
A temporal argumentation

approach to cooperative planning

using dialogues

PERE PARDO, Department of Philosophy and Logic and Philosophy of
Science, Universidad de Sevilla, Av. Camilo José Cela s/n, Sevilla
41018, Spain. E-mail: ppardo1@us.es

LLUÍS GODO, Artificial Intelligence Research Institute (IIIA - CSIC),
Campus UAB s/n, Bellaterra 08193, Spain. E-mail: godo@iiia.csic.es

Abstract

In this paper, we study a dialogue-based approach to multi-agent collaborative plan search in the
framework of t-DeLP, an extension of DeLP for defeasible temporal reasoning. In t-DeLP programs,

temporal facts and rules combine into arguments, which compare against each other to decide which

of their conclusions are to prevail. By adding temporal actions for multiple agents to this argu-
mentative logic programming framework, one obtains a centralised planning framework. In this

planning system, it can be shown that breadth-first search is sound and complete for both forward

and backward planning. The main contribution is to extend these results in centralised planning to
cooperative planning tasks, where the executing agents themselves are assumed to have reasoning

and planning abilities. In particular, we propose a planning algorithm where agents exchange infor-
mation on plans using suitable dialogues. We show that the soundness and completeness properties

of centralised t-DeLP plan search are preserved, so the dialoguing agents will reach an agreement

upon a joint plan if and only if some solution exists.

Keywords: Planning, Argumentation, Multi-Agent Systems, Defeasible Logic, Temporal Reasoning,

Dialogue

1 Introduction

The relatively recent area of argumentation [6] has become a focus of attention in AI
and multi-agent systems. Argumentation systems provide (human-inspired) frame-
works upon which agents can resolve conflicts between different claims or arguments.

In particular, abstract argumentation tools have been combined with different log-
ics, giving rise to new non-monotonic reasoning systems for inconsistency handling,
called logic-based argumentation. These are systems that aim to model common-
sense, causal or evidential reasoning (e.g. birds fly, solids fall, etc.), as well as reason-
ing about actions. In either case, a practical need exists for general-purpose criteria of
preference that select among conflicting inferences. This need led to the formal notion
of specificity [23], and later to argumentation systems applying this idea to define the
attack relation, e.g. in the defeasible logic programming DeLP system [9]. According
to this criterion, a preference relation can be defined between arguments, by formally
comparing their logical structure or informational content. Both the DeLP system
and the criteria of specificity have been recently adapted to temporal reasoning, where

1Journal of Logic and Computation, pp. 1–31 0000 c© Oxford University Press

2 A temporal argumentation approach to cooperative planning using dialogues

arguments contain temporal information explicitly [2, 5, 15]. A common motivation
for these extensions seems to be common-sense causal reasoning. Finally, several plan-
ning systems built upon these logics have been studied, e.g. partial-order planning
DeLP-POP [7, 8, 19], and forward planners for the temporal argumentative t-DeLP
system [17]. The latter is an adaptation of the DeLP system to a temporal rule-based
language, with minor differences due to specific issues in temporal reasoning [15].

Among the motivations to build planners on some of these non-monotonic logical
systems we find the classical AI representation problems. Some of these issues seri-
ously affect traditional planners, since their reasoning about actions (i.e. their action
update) is limited by simple monotonic inference and the assumption that the con-
sequences of an action can be encapsulated as a list of direct or conditional effects.
Despite the simplicity attained in the resulting state transition systems, these plan-
ning systems prove insufficient to deal with classical representation problems, broadly
known as the frame problem. In this sense, while these systems need not to costly
compute all the facts that do not change after an action (thus avoiding the narrow
frame problem), they cannot address the problems of modelling the indirect effects
of actions (the ramification problem), or qualifications on their preconditions either
(the qualification problem). Clearly, adding argumentative capabilities to a planning
system does increase the computational cost of the system. However, the use of de-
feasible information will permit us to deal with planning problems which cannot be
modeled with traditional approaches.

Another recent topic of interest in the areas of logic and automated planning is
that of multi-agent approaches to traditional problems. Along the line of recent
trends in these areas, the main aim of this paper is the study of a distributed multi-
agent planning system, particularly based on the t-DeLP framework for temporal
argumentation. This system combines a traditional update function (for temporal
actions) with non-monotonic inference based on the t-DeLP notion of warrant, or
logical consequence. For a multi-agent approach, we study distributed plan search
algorithms for cooperative scenarios. Towards this end, we present first a centralised
algorithm for the t-DeLP planning system, where each executing agent is assigned
its contribution to a joint plan built by an external planner. This approach prevents
one from considering more interesting scenarios with autonomous agents, where each
agent can plan, reason and communicate with the other agents. The aim of the latter
is to avoid centralised solutions, which might incur in an important and unnecessary
loss in terms of information privacy and autonomy.

To this end, we extend centralised planning into cooperative planning domains,
where each agent is initially endowed with a planning domain of its own, including
beliefs, abilities and (a shared set of) goals. In the present paper, the initial planning
domain of an agent particularly consists of a t-DeLP logic program (beliefs), a set of
temporal actions (abilities) and a set of temporal literals representing the common
goals. Instead of a central planner, then, we propose a dialogue-based algorithm for
distributed plan search in the t-DeLP planning system. In the proposed dialogues, all
agents take part in the generation of a joint plan by communicating (only) information
which seems relevant to the present task. The dialogues consist in each agent taking
turns to address the next agent in line. All the agents contribute to the generation or
evaluation of new plan steps for plans already under consideration. In this cooperative
planning framework, the main results are soundness and completeness theorems for

A temporal argumentation approach to cooperative planning using dialogues 3

the dialogue-based plan search algorithm. Thus, setting complexity issues aside, a
group of cooperative agents are as good as a central planner can be to generate a
joint plan, if the latter is assumed to have access to all of their information.

This paper, which is an extended and revised version of two conference papers
[17, 18], is structured as follows. In Section 2 we briefly review first the t-DeLP
temporal defeasible logic programming framework. Then in Section 3, we adapt the
basic concepts of planning systems to the case of t-DeLP, including an appropriate
update function for t-DeLP and the notions of planning domain, plan and solution,
and study the soundness and completeness of a centralised breadth-first search algo-
rithm for backward plan search in this planning system. In Section 4 we propose a
distributed algorithm (also in the spirit of breadth-first search) for the multi-agent
t-DeLP planning system based on a dialogue between agents; and finally we show that
this algorithm is also sound and complete. To improve the readability of this paper,
the proofs of the main theorems can be found in an Appendix. See the manuscript
[16] for more details.

Notation. We make use of the following conventions. Set-theoretic difference
between two sets X,Y is denoted XrY . Sequences are denoted 〈x0, . . . , xn〉 (general
case) or [x0, . . . , xn] (for argumentation lines) or (x0, . . . , xn) (for plans). Given a
sequence ~x = 〈x0, . . . , xn〉 and an element x, we denote by ~x ∩〈x〉 the concatenation
of ~x with x, i.e. the sequence 〈x0, . . . , xn, x〉 or [x0, . . . , xn, x]. If f is a function
f : X → Y and X ′ ⊆ X, we define f [X ′] = {f(a) ∈ Y | a ∈ X ′}.

2 Preliminaries: Temporal Defeasible Logic Programming

The t-DeLP temporal logic programming framework, a temporal adaptation of the
DeLP system from [8], is briefly reviewed in the present section, see also [15, 16].
Later the t-DeLP system is used as the logical foundation of the planning system
studied in the next sections. We will use throughout the paper Example 2.1 as a
running example to illustrate both the argumentative and planning concepts to be
introduced; see also Figure 1 for an illustration of this example.

Fig. 1: (Left) and (Right) The vase breaks if only one side of the table is lifted.
(Center) The vase stays on the table if both sides are lifted simultaneously.

4 A temporal argumentation approach to cooperative planning using dialogues

Example 2.1 (Lifting a Table –Running Example)
Consider a table which can be lifted on each of its two sides (north and south), and
assume there is a vase on the table. Lifting only one side of the table causes the vase
to fall off and break, as depicted in Figure 1 (Left) and (Right). Lifting both sides of
the table simultaneously, in contrast, causes the vase to stay on the table, see Fig. 1
(Center).

The language of t-DeLP consists of a set of temporal rules built upon a set of
temporal literals. Temporal literals are pairs of the form 〈`, t〉, read as ` holds at time
t, where ` is a literal p or ∼p from a given set of variables p ∈ Var, and t is a time
point. We consider discrete time, so t will take values in the set N of natural numbers.
For strong negation ∼, since ∼∼p ≡ p, we adopt the following notation over literals:
if ` = p then ∼` will denote ∼p, and if ` = ∼p then ∼` will denote p. Time determines
if a pair of temporal literals contradict each other; namely, this pair must be of the
form 〈`, t〉, 〈∼`, t〉. The set of temporal literals is denoted TLit = Var × N.

Definition 2.2 (t-DeLP language [15])
Given a finite set of atoms Var a temporal rule is an expression δ of the form

defeasible 〈`, t〉 −� 〈`0, t0〉, . . . , 〈`n, tn〉
strict 〈`, t〉 ← 〈`0, t0〉, . . . , 〈`n, tn〉

where t ≥ max{t0, . . . tn}

We let body(δ) denote the set of conditions {〈`0, t0〉, . . . , 〈`n, tn〉} and let head(δ)
denote its conclusion 〈`, t〉. A (strict) fact is a strict rule with an empty body 〈`, t〉 ←.
A strict fact will also be denoted simply as 〈`, t〉.
Example 2.3 (Lifting a Table –language)
The above Example 2.1 (without actions) will be formalized using the next set of
atoms Var:

b = broken(vase) h = horizontal(table) µN = µlift.N lN = liftedN

f = falls.off(vase) o = on(vase, table) µS = µlift.S lS = liftedS

The variable µN (resp. µS) represents the fact that the action “lift north” was executed
(resp. “lift south”); see Section 3.1.

A defeasible rule δ states that if the premises in body(δ) are true, then there is a
reason for believing that the conclusion head(δ) is also true. This conclusion, though,
may be later withdrawn when further information is considered. In contrast, strict
rules necessarily preserve the truth from the body to the head of a rule. In practice,
we will restrict the set of strict rules to those induced by mutex sets –see below.

In order to avoid time paradoxes, t-DeLP only makes use of future-oriented rules, so
head(δ) cannot occur earlier than any 〈`k, tk〉 ∈ body(δ). A special subset of defeasible
rules is that of persistence rules, of the form 〈`, t+1〉−�〈`, t〉, stating that ` is preserved
from t to t+ 1. Such a rule will denoted as δ`(t).

Example 2.4 (Lifting a Table –strict facts; defeasible rules)
Let us model the above scenario (without actions), using the strict facts:
〈∼b, 0〉, 〈o, 0〉, 〈h, 0〉, 〈∼lN, 0〉, 〈∼lS, 0〉. These temporal literals state that, at initial
time t = 0, the vase is unbroken and on the table, and the table is horizontal with
none of its sides being currently lifted. In addition, we will use the next defeasible
rules for common-sense causal reasoning:

A temporal argumentation approach to cooperative planning using dialogues 5

δ1 : 〈∼h, t〉 −� 〈lN, t〉 δ2 : 〈∼h, t〉 −� 〈lS, t〉
δ3 : 〈h, t〉 −� 〈lN, t〉, 〈lS, t〉 δ4 : 〈lN, t+ 1〉 −� 〈µN, t+ 1〉, 〈∼lN, t〉
δ5 : 〈lS, t+ 1〉 −� 〈µS, t+ 1〉, 〈∼lS, t〉 δ6 : 〈b, t〉 −� 〈f, t〉
δ7 : 〈f, t+ 1〉 −� 〈∼h, t〉, 〈o, t〉 δ8 : 〈∼o, t〉 −� 〈f, t〉
δ`(t) : persistence rules for each literal ` ∈ {∼b, o, lN, lS,∼lN,∼lS} and each t < 10.

Definition 2.5 (Derivation; consistency [15])
Given a set of temporal rules and literals Γ, we say a literal 〈`, t〉 derives from Γ,
denoted Γ ` 〈`, t〉, or also 〈`, t〉 ∈ Cn(Γ), iff 〈`, t〉 ∈ Γ or there exists δ ∈ Γ with
head(δ) = 〈`, t〉, and such that body(δ) is a set of literals that derive from Γ. We say
Γ is consistent iff no pair 〈`, t〉, 〈∼`, t〉 exists in Cn(Γ).

In particular, a set of literals is consistent iff it contains no contradictory pair
〈`, t〉, 〈∼`, t〉. Note that derivability is monotonic: Cn(Γ) ⊆ Cn(Γ′) whenever Γ ⊆ Γ′.

Definition 2.6 (Program; Mutex program)
A (t-DeLP) program is a pair (Π,∆) where Π = Πf ∪ Πr is a consistent set of facts
(Πf) and strict rules (Πr), and ∆ is a set of temporal defeasible rules. The set of
persistence rules, denoted ∆p, is a subset of ∆.

A mutex set X is a subset of variables X ⊆ Var; a mutex family M is a collection
of mutex sets M = {X, . . .}. A program (Π,∆) is called mutex iff Πr is of the form

Πr =
⋃
X∈M

{〈∼q, t〉 ← 〈p, t〉 | p, q ∈ X and t ∈ N}

for some mutex family M.

Intuitively, a pair in a mutex set p, q ∈ X ∈ M expresses a mutual exclusion
between facts p and q (at any given time t), so pairs of the form 〈p, t〉, 〈q, t〉 cannot be
accepted, as we do with inconsistent pairs 〈q, t〉, 〈∼q, t〉. To this end, the mutex rule
〈∼q, t〉 ← 〈p, t〉 permits to derive the latter inconsistency from the pair 〈p, t〉, 〈q, t〉.
Example 2.7 (Mutex rules for physical constraints)
Let @(o, l) be an atom denoting that object o is at location l. The set Xo =
{@(o, l),@(o, l′), . . .} will induce mutex rules 〈∼@(o, l′), t〉 ← 〈@(o, l), t〉, etc., for-
bidding o to be at different places l 6= l′ at the same time t. Similarly, the set
Xl = {@(o, l),@(o′, l), . . .} can prevent that any two objects o, o′, . . . exist at the same
place and time. The mutex family M = {Xo, Xo′ , . . . , Xl, Xl′ , . . .} would include both
kinds of constraints for all objects and locations.

Example 2.8 (Lifting a Table –program)
The facts and rules from Example 2.4, together with the effects 〈µN, t〉, 〈µS, t〉 (for
some unspecified time 0 < t < 10) can be gathered into a program (Π,∆) for the
scenario where both sides of the table become lifted at time t:

Π = {〈∼b, 0〉, 〈h, 0〉, 〈∼lN, 0〉, 〈∼lS, 0〉, 〈o, 0〉, 〈µN, t〉, 〈µS, t〉}
∆ = {δ1, . . . , δ8}0≤t≤10 ∪ {δ`(t)}0≤t<10 .

The rules and facts of a program can combine into arguments for further derived
facts. Informally, an argument for a conclusion is a minimal set of facts and rules
that is consistent with the strict part Π, from which the conclusion is derivable.

6 A temporal argumentation approach to cooperative planning using dialogues

Definition 2.9 (Argument [15])
Given a program (Π,∆), an argument for 〈`, t〉 is a set A = AΠ ∪ A∆, with AΠ ⊆ Π
and A∆ ⊆ ∆, such that:

(1) A∆ ∪Π ` 〈`, t〉, (3) A∆ is ⊆-minimal satisfying (1) and (2).
(2) Π ∪ A∆ is consistent, (4) AΠ is ⊆-minimal satisfying A∆ ∪ AΠ ` 〈`, t〉

Given an argument A for 〈`, t〉, we also define concl(A) = 〈`, t〉, and base(A) =⋃
body[A] r head[Ar Πf] and literals(A) = (

⋃
body[A]) ∪ head[A]. 1 2

Example 2.10 (Lifting a Table –argument)
If the table is lifted on both sides at time t, in (Π,∆) one can build arguments for
the following conclusions: the table remains horizontal at time t (A3); the table does
not remain horizontal at t (B−1 ,B

−
2); the vase breaks at t + 1 (B1,B2); and the vase

remains unbroken at time 10 (A1); see also Fig. 2(Left).

argument rules and facts conclusion

A1 {δ∼b(t′)}0≤t′<10 ∪ {〈∼b, 0〉} 〈∼b, 10〉

A3
{δ3, δ4, δ5, 〈µN, t〉, 〈µS, t〉, 〈∼lN, 0〉, 〈∼lS, 0〉}∪

∪{δlN(t′), δlS(t′)}0≤t′<t
〈h, t〉

B−1 {δ1, δ4} ∪ {δlN(t′)}0≤t′<t ∪ {〈µN, t〉, 〈∼lN, 0〉} 〈∼h, t〉
B1 B−1 ∪ {δo(t′)}0≤t′<t ∪ {δ6, δ7, 〈o, 0〉} 〈b, t+ 1〉
B−2 {δ2, δ5} ∪ {δlS(t′)}0≤t′<t ∪ {〈µS, t〉, 〈∼lS, 0〉} 〈∼h, t〉
B2 B−2 ∪ {δo(t′)}0≤t′<t ∪ {δ6, δ7, 〈o, 0〉} 〈b, t+ 1〉

In the next definition, it can be shown that the sub-argument induced by a literal
is indeed unique. We also use the notation ∼〈`, t〉 as another way to express 〈∼`, t〉.
Definition 2.11 (Sub-argument; Attack [15])
Given an argument A in a program (Π,∆), and a literal 〈`0, t0〉 ∈ literals(A), we define
the sub-argument A(〈`0, t0〉), as an argument for 〈`0, t0〉 such that A(〈`0, t0〉) ⊆ A.

Given two arguments, A0,A1 in (Π,∆), we say that A1 attacks A0 iff ∼concl(A1) ∈
literals(A0). In this case, A1 attacks A0 at the sub-argument A0(∼concl(A1)).

Example 2.12 (Lifting a table –subargument, attack)
Example 2.10 contains sub-arguments B−1 ⊆ B1 and B−2 ⊆ B2, and attacks:

A3 attacks B−1 ,B1 (at B−1) A3 attacks B−2 ,B2 (at B−2)
B−1 ,B

−
2 attack A3 (at A3) B1,B2 attack A1 (at A1(〈∼b, t+ 1〉))

Since attacks among arguments are symmetrical (the attacked sub-argument also
attacks the attacking argument), we need a more refined notion (defeat) to enforce
some sort of asymmetry. This notion of defeat is established by comparing an attack-
ing argument and the attacked (sub-)argument. The comparison is made in terms
of their use of strict facts (more is better) and their use of persistence rules (less is
better).

1Note that condition (3) requires A to make a minimal use of defeasible rules (i.e. to use strict rules if available),

for which a simpler alternative condition (1’) A∆ ∪ AΠ ` 〈`, t〉 in place of (1) above would not suffice.
2Let us also note that a simpler definition base(A) = Πf ∩

⋃
body[A] suffices for logical reasoning. The more

general definition given here suits better the needs of backward planning.

A temporal argumentation approach to cooperative planning using dialogues 7

Definition 2.13 (Defeat [16])
Given a mutex program (Π,∆) and two arguments A0,A1 in (Π,∆), let A1 attack A0

at a sub-argument B, where concl(A1) = 〈∼`, t〉. We say that A1 is a proper defeater
for A0, denoted A1 � A0, iff

base(A1) ! base(B) or
B ∩ A1 is an argument for some 〈`′, t′〉 with t′ < t

and B rA1 ⊆ ∆p ∪ΠM (so `′ = ` or `, `′ ∈ X ∈M)

We say A1 is a blocking defeater for A0 when A1 attacks A0 but A1 6� A0 and
A0 6� A1. Blocking defeat relations are denoted A1 ≺� A0. Finally, a defeater is a
proper or a blocking defeater.3

Fig. 2: (Left) A depiction of the arguments A1,A3,B−1 ,B
−
2 from Example 2.10, in the

case where both sides of the table are simultaneously lifted at t. The Y-axis represents
the time instants associated to facts, rules and conclusions in these arguments. The
figure depicts the [t − 1, t + 1] fragments of the arguments A1, B−1 , B−2 and A3.
Note that A3 defeats B−1 and B−2 –as well as their extensions B1,B2 (not depicted).
(Right) An argumentation line Λ = [A1, . . . ,A4] in the dialectical tree for A1 in some
program (Π,∆); defeated sub-arguments are depicted in grey. The time of these
attacks is (non-strictly) decreasing: t1 > t2 > t3 = t4.

Example 2.14 (Lifting a Table –defeat)
In Example 2.10, there are some proper defeats: A3 � {B1,B−1 ,B2,B−2 }, as well as
blocking defeats {B1,B2} ≺� A1. Note that the weak case of B1,B2 against A1 is
strongly challenged by argument A3.

As this example shows, an argument B1 defeating A1 can in its turn have its own
defeaters A3 and so on. This gives rise to an argumentation line for the argument
A1, defined next –see also Fig. 2(Right).

Definition 2.15 (Argumentation line [15])
An argumentation line for A1 is a sequence of arguments Λ = [A1, . . . ,An] such that:

(i) supporting arguments, i.e. those in odd positions A2i+1 ∈ Λ are jointly consistent
with Π, and similarly for interfering arguments A2i ∈ Λ.

3In [2], the authors propose an alternative criterion for persistence, where an argument containing persistence

rules is to be defeated (in case of attack) by any other argument without persistence rules.

8 A temporal argumentation approach to cooperative planning using dialogues

(ii) a supporting (interfering) argument is different from the attacked sub-arguments
of previous supporting (interfering) arguments: Ai+2k 6= Ai(∼concl(Ai+1)).

(iii) Ai+1 is a proper defeater for Ai if Ai is a blocking defeater for Ai−1. 4

The set of maximal argumentation lines for A1 can be arranged in the form of a tree,
where all paths [A1, . . .] exactly correspond to all the possible maximal argumentation
lines for A1. This dialectical tree for A1 is denoted T(Π,∆)(A1). See Figure 2 (Right)
for an illustration of the dialectical tree for A1 and its argumentation lines. In order
to evaluate an argument A1 we apply the next procedure on its dialectical tree.

Definition 2.16 (Marking procedure [9])
The marking procedure in a dialectical tree T = T(Π,∆)(A1) is:

(1) mark all terminal nodes of T with a U (for undefeated);

(2) mark a node B with a D (for defeated) if it has a child node marked U ;

(3) mark B with U if all its child nodes are marked D .

Definition 2.17 (Warrant [9])
Given a program (Π,∆), we say 〈`, t〉 is warranted in (Π,∆) if there exists an argument
A for 〈`, t〉 in (Π,∆) such that A is marked undefeated (U) in the dialectical tree
T(Π,∆)(A). The set of warranted literals is denoted warr(Π,∆).

Example 2.18 (Lifting a Table –warrant)
The arguments from Example 2.10 can be arranged into the following argumenta-
tion lines {[A1,B1,A3], [A1,B2,A3]} = T(Π,∆)(A1). Computing warrant with this
dialectical tree gives {[U,D,U], [U,D,U]}, so A1 is undefeated in T(Π,∆)(A1) and its
conclusion is warranted, i.e. 〈∼b, 10〉 ∈ warr(Π,∆). In summary, the vase remains not
broken at time 10 if both sides of the table are lifted simultaneously at some t < 10.

One can show that t-DeLP enjoys the next logical properties, called Rationality
Postulates [4, 20], for the class of mutex programs. These postulates prevent certain
types of counter-intuitive results.

Theorem 2.19 (Postulates for argumentation)
The following properties hold for arbitrary t-DeLP mutex programs (Π,∆):

• Sub-arguments: if A is undefeated in T(Π,∆)(A), then any sub-argument A′ of A
is also undefeated in T(Π,∆)(A′).
• Direct Consistency: warr(Π,∆) is consistent.

• Indirect Consistency: warr(Π,∆) ∪Π is consistent.

• Closure: Cn(warr(Π,∆) ∪Π) ⊆ warr(Π,∆)

We refer the reader to [16] for a proof of this theorem.

4Some discussion exists within the defeasible argumentation community about what definition of argumentation

line would be most appropriate or intuitively correct. For example, H. Prakken suggests to adopt the argumentation

game for grounded semantics: the proponent of an argument can only use proper defeaters (i.e. for the supporting

arguments), while the opponent can use both proper and blocking defeaters (for the interfering arguments).With

appropriate modifications of proofs, this and other reasonable definitions should preserve Theorem 2.19 below.

A temporal argumentation approach to cooperative planning using dialogues 9

3 A centralised Planning System for t-DeLP

After this brief presentation of t-DeLP, we proceed to introduce a planning system
based on the t-DeLP temporal argumentation framework. First we adapt the basic
concepts of action and update to the present framework, in order to define a t-DeLP-
based state transition system. Here, a state will correspond to (the warr-closure of)
a t-DeLP program at a given time-point. Next, we introduce a multi-agent planning
system built on this system and define plans built under backward search. Finally, we
review backward search algorithms for centralised planning in this t-DeLP planning
system. Throughout the current section, then, a central planner will be tasked with
the construction of a joint plan for multiple executing agents, and assign them the
corresponding tasks.

As mentioned at the start of this paper, a motivation for an approach combining
argumentation with action update are the classical representation problems, e.g. the
ramification problem. The indirect or contextual effects of an action play an important
role when the scenario already includes actions executed by other agents.

Example 3.1 (Lifting a Table –adding actions)
Recall the example from Figure 1, where one might have as initial facts either that
only the north side of the table is lifted 〈µN, t〉, or only its south side 〈µS, t〉, or both
–as in Example 2.8. For the purpose of planning, from here on the µ-facts can only
obtain after updating the program with actions. Thus, we will introduce two lifting
actions lift.N or lift.S, and redefine the program (Π,∆) (from Example 2.8) with the
following set

Π = {〈∼b, 0〉, 〈o, 0〉, 〈h, 0〉, 〈∼lN, 0〉, 〈∼lS, 0〉}

An advantage of using t-DeLP to compute causal effects is that, in e.g. the previous
example, these two atomic actions lift.N, lift.S can be combined to describe the three
events from Fig. 1. In contrast, classical planning would demand to add either a new
“atomic” action, say lift.N&S, or two conditional effects for each action that depend
upon the (non-)occurrence of the other action. Instead of this, we will define a unique
set of defeasible rules to correctly compute the causal effects of any combination of
these two atomic actions. To do so, we need to adapt the notion of action update
from classical planning to work together with t-DeLP reasoning.

3.1 Update of t-DeLP programs with temporal actions

As usual in planning, an action is just a pair of consistent sets (preconditions, post-
conditions), but for the purpose of this paper, several assumptions are made on the
representation of actions in order to simplify the description of the planning system.
Thus, each action e in the set of actions A can only be executed by an agent, has a
duration of 1 time unit, and has a unique effect 〈µe, te〉. This effect is read as action
e was just executed (at time te), and we assume that the language contains one such
literal for each action e described. Moreover, the effect 〈µe, te〉 is exclusive to this
action (not found in nature or other actions) and it cannot be contradicted once it is
made true (by other rules or arguments). We also assume that the execution of an
action e by an agent a makes this agent busy during the execution. Finally, for the
purpose of this paper, we will assume the existence of (a finite but) sufficient number
of agents for the problem at hand.

10 A temporal argumentation approach to cooperative planning using dialogues

In what follows we will assume a t-DeLP language has been fixed. Let us proceed
with the basic definitions of action and update.

Definition 3.2 (Action; Executability; Non-overlapping actions)
An action is a pair e = et = (pre(e), post(e)), where pre(e) = {〈`, t〉, . . . , 〈`′, t〉} is a
consistent set of temporal literals and post(e) = {〈µe, te〉}, with te = t+ 1. These are
called the preconditions and the (direct) effect of e. 5

An action e is executable in a program (Π,∆) iff pre(e) ⊆ warr(Π,∆). Given a set
of agents Ag = {a, b, . . .}, a set of actions A is non-overlapping w.r.t. Ag iff for any
two actions in A of the same agent a, say e, f, the effect of e is to occur strictly before
the preconditions of f, or viceversa.

Example 3.3 (Lifting a table –actions)
For Example 3.1, consider a set of two agents Ag = {a1, a2}. The actions lift.N9, lift.S9

of lifting either side of the table at t = 9 can be defined as the following pairs:

pre(lift.N9) = {〈@(a1,N), 9〉} pre(lift.S9) = {〈@(a2,S), 9〉}
post(lift.N9) = {〈µN, 10〉} post(lift.S9) = {〈µS, 10〉}

In practice, though, we will assume that both agents are at the right place, so we can
forget about these preconditions and set pre(lift.Nt) = ∅ = pre(lift.St).

Definition 3.4 (Action Update)
The update of a program (Π,∆) by an action e, denoted (Π,∆) � e, is defined as:

(Π,∆) � e =

{
(Π ∪ post(e),∆) if pre(e) ⊆ warr(Π,∆)

(Π,∆) otherwise.

Since actions are assigned an execution time by their preconditions, any set of
actions {e1, . . . , en} can be seen as being implicitly ordered. Indeed, the order of
execution of two simultaneous actions does not matter.

Lemma 3.5 ([16])
For any program (Π,∆) and literals 〈`, t〉, 〈`′, t′〉 with t < t′, the following hold:

〈`, t〉 ∈ warr(Π,∆) ⇔ 〈`, t〉 ∈ warr(Π ∪ {〈`′, t′〉},∆).

If ei, ej are simultaneous actions with pre(ei) = {〈`, t〉, . . .} and pre(ej) = {〈`′, t〉, . . .},

((Π,∆) � ei) � ej = ((Π,∆) � ej) � ei.

The previous Lemma enables the following definition.

Definition 3.6 (Iterated Update)
The update of a program (Π,∆) by a set of actions is recursively defined as follows:

(Π,∆) �∅ = (Π,∆)

and if A = {e1, . . . , en} is a set of actions ek with pre(ek) = {〈`k, tk〉, . . .}, then

(Π,∆) �A = ((Π,∆) � ei) � (Ar {ei})
5For notational simplicity in proofs, we work directly with a set A of (temporally instantiated) actions, rather

than operators –as usually done in planning. The conversion into the latter form is immediate and, moreover, each

operator would stand for finitely-many action instances, since goals (temporal literals) have deadlines.

A temporal argumentation approach to cooperative planning using dialogues 11

where ei is any action in A whose execution time ti is minimal among {t1, . . . , tn}.

Example 3.7 (Lifting a Table –action update)
Recall the program (Π,∆) from Example 2.8, and the actions lift.N9 and lift.S9 from

Example 3.3. Then, the updated program (Π,∆)�{lift.N9, lift.S9} gives rise to exactly
the same arguments and warranted conclusions from Example 2.8 or Fig. 2(Left).

3.2 A temporal planning system based on t-DeLP

After presenting the state transition system defined by t-DeLP programs and update
with temporal actions, one can easily extend this system into a planning system by
adapting the definitions of planning domain and solution to the t-DeLP framework.

Definition 3.8 (Planning Domain)
Given a set of agents Ag, we define a planning domain as a triple

M = (P, A,G)

where P = (Π,∆) is a t-DeLP program representing the domain knowledge,6 with the
facts in Π representing the initial state; A is a set of actions available to the agents
in Ag and G is a set of literals expressing the goals.

A planner is to find a set of actions that make the goals warranted after update.

Definition 3.9 (Solution)
Given a set of agents Ag and a planning domain M = ((Π,∆), A,G), a set of actions
A′ ⊆ A is a solution for M iff

G ⊆ warr((Π,∆) �A′) and A′ is non-overlapping w.r.t. Ag.

Example 3.10 (Lifting a Table –planning domain; solution)
Let us suppose that the planner, endowed with two agents Ag = {a1, a2}, wants the
table to be lifted at t = 10, without breaking the vase which lies on it. We define
a planning domain M = ((Π,∆), A,G), where (Π,∆) is the t-DeLP program from
Example 2.8, and the goals G and actions A are described as follows:

G = {〈lN, 10〉, 〈lS, 10〉, 〈∼b, 10〉} A = {lift.Nt, lift.St}0<t<10

Consider the set of actions A′ = {lift.N9, lift.S9} or, more generally, any set of the
form A′ = {lift.Nt, lift.St} with 0 < t < 10. We will obtain two undefeated arguments
A4 and A5 resp. for the goals 〈lN, 10〉 and 〈lS, 10〉.

A4 = {δlN(t′)}t≤t′<10 ∪ {δ4, 〈µN, t〉, 〈∼lN, t− 1〉} ∪ {δ∼lN(t′′)}0≤t′′<t
A5 = {δlS(t′)}t≤t′<10 ∪ {δ5, 〈µS, t〉, 〈∼lS, t− 1〉} ∪ {δ∼lS(t′′)}0≤t′′<t

These, together with the arguments A1,A3 (from Example 2.10) making 〈∼b, 10〉
warranted, suffice to show that A′ is a solution for the planning domain ((Π,∆), A,G):

G = {〈∼b, 10〉, 〈lN, 10〉, 〈lS, 10〉} ⊆ warr((Π,∆) � {lift.Nt, lift.St}).
6The language of (Π,∆) is assumed to contain a literal µe for each action e ∈ A. Moreover, temporal literals

〈µe, te〉 can only occur in the body of the rules of ∆, while those of the form 〈∼µe, te〉 cannot occur anywhere in Π,

∆, A or G.

12 A temporal argumentation approach to cooperative planning using dialogues

The idea of t-DeLP backward planning for finding a solution to a given planning
domain M = (P, A,G) can be sketched as follows: each open goal is to be solved
not directly by an action, but as the conclusion of some argument, together with the
actions (and initial facts) needed to support it. Then, the planner is to iteratively
enforce an undefeated status for this argument, by defeating its defeaters (called
threats) whenever these occur, and solve as well the preconditions of the actions
supporting it. All this is again done with further arguments, and the corresponding
actions. This plan construction terminates when all the goals in G are solved, and
all those arguments and actions are, respectively, undefeated and executable. The
two types of refinement steps are called argument steps –if they solve open goals–, or
threat resolution moves –if they defeat some threat. Related to this procedure, Figure
3 depicts: (1) a goal, (2) an argument step A solving it, (3) a threat B (an interfering
argument) triggered by action e, and (4) a threat resolution move C against B.

Fig. 3: Steps in the construction of a plan: arguments are triangle-like figures, while
actions and facts are represented by rectangles; if an action e is below an argument
A, the action supports it, i.e. 〈µe, te〉 ∈ base(A).

In centralised planning, a plan for some planning domain (P, A,G) is a triple π =
(actions,Trees, goals), where actions is a set of actions to be executed, Trees is a set of
dialectical (sub-)trees (one for each argument step) and goals is the set of open goals
of π. For convenience, though, we will denote the triple defining a plan π rather as

(A(π),Trees(π), goals(π))

Thus, the set Trees(π) is used to keep track of argument steps, threats and threat res-
olution moves. As usual in backward planning, during the construction one abstracts
from the full executability of the actions A(π) in the initial program P = (Π,∆).
Hence, rather than considering an update P � A(π), this plan π will induces a new
program P ⊕ π = (Π ∪ post[A(π)],∆) based on the assumption of executability. In
this way, the plan also induces a provisional dialectical tree TP⊕π(A) for each existing
argument and, in particular, for each argument step A. In order to avoid unnecessary
threat resolution moves, the policy of the planner will be to address each threat B
with a single defeater Ak+1 for this B. This results in a sub-tree T ∗P⊕π(A) of TP⊕π(A),
to be stored in Trees(π) and later expanded in further refinements of π. See Figure 4
for an illustration.

A temporal argumentation approach to cooperative planning using dialogues 13

Definition 3.11 (Plan)
Given a planning domain M = (P, A,G), a plan π for M is obtained from the empty
plan π∅ after a finite number of refinements with plan steps Λ1, . . . ,Λn, and will be
denoted π = π∅(Λ1, . . . ,Λn). A plan step Λk is an odd-length tuple of arguments
Λk = [. . . ,Ak]. There are two types of plan steps:

• an argument step is a plan step of length one, i.e. of the form Λk = [Ak],

• a threat resolution move is a plan step of the form Λk =
[Aj ,Bj , . . . ,Ak−1,Bk−1,Ak], for some j < k, where [Aj ,Bj , . . . ,Ak−1,Bk−1]
is a threat, i.e. an even length argumentation line in the dialectical tree
T ∗(Π,∆)(Aj).

See Table 1 for a formal definition of plan refinement with argument steps and threat
resolution moves. A refinement of a plan π with Λn+1 is denoted π(Λn+1). Finally,
let us denote with πk = π∅(Λ1, . . . ,Λk), for 1 ≤ k ≤ n, the initial fragment of π.
Then, the set of previously solved goals is defined as

OldGoals(π) =
⋃

0≤k<n

(
goals(πk) r

⋃
k<k′≤n

goals(πk′)
)

Fig. 4: The dialectical tree for A1 before and after refining a plan π with A3. The
light grey area represents the provisional tree for A1 in π, which is a sub-tree of
the full dialectical tree (grey area); the latter contains an unplanned, unused threat
resolution move A4. After refining π with A3, this argument and new threats C, C′
appear in the new provisional tree after update, represented by the dark grey area.

Example 3.12 (Update of Trees(π) after a refinement)
Figure 4 illustrates a refinement of a plan π with a threat resolution move. The new
argument A3 solves an existing threat [A1,B′]. This causes new threats C, C′ in the
(updated) dialectical tree T ∗P⊕π(A3)(A1). The new plan step A3 can also cause new
threats to other argument steps in π different from A1, not depicted in Fig. 4.

Example 3.13 (Lifting a Table –plan construction)
Recall Example 3.10 describing solutions of the form A′ = {lift.Nt, lift.St}, for some
0 < t < 10. Now a planner can build the arguments from Examples 2.10 and 3.10
as argument steps (namely A1,A4,A5), threats (e.g. B1,B2) and a threat resolution
move (e.g. A3); for example, consider the successive plan refinements:

14 A temporal argumentation approach to cooperative planning using dialogues

Table 1. Definition of empty plan, argument step and threat resolution move.
conditions definition

the empty plan for (P, A,G) is π∅ = (∅,∅, G)

given a plan π = π∅(Λ1, . . . ,Λn) an argument step refinement is a triple

with π = (A(π),Trees(π), goals(π)) π(A) = (A(π(A)),Trees(π(A)), goals(π(A)))

and some A− ⊆ Πr ∪∆ and A∗ ⊆ A defined by:

satisfying: • A(π(A)) = A(π) ∪A∗

(i) A(π) ∪A∗ is non-overlapping • goals(π(A)) = (goals(π) ∪ pre[A∗])r
(ii) (P⊕ π)⊕A∗ is a program r({concl(A)} ∪Πf ∪ OldGoals(π))

(iii) A = A− ∪ base(A−) is an argument • Trees(π(A)) is a set containing

w.r.t. (ii) and concl(A) ∈ goals(π) T ∗P⊕π(A)
(A) =

(iv) A∗ is ⊆-minimal with (iii) {[A]} ∪ {[A,B] | [A,B] ∈ TP⊕(π(A))(A)}
(v) pre[A∗] is consistent with all literals T ∗P⊕π(A)

(Ak) = T ∗P⊕π(Ak) ∪
in arg. steps and all solved/open goals ∪ {Λm∩[B] ∈ TP⊕π(A)(Ak)}1≤m≤n

for each argument step Λk = [Ak] in π

given a plan π = π∅(Λ1, . . . ,Λn) a threat resolution move is a triple

with π = (A(π),Trees(π), goals(π)) π(Λ) = (A(π(Λ)),Trees(π(Λ)), goals(π(Λ)))

and a threat Λ′ = [A, . . . ,B] ∈ T ∗P⊕π(A), defined by:

let C− ⊆ Πr ∪∆ and A∗ ⊆ A • A(π(Λ)) = A(π) ∪A∗

satisfying: • goals(π(Λ)) = (goals(π) ∪ pre[A∗])r
(i) A(π) ∪A∗ is non-overlapping r(Πf ∪ OldGoals(π))

(ii) (P⊕ π)⊕A∗ is a program • Trees(π(Λ)) containing for each Ak 6= A
(iii) C = C− ∪ base(C−) is an argument T ∗P⊕π(Λ)

(Ak) = T ∗P⊕π(Ak) ∪
and Λ = Λ′∩[C] an argumentation line ∪ {Λm∩[B′] ∈ TP⊕π(Λ)(Ak)}1≤m≤n
in the program (P⊕ π)⊕A∗ T ∗P⊕π(Λ)

(A) = T ∗P⊕π(A) ∪ {Λ′∩[C]} ∪
(iv) A∗ is ⊆-minimal with (iii) ∪{Λ′∩[C,B′] | Λ′∩[C,B′] ∈ TP⊕(π(Λ))(A)}

π∅ open goals G; no threats
π∅(A1) solves goal 〈∼b, 10〉; no goals are added
π∅(A1,A4) solves goal 〈lN, 10〉; new threat [A1,B1]
π∅(A1,A4,A5) solves goal 〈lS, 10〉; new threat [A1,B2]
π∅(A1,A4,A5, [A1,B1,A3]) solves [A1,B1]
π∅(A1,A4,A5, [A1,B1,A3], [A1,B2,A3]) solves [A1,B2]; terminating condition.

Note that the latter plan, call it π, involves the same actions as in the solution
described, i.e. A(π) = {lift.Nt, lift.St} = A′, so π encodes a solution A(π) for M.

In contrast, Figure 5 (Right) describes the case where the two sides are not lifted at
the same time. Here, the threat B1 cannot be solved once it occurs in plans involving

actions of the form {lift.Nt, lift.St
′
} for some t 6= t′. These plans do not end up in

solution plans. In summary, the goals 〈∼b, 10〉, 〈lN, 10〉 and 〈lS, 10〉 are warranted iff
the two agents lift both sides simultaneously, as in Fig. 5 (Left).

A temporal argumentation approach to cooperative planning using dialogues 15

Fig. 5: (Left) An illustration of the arguments after update with both lifting actions
at t from Example 3.10. The proper and blocking defeaters are the same as in Example
2.14. (Right) An illustration of update with non-simultaneous lifting actions (at t,
and resp. at t + 1); here, the argument A1 for the vase will not break is ultimately
defeated by the threat B1; i.e. the dialectical tree for A1 becomes {[A1,B1]}.

From here on, if no confusion occurs, a plan π∅(Λ1, . . . ,Λn) will also be denoted
by the arguments contributed to at each refinement. For example, π∅([A], [A,B, C])
can simply be denoted as π∅(A, C).

3.3 Algorithms for t-DeLP backward plan search

The space of plans for a planning domain M is the graph given by the set of plans
for M (in Definition 3.11) and the “is a refinement of ” relation. In this search space,
breadth-first search is instantiated by the following algorithm for backward planning:

Algorithm 1: BFS for backward planning in the t-DeLP planning system

Data: M = ((Π,∆), A,G)
Result: π (i.e. the set of actions A(π)); or fail, if Plans = ∅
initialization: Plans = 〈π∅〉 and π = π∅;
while goals(π) 6= ∅ or threats(π) 6= ∅ do

delete π from Plans;
set Plans = Plans ∩〈 π(A) | π(A) is a refinement of π〉;
set π = the first element of Plans;

end

This and other usual search methods (depth-first search, etc.) are sound and com-
plete for backward or forward t-DeLP planning. See [17] for more details, and the
Appendix for proofs of the next results for breadth-first search (BFS).

Theorem 3.14 (Soundness of breadth-first plan search)
Let π be an output of the BFS Algorithm 1 in the space of plans for M. Then A(π)
is a solution for M.

Theorem 3.15 (Completeness of breadth-first plan search)
Let M = ((Π,∆), A,G) be a planning domain and assume some solution A′ ⊆ A

16 A temporal argumentation approach to cooperative planning using dialogues

exists. Then, the BFS search by Algorithm 1 in the space of plans terminates with
an output π.

On the other hand, if no solution exists for a planning domain M, the algorithm
will terminate with fail after exploring the finitely-many possible sequences of plan
steps.

4 Dialogues for distributed planning with cooperative agents

After presenting centralised plan search in the t-DeLP planning system, now we can
introduce the dialogue-based planning algorithm for distributed plan search. The
first novelty is that now each agent is endowed with a planning domain, although
their goals are still the same –the agents are cooperative. The algorithm for an agent
determines how she will contribute during her next turn in the dialogue, by supplying
the next agent with information for new plan steps and threats, or for claims against
the existence of those arguments proposed by other agents. Thus, at each round an
agent’s planning domain can be expanded. See Figure 6 (Left) for an illustration.

The main contributions of this section are soundness and completeness results for
the proposed dialogue-based planning. These results are shown by comparing an
agent’s solution plan (after the dialogue) to that which would be obtained by a central
planner endowed with all of the agents’ initial information. In both approaches, the
planner agents essentially make use only of the planning methods from Section 3.

4.1 Distributed and centralised planning domains

We first introduce multiple-planner versions of the definitions found in Section 3.2.
As we said, each agent a ∈ Ag is endowed with an initial planning domain Ma. A
sequence of such planning domains 〈Ma〉a∈Ag, with shared goals Ga = G, generates a
dialogue for the proposal and discussion of plans.

Definition 4.1 (Multi-planner domain; centralised planning domain)
Given a t-DeLP language and a set of planner agents Ag = {a1, . . . , ar}, let Ma =
((Πa,∆a), Aa, G) be a planning domain for each agent a = ai ∈ Ag. Then, we say
〈Ma〉a∈Ag is a multi-planner domain, if

⋃
a∈Ag Πa is consistent. We also define the

component-wise union of two planning domains, say Ma,Mb, as follows

Ma tMb = ((Πa ∪Πb,∆a ∪∆b), Aa ∪Ab, G)

More generally, we define the centralised planning domain induced by 〈Ma〉a∈Ag,
denoted MAg, as the union of the elements of this multi-planner domain:

MAg =
⊔
a∈Ag

Ma .

For the sake of simplicity, from here on we keep the notation Ag = {a1, . . . , an} for
the running example, but we may also use instead Ag = {1, . . . , n} for some definitions
and results.

Example 4.2 (Lifting a Table –multi-planner domain)
We rewrite the problem M of Example 3.10 as a multi-planner domain with Ag =
{a1, a2}. In Ma1

,Ma2
, the goals, initial facts and rules are as in M for both agents,

A temporal argumentation approach to cooperative planning using dialogues 17

except that now δ7 /∈ ∆a2 , so a2 ignores that objects on non-horizontal surfaces tend
to fall off. With more detail, for each agent a ∈ Ag, Ma = ((Πa,∆a), Aa, G) is defined
as

Πa1 = Π = Πa2 ∆a1 = ∆ ∆a2 = ∆ r {δ7}
Aa1

= {lift.Nt}0<t<10 Aa2
= {lift.St}0<t<10 G = {〈lN, 10〉, 〈lS, 10〉, 〈∼b, 10〉}

The centralised planning domain is simply MAg = Ma1
tMa2

= M.

As we said, the plan search methods for a single planner from Section 3 can be
used to compute plans in both individual and centralised planning domains Ma and
MAg. Indeed, upon receiving a message during a dialogue for cooperative planning,
an agent will expand her current planning domain with atomic data (facts, rules or
actions) extracted from this message. After this expansion, the agent can compute
new ideas for (or against) plans and threats.

Definition 4.3 (Expansion)
Let M = ((Π,∆), A,G) and M′ = ((Π′,∆′), A′, G) be planning domains. We say M′
is an expansion of M, denoted M vM′, iff Π ⊆ Π′, ∆ ⊆ ∆′ and A ⊆ A′.

Notice in particular that for any pair M1,M2 we have that M1,M2 vM1tM2. The
most important difference with the case of a central planner is that planning domains
are no longer static, due to initial differences among agents’ initial planning domains.
In fact, the agents need not agree on the following:

• whether a given plan step A exists, i.e. whether π(A) actually defines a plan, or

• which plan does such π(A) define, i.e. which threats exist, or open goals remain

The source of disagreements about a suggested plan π = π∅(A1, . . . ,An) lies in
the fact that this sequence π gives rise to different triples (actions, trees, goals) when
interpreted from different agents’ planning domains. For this reason, from here on we
introduce a superscript notation for interpreted plans πM and distinguish between

• a plan as a sequence of plan steps π = π∅(A1, . . . ,An), and

• an interpreted plan πM, denoting the particular result of computing the sequence
π in a planning domain M (only defined if π is actually a plan for M), denoted

πM = (A(πM),Trees(πM), goals(πM)).

Note that this is simply Definition 3.11 but with a superindex making explicit which
planning domain is being used. Finally, we also add to these concepts from Section
3.2 a new kind of interpretation:

• a free interpretation of a plan π in a planning domain M, denoted π(M)+

; this is
an instrumental step towards an interpreted plan πM within a dialogue. Again it
is a triple of the form

π(M)+

= (A(πM),Trees(π(M)+

), goals(πM)),

where Trees(π(M)+

) also contains potential (incomplete) threats and claims against
the validity of the last plan step or some proposed threats.

18 A temporal argumentation approach to cooperative planning using dialogues

4.2 Turn-based Dialogues for Cooperative Planning in t-DeLP.

The dialogues will consist in a series of rounds, each agent speaking once each round,
and always to the same agent; see Figure 6 (Left). Starting with turn 1 and agent
a1 ∈ Ag, the agent speaking at a turn m > 1 is af(m), where f(m) is simply m modulo
the number of agents, i.e. f(m) ≡ m (mod |Ag|). The speaking agent af(m) then
communicates a tuple turn(m) to the agent next in line af(m+1), of the form (see also
Figure 6 (Right))

turn(m) = (Preplansm, Plansm, Trueplansm, strictm).

For the planning domain of agent f(m) at turn m, say Mm = (Pm, Am, G), these
components informally contain:

• Preplansm = the set of uninterpreted plans π(A), where A is an incomplete argu-
ment in Pm ⊕ π
• Plansm = the set of pairs (π, π(Mm)+

) with an uninterpreted plan π and its free

interpretation π(Mm)+

• Trueplansm = the set of (correctly) interpreted plans πMm

in a planning domain
Mm; that is, a set of tuples (actions, trees, goals) as in Definition 3.11

• strictm = a set of auxiliary information: strict facts showing that some “open
goals” are actually solved; or the actions supporting plan steps in pre-plans

Fig. 6: (Left) A representation of the cyclic dialogues; e.g. at turn 2 agent 2 addresses
to 3, who expands her initial planning domain M0

3 into M2
3; the same, at turn 12

with an expansion of M2
3 into M12

3 . (Right) Phases in the turn-based construction
of a plan: Preplansm → Plansm+k → Trueplansm+k+l → Preplansm+k+l+1 and so
on. Their transitions occur, resp., when a potential argument is expanded into an
argument A, so π(A) appears as a plan to the agent; when after expanding potential
(strict) threats, a full round occurs without further contributions; and finally, when
the resulting plan can again be refined with new plan steps.

With more detail, a pre-plan contains a terminal fragment of a conceivable plan
step (which might be later completed by other agents into a full plan step). The
communicated argument A can thus be incomplete, so for the sake of evaluation,
the agents will temporarily assume as strict facts some literals from base(A) to make
sense of A, i.e. as if it were an actual argument in their t-DeLP programs.

A temporal argumentation approach to cooperative planning using dialogues 19

Definition 4.4 (Pre-plan)
Given a planning domain M = ((Π,∆), A,G), and a plan π for M, let A ⊆ Π ∪∆ ∪
post[A] be arbitrary and define A∗ = {e ∈ A r A(π) | 〈µe, te〉 ∈ base(A)}. Then, we
say that π(A) is a pre-plan for M iff the following conditions hold:

(i) A(π) ∪A∗ is non-overlapping

(ii) ((Π ∪ post[A(π) ∪A∗]) ∪ (base(A) r post[A]),∆) is a t-DeLP program

(iii) A is an argument in this program

(iv) pre[A∗] is consistent with all literals in argument steps and all solved/open goals.

We also say that π([Aj , . . . ,Ak,B,A]) is a pre-plan for M iff [Aj , . . . ,Ak,B] is a threat
in πM, and the following conditions hold (for A∗ defined as above):

(i) A(π) ∪A∗ is non-overlapping

(ii) ((Π ∪ post[A(π) ∪A∗]) ∪ (base(A) r post[A]),∆) is a t-DeLP program

(iii) A is an argument in this program and ∼concl(A) ∈ literals(B).

Note that, for pre-plans, the tuples (actions, trees, goals) as defined in Table 1 for
plans, are left undefined here.

Once a pre-plan π(A) is completed (at turn m + k) into an apparent plan,7 say,
π(A+) for some A+ ! A, this is communicated as an element in the set Plansm+k. At
this stage, agents evaluate it by communicating free interpretations of it (again in sets
of the form Plansm+k+1, . . . ,Plansm+k+l). The free interpretations include pre-threats
(incomplete threats) against existing plan steps, as well as –possibly incomplete–
claims against the validity of the last plan step A+, or of new (pre-)threats against
plan steps; those claims will be called strict pre-threats and will be expressed with
the notation for argumentation lines.

Definition 4.5 (Pre-threat)
Let a plan π = π∅(Λ1, . . . ,Λn) for some planning domain M = (P, A,G) be given,
where P = (Π,∆). We say that B ⊆ Π∪∆∪ post[A(π)] is a pre-threat for a plan step
Λk = [A, . . . ,Ak] iff

(i) (Π ∪A(π) ∪ (base(B) r post[A]),∆) is a t-DeLP program, and

(ii) B∪base(B) is an argument in this program and ∼concl(B) ∈ literals(Ak)rbase(Ak)

This pre-threat will be denoted [A, . . . ,Ak,B] ∈ T +
P⊕π(A).

In particular, a pre-threat [A, . . . ,Ak,B] can eventually become a threat for the
plan step [A, . . . ,Ak], in which case it will be included in the usual sub-tree T ∗P⊕π(A)
of plan π ∈ Plans(·).

Example 4.6 (Lifting a table –pre-threat)
In the dialogue of Table 3 for solving Example 4.2, an incomplete pre-threat {δ6, δ7}
is suggested against the plan step A1 in plan π1. This pre-threat is later completed
into two threats: B1 in plan π14, and B2 in plan π15.

7Note that an agent will always send a proposal which is a plan according to herself, but it need not be so

according to other agents.

20 A temporal argumentation approach to cooperative planning using dialogues

In addition to the above pre-threats, we also consider claims against the fact that
a proposed plan step or (pre-)threat is really an argument: after a turn, it might no
longer be defeasibly minimal (i.e. if it contains a derived literal which is already a strict
fact or is derivable using strict information), or might simply become inconsistent
(with the strict part). If these claims, called strict threats, succeed, the plan or (pre-)
threat is discarded.

Definition 4.7 (Strict pre-threat; Strict threat)
Let π = π∅(. . . ,Λk, . . . ,Λn) be a plan for M = (P, A,G), for some P = (Π,∆), and
with Λk = [Aj , . . . ,Ak] and Λn = [. . . ,An]; and let either A be An or a pre-threat for
Λk, i.e. [Aj , . . . ,Ak,A] ∈ T +

P⊕π(A). Finally, let M′ = ((Π′,∆′), A′, G) be a planning
domain such that M vM′.

A set B ⊆ Π′ ∪ post[A(π)] is called a strict pre-threat for A in M′ iff B shows that
either:

(i) A is not consistent, i.e. ∼concl(B) ∈ literals(A) r base(A)

(ii) A is not defeasibly minimal, i.e. concl(B) ∈ literals(A) r base(A), B * A and
A(concl(B)) * Π ∪ post[A(π)]

If moreover B is an argument in P′ ⊕ π, then we also say that B is a strict threat.
These strict (pre-)threats will be denoted as [. . . ,A,B] ∈ T +

P⊕π(·).

The free interpretation of a plan simply adds to the T ∗-trees in the usual interpre-
tation (Table 1), all the pre-threats and strict pre-threats as defined above.

Definition 4.8 (Free interpretation)
Let Mm+1 = (Pm+1, Am+1, G) be the planning domain of agent f(m+ 1) at turn
m+ 1. Assume either that π = π∅(Λ1, . . . ,Λn) ∈ Preplansm+1 is a plan for Mm+1, or

that (π, π(Mm)+

) ∈ Plansm. We define the free interpretation of π in Mm+1 as

π(Mm+1)+

=
(
A(πMm+1

), Trees(π(Mm+1)+

), goals(πMm+1

)
)
,

where Trees(π(Mm+1)+

) = {T +
Pm+1⊕π(Ak) | Ak is an argument step }, with each

T +
Pm+1⊕π(Ak) being defined as follows:

T +
Pm+1⊕π(Ak) = T ∗Pm+1⊕π(Ak) ∪



the set of pre-threats [Ak, . . . ,Ak′ ,B] and their

strict (pre-)threats [Ak, . . . ,Ak′ ,B,D]

if k 6= n 6= k′

the set of (strict) pre-threats Λn
∩[B] and their

strict (pre-)threats Λn
∩[B,D]

if k = n or Λn = [Ak, . . . ,An].

The proposed dialogues among agents, for a given multi-planner domain 〈Ma〉a∈Ag,
take place by agents communicating the contents defined in Table 2. These definitions
are used in Algorithm 2 describing how each agent communicates at each turn.

In summary, each agent f(m) sends in turn(m) lists of pre-plans, free interpretations
of (presumed) plans, and verified plans to agent f(m+1). The latter agent extracts the
information contained in these lists and adds it to its own planning domain. Then, the

A temporal argumentation approach to cooperative planning using dialogues 21

Table 2: A definition of the turn-based dialogue. Recall that we abbreviate agent

subindices in expressions like M(·)
f(m+1) to actually denote M(·)

af(m+1)
; the same for Π,

∆ and A. Note that Mm
a vMm+1

a and Mm
a vMAg for any m and a.

turn(0) = (∅, ∅, {π∅}, ∅)

turn(m+ 1) = (Preplansm+1, Plansm+1, Trueplansm+1, strictm+1)

Preplansm+1 = (Preplansm r Preplansm−|Ag|) ∪
∪ {π(A) is a pre-plan for Mm+1

f(m+1) | π ∈ Trueplansm}

Plansm+1 =

(π, π
(Mm+1

f(m+1)
)+

)

(π, π(Mm
f(m))

+

) ∈ Plansm, or

π ∈ Preplansm+1

and π is a plan for Mm+1
f(m+1)


Trueplansm+1 = Trueplansm ∪Note: for m < |Ag|, let

π
(Mm+1−|Ag|

f(m+1)
)+

= ∅.

 ∪

{
π

(π, ·) ∈ Plansm, π is a plan for Mm+1
f(m+1)

and π
(Mm+1

f(m+1)
)+

= π
(Mm+1−|Ag|

f(m+1)
)+

}

strictm+1 = strictm ∪
(

Πm+1
f(m+1) ∩

⋃
(π,·)∈Plansm

goals(πMm

)
)
∪

∪

{
e ∈ Am+1

〈µe, te〉 ∈ base(A), for

some π(A) ∈ Preplansm+1

}

Mm+1
a =

{
Mm
a if a 6= f(m+ 2)

(Pm+1
f(m+2), A

m+1
f(m+2), G) if a = f(m+ 2)

where

Am+1
f(m+2) = Amf(m+2) ∪ {e ∈ strictm+1 | e is an action}

Πm+1
f(m+2) ∪∆m+1

f(m+2) = Πm
f(m+2) ∪ ∆m

f(m+2) ∪ {〈`, t〉 | 〈`, t〉 ∈ strictm+1} ∪


Note: if δ has ←,
δ ∈ Πm+1

f(m+2)
;

and if δ has −�,
δ ∈ ∆m+1

f(m+2)



δ ∈
Πm+1
f(m+1)

∪
∆m+1
f(m+1)

δ ∈ Ar base(A)

for some π(A) ∈ Preplansm+1, or

Λ∩[A],Λ∩[A, ·] ∈ T +

Pm+1
f(m+1)

⊕π(· · ·)

with (π, ·) ∈ Plansm+1



22 A temporal argumentation approach to cooperative planning using dialogues

process of generating and communicating pre-plans, free interpreations and verified
plans is repeated using the new information available. This definition in Table 2 of
the contents communicated in turn(m), and the resulting update into Mm

f(m+1) is used
by the next algorithm describing a given agent’s contribution to the dialogue.

Algorithm 2: Dialogue for agent a in t-DeLP planning with Ag = {1, . . . , n}.
Data: M0

a;
Result: π; or fail;

initialization: m = 0 and flag = false and turn(0) = (∅,∅, {π∅},∅)

and turn(a− |Ag|) = ∅ and, for a = 1, M1
1 = M0

1;

while turn(m) 6= turn(m− |Ag|) and flag = false do

while f(m+ 1) 6= a do

set Mm+1
a = Mm

a ;

set m = m+ 1;

end
wait for message turn(m) from agent f(a− 1);

set ToTest = Trueplansm;

while ToTest 6= ∅ and flag = false do

select π from ToTest;

if goals(πMm
a) = ∅ and threats(πMm

a) = ∅ then
set flag = true

else
delete π from ToTest

end

end
if flag = false then

set π = undefined
end

compute Mm+1
a ;

compute turn(m+ 1);

send turn(m+ 1) to agent f(a+ 1);

end

See Table 3 for an illustration of the dialogue taking place between the agents a1

and a2 when solving this problem using Algorithm 2.

4.3 Soundness and Completeness of the Dialogue-based algorithm

Before proceeding with the results for soundness and completeness of the dialogue-
based algorithm, note that planning domains Mn

a keep expanding during the dialogues,
but always bounded by the centralised planning domain, i.e. Mn

a v Mn+1
a v MAg.

The reader is referred to the Appendix, for proofs of the results in this section.

Lemma 4.9
Let π = πn be a plan for two planning domains M,M′, both of the form ((·, ·), ·, G)

and with M v M′, and moreover satisfying πM
k = πM′

k , for each k ≤ n. Then, if π(A)
is again a plan for both M,M′, we have

A(π(A)M) = A(π(A)M
′
) and goals(π(A)M

′
) = goals(π(A)M) r Π′.

A temporal argumentation approach to cooperative planning using dialogues 23

Table 3: Dialogue for a decentralised version of Example 4.2. The notation used is,
e.g., as follows: πmnk denotes a plan π∅(Am,An,Ak); and Mn

k ,Pnk denote Mn
ak
,Pnak .

turn informal dialogue (for Example 4.2) formal dialogue

0, – The empty plan π∅ is available. π∅ ∈ Trueplans0

1, a1 Let us say the vase does not break. π1 ∈ Preplans1

But if the table is non-horizontal, and (π1, π
(M1

1)+

1) ∈ Plans1 with

the vase is on it, the vase will break! [A1, {δ6, δ7}] ∈ T +
P1

1⊕π1
(A1)

(a2 now learns δ7)

I might lift.N at t = 9. π4 ∈ Preplans1

2, a2 I might lift.S at t = 9. π5 ∈ Preplans2

3, a1 We agree that π1, π4 are plans. π1, π4 ∈ Trueplans3

4, a2 We agree that π5 is a plan. π5 ∈ Trueplans4

You might lift.N at t = 9 on π1. π14 ∈ Preplans4

Or I might lift.S at t = 9 on π1 or π4. π15, π45 ∈ Preplans4

In π14 the vase will break! [A1,B1] ∈ T +
P4

2⊕π14
(A1)

In π15 the vase will break! [A1,B2] ∈ T +
P4

2⊕π15
(A1)

5, a1 I might lift.N at t = 9 on π5. π54 ∈ Preplans5

6, a2 We agree that π15, π45 are plans. π15, π45 ∈ Trueplans6

7, a1 You might lift.N at t = 9 on π15 π154 ∈ Preplans7

In π154, the vase will break! [A1,B1], . . . ∈ T +
P7

1⊕π154
(A1)

We agree that π54 is a plan. π54 ∈ Trueplans7

...
...

...
9, a1 We agree that π154 is a plan. π154 ∈ Trueplans9

10, a2 [A1,B1,A3] solves threat in π154. π1543 ∈ Preplans10

{δr} (r ∈ {1, 2}) is a pre-threat for A3. [A1,B1,A3, {δr}],
[A1,B2] in π1543 is not yet solved. [A1,B2] ∈ T +

P10
2 ⊕π1543

(A1)

...
...

...
12, a2 We agree that π1543 is a plan. π1543 ∈ Trueplans12

13, a1 [A1,B2,A3] solves threat in π1543. π15433 ∈ Preplans13

{δr} (r ∈ {1, 2}) is a pre-threat for A3. [. . . ,A3, {δr}] ∈ T +
P13

1 ⊕π15433
(A1)

...
...

...
15, a1 We see that π15433 is a plan. π15433 ∈ Trueplans15

(And I think π15433 is a solution.) Terminating Cond. in M15
1 .

16, a2 (I think that π15433 is a solution.) Terminating Cond. in M16
2 .

24 A temporal argumentation approach to cooperative planning using dialogues

Theorem 4.10 (Soundness)
Let π be the output of the dialogue-based plan search algorithm for some given multi-
planner domain 〈Ma〉a∈Ag. Then A(π) is a solution for MAg.

Moreover, it can also be seen that the output is a solution for the resulting planning
domain of each agent a ∈ Ag.

Corollary 4.11
Let 〈Ma〉a∈Ag be a multi-planner domain, and let πn be the output of the dialogue-
based algorithm for 〈Ma〉a∈Ag. Assume that πn ∈ Trueplansmn

with mn minimal with
this property. Then:

• πn ∈ Trueplansmn
∩ . . . ∩ Trueplansmn+|Ag|−1, and

• A(πn) is a solution for any Mmn+j
f(mn+j) with 0 ≤ j < |Ag|.

In addition, in this study of the dialogue-based plan search algorithm one can also
show that the algorithm is complete.

Theorem 4.12 (Completeness)
Let 〈Ma〉a∈Ag be a multi-planner domain. If a solution A′ exists for the centralised
domain MAg, then the dialogue-based algorithm terminates with an output π.

Finally, assume that no solution exists for a particular MAg. Since the goals are
bounded, there are only finitely-many rules, facts and actions, and so the set of
plan steps and possible threats is also finite. Hence, both algorithms for centralised
and cooperative planning will terminate with a fail message after exploring all their
combinations.

Corollary 4.13 (Termination)
Algorithms 1 and 2 terminate given any input, a planning domain M and a multi-
planner domain 〈Ma〉a∈Ag, respectively.

5 Conclusions and Related Work

In this paper we propose a type of dialogue-based algorithm for distributed plan
search in cooperative planning problems expressible in a t-DeLP-based planning sys-
tem. The main motivation for a dialogue-based approach to cooperative planning
among autonomous agents (vs. a centralised approach) is the advantage of preserv-
ing the privacy of their information beyond the needs for the common goals. The
underlying logic-based planning system combines a traditional update function for
temporal planning with an (argumentative) temporal defeasible logical system called
t-DeLP. This logical system adds non-monotonic temporal reasoning to actions, thus
allowing for complex indirect effects. Our contribution is mainly theoretical and con-
sists of showing that the dialogue-based plan search methods are sound and complete
for t-DeLP planning.

The results of the present paper are similar to those from [19, 14, 13], but re-
placing DeLP [9] by t-DeLP [15], and also the partial order planner of [8] with the
temporal linear planner from [17]. While POP planning systems are more flexible,
the underlying logic DeLP is less expressive given the implicit time approach. The
present paper can also be related to other works combining a multi-agent approach,

A temporal argumentation approach to cooperative planning using dialogues 25

argumentative reasoning and planning methods for decision-making. None of these
works, though, exhibits all of these features. For example, abstract argumentation [6]
has been used to reason about conflicting plans and generate consistent sets of goals
[1, 11, 21]. None of these works apply to a multi-agent environment. A proposal for
dialogue-based centralised planning is that of [24], but no argumentation is made use
of. The work in [3] presents a dialogue based on an argumentation process to reach
agreements on plan proposals. Unlike our focus on an argumentative and stepwise
construction of a plan, this latter work is aimed at handling the interdependencies
between agents’ plans. In a similar vein, [12] presents an argumentation scheme to
propose and justify plans using critical questions.

In the area of traditional automated planning, several extensions of classical plan-
ning exist in either of the directions taken in the present paper. For example, the lit-
erature on temporal planning is quite rich (see e.g. [10, Ch. 14]), though mainly based
on simple, monotonic reasoning. Multi-agent planning for collaborative scenarios has
also been studied in a dialogue-based form [25], again built on classical or temporal
planners. For multi-agent planning, on the other hand, most existing works differ
from the present approach by permitting the concurrent distribution of plan search
–in contrast to the unique, sequential dialogues considered here. The latter aspect
prevents us from taking advantage of faster methods based on concurrent planning,
where different plans proposals take place, but grants soundness and completentess
when no assumptions are made upon the distribution of knowledge among agents.
In this sense, additional assumptions might suffice to reconcile argumentation-based
planning with a concurrent approach to multi-agent planning: one might assume, for
example, that the information (indirect effects, threats) relevant to a combination of
actions is distributed among the agents responsible for those actions. Under this as-
sumption, a concurrent version of the proposed dialogue protocol might preserve the
soundness and completeness of the current algorithm. This is left for future work, to-
gether with computational and more practical aspects like the efficiency, applicability
and scalability of the approach.

6 Appendix: Proofs.

Proof of Theorem 3.14 (Soundness of BFS plan search).

Proof. Let π = πn = π∅(A1, . . . ,An) be the output of the BFS algorithm. We prove
that A(π) is a solution, i.e. G ⊆ warr((Π,∆) �A(π)), by showing the stronger claim⋃

0≤k≤n

goals(πk) ⊆ warr((Π,∆) �A(π)) (note that G = goals(π0))

By Lemma 3.5, we only need to check that, for any literal 〈`, t〉 and plan πk

(?1) if 〈`, t〉 ∈ goals(πk), then 〈`, t〉 ∈ warr((Π,∆) �A(t))

where A(t) = { e ∈ A(π) | te ≤ t }. The proof of (?1) is by induction on t, together
with the auxiliary claim that actions are executable:

(?2) (Π⊕A(t),∆) = (Π,∆) �A(t)

26 A temporal argumentation approach to cooperative planning using dialogues

(Base Case t = 0) The proof of (?2) is straightforward provided that A(0) = ∅. The
proof of (?1) is similar to the inductive case and will not be repeated.

(Inductive Case t ⇒ t+1) Assume (Inductive Hypothesis) the claims (?1) and (?2)
for each t′ ≤ t. Let us show first (?2) for t+1. Let Et+1 be the set of actions in A(π)
with an effect of the form 〈·, t+ 1〉, so we have A(t+ 1) = A(t) ∪ Et+1. Then,

(Π⊕A(t+1),∆) = ((Π⊕A(t))⊕ Et+1,∆)

= ((Π⊕A(t)),∆) � Et+1 (since pre[Et+1] ⊆ warr((Π,∆) �A(t)))

= ((Π,∆) �A(t)) � Et+1 = (Π,∆) � (A(t) ∪ Et+1) = (Π,∆) �A(t+1)

For the (?1) claim, let 〈`, t+1〉 be an arbitrary goal in
⋃

1≤k≤n goals(πk). Since
goals(πn) = ∅, let k, k′ ≤ n be minimal with 〈`, t + 1〉 ∈ goals(πk) and resp.
〈`, t + 1〉 /∈ goals(πk′). By construction, Ak′ can only be an argumentation step
and moreover, such that either 〈`, t+ 1〉 = concl(Ak′) or 〈`, t+ 1〉 ∈ Πf or finally
〈`, t+1〉 ∈ OldGoals(πk′−1). The latter is impossible by the definition of k′. And so
is 〈`, t+1〉 ∈ Πf , since 〈`, t+1〉 ∈ goals(πk). So it remains to check the (?1) claim for
the former possibility. That is, it remains to prove that

Ak′ is an argument for 〈`, t+1〉 ⇒ 〈`, t+1〉 ∈ warr(P �A(t+1))

This can be shown by combining the assumption threats(πn) = ∅ and the construction
of T ∗P⊕πn

(Ak′), where each interfering argument has a defeater, extracted from an
existing defeater in TP⊕πn(Ak′). This implies that A′k is undefeated in T ∗P⊕πn

(Ak′).
Finally, it can also be easily shown by the construction of the T ∗ trees that the

undefeated status for an argument is equivalent between T ∗ and the full dialectical
tree T , so we conclude the proof as follows

〈`, t+1〉 ∈ warr(P⊕ πn) (def. of warrant)

〈`, t+1〉 ∈ warr(P⊕A(t+1)) (by Lemma 3.5)

〈`, t+1〉 ∈ warr(P �A(t+1)) (by the above claim (?2) for t+1)

This concludes the proof of the Inductive Case. As we mentioned the proof of this
Theorem can be completed as follows:

〈`, t〉 ∈ G ⇒ 〈`, t〉 ∈ warr(P �A(t)) (the above inductive proof)

⇒ 〈`, t〉 ∈ warr(P � πn) (by Lemma 3.5)

G ⊆ warr(P � πn) (since 〈`, t〉 is arbitrary)

Proof of Theorem 3.15 (Completeness of BFS plan search).

Proof. Let A′ ⊆ A be a solution for a given planning domain M = (P, A,G), so
G ⊆ warr(P�A′). Without loss of generality, we assume that this set A′ is a ⊆-minimal
solution. We proceed to define by induction a plan of the form πn = π∅(Λ1, . . . ,Λn)
that satisfies the Terminating Condition and whose set of actions is A(πn) = A′.

In order to generate πn, we first define G+ = G ∪ pre[A′]. Notice that pre[A′] ⊆
warr(P � A′), because A′ is a ⊆-minimal solution. Thus, for each 〈`, t〉 ∈ G+, there
exists an argument A〈`,t〉 for 〈`, t〉 undefeated in TP⊕A′(A〈`,t〉). Define ArgSteps =

A temporal argumentation approach to cooperative planning using dialogues 27

{A〈`,t〉 | 〈`, t〉 ∈ G+}. Another consequence of the ⊆-minimality of A′ is that P�A′ =
P ⊕ A′, which can be seen by induction on the sets A(t) of actions executed before
or at t. In order to obtain the remaining plan steps in the desired plan, define by
simultaneous induction, a pair of minimal sets Steps and Threats as containing:

{[A〈`,t〉]}A〈`,t〉∈ArgSteps ⊆ Steps

[A〈`,t〉, . . . ,A,B] ∈ Threats for any pair [A〈`,t〉, . . . ,A] ∈ Steps

and [A〈`,t〉, . . . ,A,B] ∈ TP⊕A′(A〈`,t〉)
[A〈`,t〉, . . . ,B, C] ∈ Steps for any [A〈`,t〉, . . . ,B] ∈ Threats and a

unique [A〈`,t〉, . . . ,B, C] ∈ TP⊕A′(A〈`,t〉)
such that C is undefeated in this line

Now, we define T ∗(A〈`,t〉) = {Λ ∈ Steps ∪ Threats | Λ = [A〈`,t〉, . . .]}. The above
construction should make it clear that T ∗(A〈`,t〉) v TP�A′(A〈`,t〉). Moreover, the
above fact P�A′ = P⊕A′, implies that A〈`,t〉 is an argument in P⊕A′, so TP⊕A′(A〈`,t〉)
is defined. Moreover, P �A′ = P⊕A′ and the previous fact T ∗(A〈`,t〉) v TP�A′(A〈`,t〉)
jointly imply that T ∗(A〈`,t〉) v TP⊕A′(A〈`,t〉) as well.

We proceed with the definition of the plan by induction on the plan construction:
(Base Case π0). Clearly, π0 = π∅ is a plan for M.

(Inductive Case m ⇒ m + 1). Let πm = π∅(Λ1, . . . ,Λm) be a plan for M with
Λ1, . . . ,Λm ∈ Steps. The proof is by cases.

(Sub-case threats(πm) 6= ∅) Since A′ is a solution, for each existing threat Λ there
will exist least a defeater λ∩[C], supported from actions in A′. It is routine to check
that conditions (i)-(iv) from the definition of threat resolution move apply to πm(C).

(Sub-case threats(πm) = ∅ and goals(πm) 6= ∅) Let 〈`, t〉 ∈ goals(πm). In case
〈`, t〉 ∈ G, some argument step [A〈`,t〉] ∈ ArgSteps ⊆ Steps exists for 〈`, t〉. On the
other hand, if 〈`, t〉 /∈ G, then by the definition of goals(·) in Def. 3.11, we must
have 〈`, t〉 ∈ pre(e) for some e ∈ A(πm) ⊆ A′, in which case by definition we have
[A〈`,t〉] ∈ Steps. Using the Sub-Arguments and Direct Consistency postulates, it
can be routinely checked that conditions (i)-(iv) of argument steps hold for πm(A〈`,t〉).

(Sub-case threats(πm) = ∅ and goals(πm) = ∅) In this case, we want to show that
A(πm) = A′. We have that πm is a plan for M (by the Inductive Hypothesis) satisfying
the Terminating Condition (by the Sub-Case assumption). Thus, we can apply the
Soundness Theorem 3.14, and conclude that πm is a solution for M. Clearly, by
construction of A(πm) from Steps (i.e. from A′), we have that A(πm) ⊆ A′. This,
together with the facts that A(πm) is a solution and that A′ is a ⊆-minimal solution
implies that A(πm) = A′.

Proof of Lemma 4.9.

Proof. For the identity on actions, a minimal set of actions supporting A in M will
exist and be minimal in M′ as well, since M v M′ and Π′ does not contain effects
〈µe, ·〉. For the claim on goals, we show the case where A is an argument step (for
threat resolution moves, the proof is analogous).

28 A temporal argumentation approach to cooperative planning using dialogues

goals(π(A)M
′
)

= (goals(πM′) ∪ pre[A∗]) r ({〈`, t〉} ∪Π′ ∪ OldGoals(πM′))) (by Def. 3.11)

= (goals(πM) ∪ pre[A∗]) r ({〈`, t〉} ∪Π′ ∪ OldGoals(πM′)))

(since πM′ = πM implies goals(πM′) = goals(πM))

= (goals(πM) ∪ pre[A∗]) r ({〈`, t〉} ∪Π′ ∪ OldGoals(πM)))

(since π0
M′ = π0

M, . . . , πn
M′ = πn

M implies OldGoals(πM′) = OldGoals(πM))

= (goals(πM) ∪ pre[A∗]) r ({〈`, t〉} ∪Π ∪Π′ ∪ OldGoals(πM)))

(since Π ⊆ Π′ implies Π ∪Π′ = Π′)

= ((goals(πM) ∪ pre[A∗]) r ({〈`, t〉} ∪Π ∪ OldGoals(πM))) r Π′

= goals(π(A)M) r Π′ (by Def. 3.11)

Proof of Theorem 4.10 (Soundness of the dialogue-based planning algorithm).

Proof. Let πn denote the output sequence πn = π∅(A1, . . . ,An) for an arbi-
trary planning domain Mmn

a ; and as usual, let πk denote its initial fragment πk =
π∅(A1, . . . ,Ak). By definition of Trueplansmn

, a sequence of turns m0 < . . . < mn

must exist satisfying πk ∈ Trueplansmk
, and with each mk minimal with this property.

We can assume, without loss of generality, that Mmk is the planning domain of an
initially fixed agent a –just take the next domain Mm with mk ≥ m and f(m) = a.
So, from here on, we simply omit subindexes.

The proof is by induction on the length k of the plans πk. We show that the next
two claims hold for each planning domain M satisfying Mmk v M v MAg:

(1) πk is a plan for M (2) πk
Mmk = πk

M = πk
MAg

This suffices to prove that π0, . . . , πn are plans for MAg, and that no goals and
threats remain in πn for either Mmn or MAg. Finally, using Theorem 3.14, one can
obtain that A(πn) is a solution for MAg.

(Base Case k = 0) The two claims (1)-(2) are obvious for π0 = (∅,∅, G) and m0 = 0,
since this plan is identically interpreted among any planning domain M of the form
((·, ·), ·, G).

(Inductive Case k ⇒ k + 1) Assume (Inductive Hypothesis) that (1) and (2) hold
for π0, . . . , πk, and any planning domain M′ with Mmk v M′ v MAg. We show
that (1) and (2) hold for the plan πk+1 ∈ Trueplansmk+1

and any M satisfying
Mmk+1 v M v MAg. We only show the case of argument step πk+1 = πk(Ak+1),
since the remaining case can be similarly proved.

Claim (1). First, πk is a plan for Mmk+1 by (2) and Mmk v Mmk+1 . Second,
concl(Ak+1) ∈ goals(πMmk+1

k) since this set is identical to goals(πMmk

k) and contains
concl(Ak+1) –since otherwise πk+1 would not have been generated. Third, Ak+1 is
an argument in Pmk+1 as can easily seen by induction, from the conclusion to the
base/actions: the sets Preplansm′ with mk < m′ < mk+1 show Ak+1 is contained
in Πmk+1 ∪ ∆mk+1 , while if Ak+1 was not an argument in Pmk+1 ⊕ A(πk+1), then
πk+1 would not be in Trueplansmk+1

. All these results for Mmk+1 are preserved to

A temporal argumentation approach to cooperative planning using dialogues 29

arbitrary planning domains M with Mmk+1 vM vMAg.

Claim (2). The identity πk+1
Mmk+1

= πk+1
M = πk+1

MAg for an arbitrary planning
domain M with Mmk+1 v M v MAg is shown at the level of their components:
actions, sub-trees and open goals.

For actions, the Inductive Hypothesis for (2) implies A(πk
Mk

) = A(πk
Mk+1

) =
A(πk

M) = A(πk
MAg). Moreover, by the above claim (1) in the inductive case, πk+1 is a

plan for arbitrary M with Mmk+1 vM vMAg. The latter two facts jointly permit to
apply Lemma 4.9 and conclude that A(πM

k+1) is identical for any Mmk+1 vM vMAg.

For goals, Lemma 4.9 implies that goals(πk+1
M) = goals(πk+1

Mmk+1
) r Π; so, if

these sets are not the same, the former contains some 〈`, t〉 ∈ Π r Πmk+1 . Using
Π ⊆ ΠAg, we can reach a contradiction: 〈`, t〉 ∈ strictmk+1−1 ⊆ Πmk+1 .

For sub-trees T ∗P⊕πk+1
(A), note first that the set of arguments A for which these

sub-trees are defined are the same among those planning domains M = (P, A,G) with
Mmk+1 v M v MAg. (Since claims to the contrary -strict threats- for some A would
have been found before mk+1.) Moreover, each of these trees are identical among
these planning domains. The reason is that, otherwise, given the addition of a unique
threat resolution move for each threat, there would be a threat Λ∩[B] in the tree in
some M but not in some other M′. But this is impossible, since Λ is a plan step in πk+1

according to both M and M′, and hence B will have been built before the turn mk+1

where πk+1 ∈ Trueplansmk+1
. For the same reasons as above (for A) this B must be a

threat to πk+1 according to both planning domains M,M′ provided Mmk+1 vM,M′.
Let us just note that for the case where Ak+1 is a threat resolution move, i.e. a plan

step of the form [Ai, . . . ,B,Ak+1], the major change is to use the Inductive Hypothesis
for the identity Trees(πk

Mmk+1
) = Trees(πk

M), in order to prove that [Ai, . . . ,B] exists
in πM

k (for arbitrary M with Mmk+1 v M v MAg). The proof that [Ai, . . . ,B,Ak+1]
is a plan step for πk is similar to the previous case.

This concludes the inductive proof for claims (1) and (2). As mentioned above,
applying Theorem 3.14 to this result permits to conclude that A(πn) is a solution for
MAg.

Proof of Theorem 4.12 (Completeness of the dialogue-based planning algorithm).

Proof. From the assumption that a ⊆-minimal solution A′ exists, i.e. G ⊆
warr(PAg � A′), we first proceed as in the proof of the Completeness Theorem
3.15 (now for the planning domain MAg). Again, from the set of actions A′,
we obtain the sets Lines,Steps,Threats, and also a sequence π∅(A1, . . . ,An) where
Steps = {A1, . . . ,An}. Using Theorem 3.15, we know that A(πn

MAg) = A′ and
goals(πn

MAg) = ∅ and threats(πn
MAg) = ∅.

From this and the initial fact that π∅ ∈ Trueplans0, the next two claims can easily
be shown by induction on k:

(1) for each k < n and turn mk such that πk ∈ Trueplansmk
, there exists a finite

m′ > mk such that πk(Ak+1) ∈ Plansm′ ;

(2) for each k ≤ n and turn m′ > mk such that πk+1 ∈ Plansm′ , there exists a finite
mk+1 > m′ such that πk+1 ∈ Trueplansmk+1

.

It only remains to check that πn satisfies the Terminating Condition for Mmn . But

this follows from the facts goals(π
MAg
n) = ∅ and threats(π

MAg
n) = ∅ (in Theorem 3.15)

30 A temporal argumentation approach to cooperative planning using dialogues

together with the properties of Trueplansmn
(Theorem 4.10)

goals(πn
Mmn

) = goals(π
MAg
n) threats(πn

Mmn
) = threats(π

MAg
n)

Thus, the dialogue-based algorithm will terminate with an output, e.g. a plan πn
satisfying A(πn) = A′, if no other solution has already been found by it.

Acknowledgments

This research was partially supported by the projects Epistemic Protocol Synthe-
sis (FFI2011-15945-E), EdeTRI (TIN2012-39348-C02-01) and AT (CONSOLIDER-
INGENIO 2010, CSD2007-00022), funded by the MINECO Spanish ministry. We
would also like to thank the anonymous reviewers for their helpful suggestions.

References

[1] L. Amgoud, A formal framework for handling conflicting desires. In Proc. of ECSQARU 2003,
LNAI 2711, pp. 552–563 (2003)

[2] J. Augusto and G. Simari. Temporal Defeasible Reasoning. Knowledge and Information Systems,
3:287–318 (2001)

[3] A. Belesiotis, M. Rovatsos, and I. Rahwan. Agreeing on plans through iterated disputes. In Proc.

of AAMAS 2010, pp. 765–772 (2010)

[4] M. Caminada and L. Amgoud. On the evaluation of argumentation formalisms, Artificial Intel-

ligence, 171:286–310 (2007)

[5] L. Cobo, D. Mart́ınez and G. Simari. Stable Extensions in Timed Argumentation Frameworks.

In Proc. of TAFA 2011, S. Modgil et al (eds.), LNCS 7132, pp. 181–196 (2012)

[6] P. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,

logic programming and n-person games, Artificial Intelligence, 77(2): 321–357 (1995)

[7] D. Garćıa Planificación y Formalización de Acciones para Agentes Inteligentes, PhD thesis,

Universidad Nacional del Sur (2011)

[8] D. Garćıa and A. Garćıa and G. Simari Defeasible Reasoning and Partial Order Planning, Proc.
of FoIKS 2008, LNCS 4932, pp. 311–328 (2008)

[9] A. Garćıa and G. Simari. Defeasible logic programming: An argumentative approach, Theory
and Practice of Logic Programming, 4(1+2): 95–138 (2004)

[10] M. Ghallab, D. Nau and P. Traverso. Automated Planning: Theory and Practice. Morgan Kauf-
mann, San Francisco, USA (2004)

[11] J. Hulstijn and L. van der Torre. Combining goal generation and planning in an argumentation

framework. In Proc. of the 10th NMR (NMR’04), pp. 212–218 (2004)

[12] R. Medellin-Gasque, K. Atkinson, P. McBurney, and T. Bench-Capon. Arguments over co-

operative plans. In Proc. of TAFA 2011, S. Modgil et al (eds.), LNCS 7132, pp. 50–66 (2012)

[13] S. Pajares, E. Onaindia. Defeasible argumentation for multi-agent planning in ambient intelli-

gence applications. In Proc. of AAMAS 2012, pp. 509–516 (2012)

[14] S. Pajares and E. Onaindia. Context-Aware Multi-Agent Planning in Intelligent Environments,

Information Sciences, 227:22–42 (2013)

[15] P. Pardo and L. Godo. t-DeLP: an argumentation-based Temporal Defeasible Logic Program-

ming framework, Annals of Math. and Artif. Intel., 69(1):3–35 (2013)

[16] P. Pardo Logical planning in temporal defeasible and dynamic epistemic logics: the case of

t-DeLP and LCC, PhD thesis, Universitat de Barcelona (2013)

[17] P. Pardo and L. Godo. An argumentation-based multi-agent temporal planning system built on
t-DeLP. In Proc. of CAEPIA 2013, LNAI vol. 8109, pp. 188–198 (2013)

[18] P. Pardo and L. Godo. A temporal argumentation approach to cooperative planning using dia-
logues. In Proc. CLIMA XIV, LNAI vol. 8143, pp. 307–324 (2013)

A temporal argumentation approach to cooperative planning using dialogues 31

[19] P. Pardo, S. Pajares, E. Onaindia, L. Godo and P. Dellunde. Multiagent argumentation for
cooperative planning in DeLP-POP. In Proc. AAMAS 2011, pp. 971–978 (2012)

[20] H. Prakken. An abstract framework for argumentation with structured arguments. Argument &

Computation, 1(2):93–124 (2010)

[21] I. Rahwan and L. Amgoud, An Argumentation-Based Approach for Practical Reasoning, In
Proc. of ArgMAS 2006, N.Maudet et al. (eds.), LNAI 4766, pp. 74–90 (2007)

[22] G. Simari and R. Loui. A mathematical treatment of defeasible reasoning and its implementation.

Artificial intelligence, 53:125–157 (1992)

[23] F. Stolzenburg, A. Garćıa, C. Chesñevar and G. Simari. Computing Generalized Specificity.

Journal of Applied Non-Classical Logics, 12(1):1–27 (2002)

[24] Y. Tang, T. Norman, and S. Parsons. A model for integrating dialogue and the execution of

joint plans. In Proc. of ArgMAS 2009, LNAI 6057, pp. 60–78 (2010)

[25] A. Torreño, E. Onaindia and O. Sapena. An approach to multi-agent planning with incomplete

information, Proc. of ECAI 2012, IOS Press, pp. 762–767 (2012)

