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Figure 19.1. A WCSP instance and its signed encoding

clauses. Nevertheless, any efficient implementation of the algorithms proposed
should deal with weighted clauses. The extension of our theoretical results to
weighted clauses is straightforward.

Proposition 19.9.– Solving a WCSP instance P is equivalent to solving the
Signed Max-SAT problem of its signed encoding; i.e., the optimal cost of P

coincides with the minimal number of unsatisfied signed clauses of the signed
encoding of P .

Proof.– For every combination of values to the variables of the scope of a
constraint Ci = 〈Si, fi〉 , the signed encoding contains as many clauses as the
cost associated with that combination. If an assignment of the signed encoding
restricted to the variables of Si coincides with a combination of Ci with cost
0, then all the clauses of the signed encoding introduced by Ci are satisfied
because there is no clause forbidding that combination. If an assignment of the
signed encoding restricted to the variables of Si coincides with a combination
〈bi1 , . . . , bik

〉 of Ci with cost u, where u > 0, then, by construction of the signed

encoding, only the u clauses of the form {bi1}:xi1 ∨ · · · ∨ {bik
}:xik

are falsified
among the clauses introduced by Ci.

Example.– Figure 19.1 shows a WCSP instance 〈X, D, C〉 and its signed en-
coding. The WCSP has the set of variables X = {x1, x2, x3} with domains
d(x1) = d(x2) = d(x3) = {a, b, c}. There is a binary constraint between vari-
ables x1 and x2, a binary constraint between variables x2 and x3, and a unary
constraint for every variable. Unary costs are depicted inside small circles. Bi-
nary costs are depicted as labeled edges connecting the corresponding pair of
values. The label of each edge is the corresponding cost. If two values are not
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connected, the binary cost between them is 0. In this instance, the optimal
cost is 2.

19.2. The Inference Rule. Soundness and Completeness

We define a resolution rule for solving signed Max-SAT, called Signed Max-
SAT Resolution, and prove its soundness and completeness. This rule was
inspired by previous works [LAR 05, BON 06] for Max-SAT. The completeness
proof for signed CNF formulas is technically more involved than the proof for
Boolean CNF formulas.

Definition 19.10.– The Signed Max-SAT Resolution rule is defined as follows

S :x ∨ a1 ∨ · · · ∨ as

S′ :x ∨ b1 ∨ · · · ∨ bt

S ∩ S′ :x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt

S ∪ S′ :x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt

S :x ∨ a1 ∨ · · · ∨ as ∨ b1

S :x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ b2

· · ·
S :x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt−1 ∨ bt

S′ :x ∨ b1 ∨ · · · ∨ bt ∨ a1

S′ :x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ a2

· · ·
S′ :x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ · · · ∨ as−1 ∨ as

This inference rule is applied to multisets of clauses, and replaces the premises
of the rule by its conclusions. We say that the rule resolves the variable x. The
tautologies concluded by the rule like N :x ∨ A are removed from the resulting
multiset. Also we substitute clauses like S :x∨ S′ :x∨A by (S ∪ S′):x∨A, and
clauses like ∅:x ∨ A by A.

Definition 19.11.– We write C ⊢ D when the multiset of clauses D can be
obtained from the multiset C applying the rule finitely many times. We write
C ⊢x C′ when this sequence of applications only resolves the variable x.

In the context of Max-SAT problems, an inference rule is sound iff the
number of falsified clauses in the premises is equal to the number of falsified
clauses in the conclusions for any complete assignment.

Theorem 19.12.– [Soundness] The signed Max-SAT resolution rule is sound.

Proof.– Let I be an arbitrary assignment. There are four cases:
1. If I falsifies the two premises, then I only falsifies the first two conclusions.
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2. If I satisfies the two premises, then it also trivially satisfies the last s + t

clauses of the conclusion, because they are either implied by one or the other
premise. The second clause of the conclusion is implied by each one of the
premises. Therefore, it is also satisfied by I. The first clause of the conclusion
is not implied by the premises. However, if both premises are satisfied then we
have two cases. If S :x and S′ :x are both satisfied, then so it is (S ∩ S′):x.
Otherwise, either some ai’s or some bj’s is satisfied, thus also the first clause
of the conclusion.
3. If I satisfies the first premise, but not the second one, then the second clause
of the conclusion as well as the t following clauses are satisfied, because all them
are implied by the first premise. For the rest of conclusions, there are two cases:
If some of the ai’s is satisfied, then let i be the index of such a. The assignment
will satisfy the first clause of the conclusion and the last s conclusions, except
S′ :x∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ · · · ∨ ai−1 ∨ ai that is falsified. Otherwise none of the
ai’s is satisfied, and therefore, S :x is satisfied. Hence, the first conclusion is
falsified, and the last s conclusions are satisfied.
4. If I satisfies the second premise, but not the first one, the situation is
analogous to previous case.

Definition 19.13.– A multiset of clauses C is said to be saturated w.r.t. x

if, for every pair of clauses C1 = S :x ∨ A and C2 = S′ :x ∨ B of C, it holds
(i) there are literals S1 :y in A and S2 :y in B such that S1 ∪ S2 = N , or (ii)
S ∩ S′ = S or S ∩ S′ = S′.

A multiset of clauses C′ is a saturation of C w.r.t. x if C′ is saturated w.r.t. x

and C ⊢x C′, i.e. C′ can be obtained from C applying the inference rule resolving
x finitely many times.

We assign to every clause C a score s(C) equal to the number of assignments
to the variables that falsify C. The score of a multiset of clauses is the sum of
scores of the clauses contained in it.

Lemma 19.14.– For every multiset of clauses C and variable x, there exists a
multiset C′ such that C′ is a saturation of C w.r.t. x.

Proof.– We proceed by applying nondeterministically the inference rule re-
solving x, until we obtain a saturated multiset. We only need to prove that this
process terminates in finitely many inference steps, i.e that there does not exist
infinite sequences C = C0 ⊢ C1 ⊢ . . . , where at every inference we resolve the
variable x and none of the sets Ci are saturated. Let M be the score of C.

Let us partition the multiset C of clauses into n multisets (n is the size of the
domain), {B0, B1, . . . , Bn−1}, where Bi contains the clauses where the cardi-
nality of the support of x is i. Notice that B0 is the multiset of clauses that do
not contain the variable x. Let us denote by s(Bi) the score of the multiset Bi.
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We will look at these n multisets as a word of length n and base M + 1. So
our multiset will be represented by the number s(B0) s(B1) · · · s(Bn−1), taking
s(B0) as the most significant digit. Since Bi is a subset of C, for i = 0, . . . , n−1,
s(Bi) ≤ M .

When we apply our inference rule, we take two clauses, say one from Bi and
one from Bj and substitute them by a set of clauses that we will distribute
among the different Bk’s. Now we have a new multiset of clauses and by the
soundness of our rule the score of the new multiset is the same. But, if we
again look at the multiset as a number in base M , the number will be different.
We will argue that for each inference step, the number increases. Say that the
clauses we do inference are S :x∨A ∈ B|S| and S′ :x∨B ∈ B|S′|. By the infer-
ence step we remove these clauses and add some clause in B|S∩S′|, and maybe
also some clauses in B|S|, B|S′| and B|S∪S′|. Since, by definition of saturation
S ∩ S′ 6= S and S ∩ S′ 6= S′, we know that |S ∩ S′| < |S|, |S′| < |S ∪ S′|,
hence the digit of B|S∩S′| is more significant than the digits of B|S|, B|S′| and
B|S∪S′|. We have to conclude that the new M-base number after the inference
step is larger than before. Since the largest possible number we can obtain is the
one represented as s(B0)s(B1) · · · s(Bn−1) = M0 · · ·0 the saturation procedure
for x has to finish before Mn steps.

Lemma 19.15.– Let E be a saturated multiset of clauses w.r.t. x. Let E ′ be
the subset of clauses of E not containing x. Then, any assignment I satisfying
E ′ (and not assigning x) can be extended to an assignment satisfying E.

Proof.– We have to extend I to satisfy the whole E. In fact we only need to
set the value of x. Let us partition the multiset (E − E ′) (multiset of clauses
that contain the variable x) into two multisets: (E − E ′)T the multiset already
satisfied by I, and (E − E ′)F the multiset such that the partial assignment I

doesn’t satisfy any of the clauses. Our aim is to show that the intersection of
all the supports of x in (E − E ′)F is non-empty. This way we will extend I by
assigning x to a value in the intersection of all the supports.

Since E is saturated, for every pair of clauses C1 = S :x∨A and C2 = S′ :x∨B

in (E − E ′)F either condition i) or ii) of the definition happens. Condition i)
cannot happen because C1 and C2 cannot both be in (E − E ′)F . Therefore, for
every pair of clauses, C1 = S :x∨A and C2 = S′ :x∨B in (E − E ′)F , S∩S′ = S

or S ∩ S′ = S′. Now, we order all the supports of x appearing in (E − E ′)F

in decreasing order of their cardinality. It is straightforward to see that every
support is contained or equal to its predecessor. Particularly, the last support
is equal to the intersection of all the supports, and it is non-empty.
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Theorem 19.16.– [Completeness] For any multiset of clauses C, we have

C ⊢ , . . . ,
︸ ︷︷ ︸

m

,D

where D is a satisfiable multiset of clauses, and m is the minimum number of
unsatisfied clauses of C.

Proof.– Let x1, . . . , xn be any list of the variables of C. We construct two
sequences of multisets C0, . . . , Cn and D1, . . . ,Dn such that (1) C = C0, (2) for
i = 1, . . . , n, Ci∪Di is a saturation of Ci−1 w.r.t. xi, and (3) for i = 1, . . . , n, Ci

is a multiset of clauses not containing x1, . . . , xi, and Di is a multiset of clauses
containing the variable xi. By lemma 19.14, these sequences can effectively be
computed: for i = 1, . . . , n, we saturate Ci−1 w.r.t. xi, and then we partition the
resulting multiset into a subset Di containing xi, and another Ci not containing
this variable. Notice that, since Cn does not contain any variable, it is either
the empty multiset ∅, or it only contains (some) empty clauses { , . . . , }.

Now we are going to prove that the multiset D =
⋃n

i=1 Di is satisfiable by
constructing an assignment satisfying it. For i = 1, . . . , n, let Ei = Di∪· · ·∪Dn,
and let En+1 = ∅. Notice that, for i = 1, . . . , n, (1) the multiset Ei only contains
the variables {xi, . . . , xn}, (2) Ei is saturated w.r.t. xi, and (3) Ei decomposes
as Ei = Di ∪ Ei+1, where all the clauses of Di contain xi and none of Ei+1

contains xi.

Now, we construct a sequence of assignments I1, . . . , In+1, where In+1 is the
empty assignment, hence satisfies En+1 = ∅. Now, Ii is constructed from Ii+1

as follows. Assume by induction hypothesis that Ii+1 satisfies Ei+1. Since Ei

is saturated w.r.t. xi, and decomposes into Di and Ei+1, by lemma 19.15, we
can extend Ii+1 with an assignment for xi to obtain Ii satisfy Ei. Iterating, we
get that I1 satisfies E1 = D =

⋃n

i=1 Di. Concluding, since by the soundness of
the rule (Theorem 19.12) the inference preserves the number of falsified clauses
for every assignment, m = |Cn| is the minimum number of unsatisfied clauses
of C.

19.3. Global Consistency in WCSP

From the proof of Theorem 19.16, we can extract an exact algorithm for
solving WCSP. Given an initial WCSP instance P with k variables, the algo-
rithm in Figure 19.2 returns the minimal cost m of P and an optimal solution I.

The function saturation(Ci−1, xi) computes a saturation of Ci−1 w.r.t. xi

applying the resolution rule resolving x until it gets a saturated set. Lemma 19.14
ensures that this process terminates, in particular that it does not cycle. As
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input: A WCSP instance P

C0 := signed encoding(P )
for i := 1 to k

C := saturation(Ci−1 , xi)
〈Ci, Di〉 := partition(C, xi)

endfor
m := |Ck|
I := ∅
for i := k downto 1

I := I ∪ [xi 7→ extension(xi, I, Di)]
output: m, I

Figure 19.2. Exact algorithm for solving WCSP

we have already said, the saturation of a multiset is not unique, but the proof
of Theorem 19.16 does not depend on which particular saturation we take.

The function partition(C, xi) computes a partition of C, already saturated,
into the subset of clauses containing xi and the subset of clauses not contain-
ing xi.

The function extension(xi, I, Di) computes an assignment for xi extend-
ing the assignment I, to satisfy the clauses of Di according to Lemma 19.15.
The function filters all clauses of Di that are not satisfied by I. Then it com-
putes the intersection of the supports for xi of all of them, and returns one of
the values of such an intersection. It returns a value from ∩{S |S :xi ∨ A ∈
Di and I falsifies A}. The argumentation of the proof of Lemma 19.15 ensures
that this intersection is not empty. The order on the saturation of the variables
can be freely chosen, i.e. the sequence x1, . . . xn can be any enumeration of the
variables.

A similar approach to this algorithm was defined using bucket elimina-
tion [DEC 99]. Even though both procedures have the same exponential worst-
case complexity, we believe that our algorithm can give rise to a better per-
formance profile, in the sense that our computation of the joint operation is
incremental.

19.4. Local Consistency in WCSP

In WCSP a number of local consistency properties have been proposed.
These local properties do not ensure the global consistency of a set of con-
straints. However, they can be enforced very efficiently and used to find a
lower bound of the cost.
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In this section we focus on binary WCSP instances as in [LAR 03, GIV 05].
We assume the existence of a unary constraint for every variable xi. If no such
a constraint is defined, we can always define a dummy constraint as f(ak) = 0
for every ak ∈ d(xi). We will use the standard notation for binary WCSP in
the literature: Ci will denote a unary constraint over a variable xi, and Cij

will denote a binary constraint between variables xi and xj ; Ci(ak), where
ak ∈ d(xi), will denote f(ak), and Cij(ak, bl), where ak ∈ d(xi) and bl ∈ d(xj),
will denote f(ak, bk).

Definition 19.17.– Variable xi is node consistent if there exists a value
ak ∈ d(xi) such that Ci(ak) = 0. A WCSP is node consistent (NC∗) if every
variable is node consistent.

Definition 19.18.– Given a binary constraint Cij , the value b ∈ d(xj) is a
simple support for a ∈ d(xi) if Cij(a, b) = 0, and is a full support if Cij(a, b)+
Cj(b) = 0. Variable xi is arc consistent if every value a ∈ d(xi) has a simple
support in every constraint Cij . A WCSP is arc consistent (AC∗) if every
variable is node and arc consistent.

Definition 19.19.– Variable xi is full arc consistent if every value a ∈ d(xi)
has a full support in every constraint Cij . A WCSP is full arc consistent
(FAC∗) if every variable is node and full arc consistent.

Definition 19.20.– Let > be a total ordering over the variables of a WCSP.
Variable xi is directional arc consistent (DAC) if every value a ∈ d(xi) has a
full support in every constraint Cij such that xj > xi. It is full directional arc
consistent (FDAC) if, in addition, every value a ∈ d(xi) has a simple support
in every constraint Cij such that xj < xi. A WCSP is full directional arc
consistent (FDAC∗) if every variable is node and full directional arc consistent.

Definition 19.21.– Let > be a total ordering over the variables of a WCSP.
Variable xi is existential arc consistent if there is at least one value a ∈ d(xi)
such that Ci(a) = 0 and has a full support in every constraint Cij . A WCSP is
existential arc consistent (EAC∗) if every variable is node and existential arc
consistent. A WCSP is existential directional arc consistent (EDAC∗) if it is
FDAC∗ and EAC∗.

In what follows we define four sound inference rules for a sub-language of
signed formulas. We just consider clauses with at most two literals and whose
signs are complements of singletons. This language captures binary WCSP
instances. As we will see bellow, the rules enforce some known local consistency
properties. In the next rules we assume that N = {i1, . . . , in} = {j1, . . . , jn}
and j ∈ N .
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Rule 1:

{i1}:x
· · ·

{in}:x

Rule 2:

{i1}:x ∨ {j}:y
· · ·

{in}:x ∨ {j}:y

{j}:y

Rule 3:

{i1}:x ∨ {j1}:y
· · ·

{is}:x ∨ {j1}:y

{is+1}:x
· · ·

{in}:x

{j1}:y

{is+1}:x ∨ {j2}:y
· · ·

{is+1}:x ∨ {jn}:y
· · ·

{in}:x ∨ {j2}:y
· · ·

{in}:x ∨ {jn}:y

Rule 4:

{i1}:x ∨ {j1}:y
· · ·

{is}:x ∨ {j1}:y

{is+1}:x
· · ·

{in}:x

{j2}:y
· · ·

{jn}:y

{is+1}:x ∨ {j2}:y
· · ·

{is+1}:x ∨ {jn}:y
· · ·

{in}:x ∨ {j2}:y
· · ·

{in}:x ∨ {jn}:y

Lemma 19.22.– Star node consistency (NC*) can be enforced applying rule 1.

Proof.– Say xi is a variable of a WCSP that is not star node consistent.
Then for every j ∈ N , Ci(j) > 0. Let be w = min{Ci(j) | j ∈ N} and k such
that Ci(k) = w. This means that in the corresponding signed encoding we have
Ci(j) copies of {j}:xi, for all j ∈ N . Rule 1 applied to the encoding w many
times will remove w copies of {j}:xi, for all j ∈ N , hence all the copies of
{k}:xi. Therefore, the WCSP equivalent to the new encoding has the star node
consistency property of the variable xi.

Lemma 19.23.– Arc consistency (AC*) can be enforced applying rule 2.

Proof.– Say xi is a variable that is not arc consistent with respect to a con-
straint Cij , for some variable xj . This means that there is a value a ∈ N such
that for all b ∈ N , Cij(a, b) > 0. Let be w = min{Cij(a, b) | b ∈ N}. The
constrain Cij will generate among others Cij(a, b) copies of {a}:xi ∨ {b}:xj , for
every b ∈ N . Applying rule 2 w many times, we substitute these clauses by w

copies of {a}:xi and Cij(a, b) − w copies of {a}:xi ∨ {b}:xj , for every b ∈ N .
Since there is one value k such that Cij(a, k) − w = 0, this new set of clauses
indicates that now variable xi is arc consistent with respect to Cij , for the value
a. Arc consistency for other values would be obtained in the same way.
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The previous two lemmas where proved for domains of size two in [LAR 05].

Lemma 19.24.– Fixed a total ordering > on the variables, Directional Arc
Consistency (DAC) can be enforced from rule 3 applied with the restriction
x > y.

Proof.– Let > be a total ordering on the variables. Say xi is a variable
that is not directional arc consistent with respect to a restriction Cij for some
variable xj where xj > xi. This means that there is a value a ∈ N such
that for all b ∈ N , Cij(a, b) + Cj(b) > 0. Suppose that there is some b such
that Cij(a, b) = 0, otherwise we can use rule 2 to enforce arc consistency.
W.l.o.g. suppose that, for s ∈ {k . . . n}, Cij(a, s) = 0. So, for the same sub-
domain, Cj(s) > 0. This ensures that we have the following subset of clauses
{{a}:xi ∨ {1}:xj , . . . , {a}:xi ∨ {k − 1}:xj , {k}:xj , . . . , {n}:xj}. Rule 2 allows us
to substitute this set of clauses by {{a}:xi} ∪

⋃

c 6=a,b∈{1...k−1}{{c}:xi ∨ {b}:xj}.

Applying rule 3 repeatedly the values {k . . . n} of xj become the full support for
xi.

Rule 4 enforces DAC∗, since it combines DAC and NC∗. Rule 3 also enforces
full arc consistency (FAC∗), but then it must be applied without the limitation
x > y. Existential Arc Consistency (EAC∗) can also be obtained from rule 3
but with different limitations than DAC∗ (in order to avoid cycles).

Example.– Figure 19.3 shows a sequence of equivalent signed Max-SAT in-
stances obtained by applying rules 1, 2 and 3. The sequence of transformations
is: a) original formula, b) application of rule 1 to clauses 1, 3 and 5, c) appli-
cation of rule 2 substituting clauses 8, 9 and 10 by clause 12, d) application
of rule 3 substituting clauses 6, 7 and 12 by 13, 14 and 15, and e) application
of rule 1 to clauses 2, 4 and 13. The minimal cost is 2. The corresponding
sequence of WCSP instances is: a) original instance, b) is NC* but not AC*,
c) is AC* but not DAC*, d) is DAC* but not NC* and e) is DAC* and NC*.

19.5. Conclusions

We have proved that the logic of signed CNF formulas provides the under-
lying logic of WCSP. On the one hand, this language allows a compact and
natural representation of WCSP with not only binary but n-ary constraints.
On the other hand, the inference system we have defined captures and formal-
izes the local consistency properties that have been described in the WCSP
community, and provides a new exact algorithm for solving WCSP.

Signed CNF formulas have been used here to extend a Max-SAT result
[BON 06] to WCSP, but they can also be used to bridge the gap between CSP
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a) b) c) d) e)

1 : {a} : x1 2 : {a} : x1 2 : {a} : x1 2 : {a} : x1 11 :

2 : {a} : x1 4 : {b} : x1 4 : {b} : x1 4 : {b} : x1 14 : {a} : x1 ∨ {c}x2

3 : {b} : x1 6 : {c} : x1 ∨ {a}x2 6 : {c} : x1 ∨ {a}x2 11 : 15 : {c} : x1 ∨ {c}x2

4 : {b} : x1 7 : {c} : x1 ∨ {b}x2 7 : {c} : x1 ∨ {b}x2 13 : {c} : x1 16 :

5 : {c} : x1 8 : {a} : x3 ∨ {c}x2 11 : 14 : {a} : x1 ∨ {c}x2

6 : {c} : x1 ∨ {a}x2 9 : {b} : x3 ∨ {c}x2 12 : {c}x2 15 : {c} : x1 ∨ {c}x2

7 : {c} : x1 ∨ {b}x2 10 : {c} : x3 ∨ {c}x2

8 : {a} : x3 ∨ {c}x2 11 :

9 : {b} : x3 ∨ {c}x2

10 : {c} : x3 ∨ {c}x2

Figure 19.3. Example of the application of the rules

and SAT. On the one hand, the solving techniques developed for SAT can be
extended to signed SAT in a natural way with a low overhead. On the other
hand, the problem structure exploited in CSP encodings can also be exploited
in Signed SAT encodings. While the structure of the domains of the variables is
hidden in SAT encodings of CSPs, it is made explicit in Signed SAT encodings.
It is an open problem to know whether the logic of signed CNF formulas can
give new insights to devise CSP solving techniques with better performance
profile.
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Deduction, vol. 17 of Applied Logic Series, p. 61–82, Kluwer, Dordrecht, 2000.
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