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Abstract. How to reuse or adapt past solutions to new problems is one
of the least understood problems in case-based reasoning. In this paper
we will focus on the problem of how to combine solutions coming from
multiple cases in search-based approaches to reuse. For that purpose, we
introduce the notion of amalgam. Assuming the solution space can be
characterized as a generalization space, an amalgam of two solutions is a
third solution which combines as much as possible from the original two
solutions. In the paper we define amalgam as a formal operation over
terms in a generalization space, and we discuss how amalgams may be
applied in search-based reuse techniques to combine case solutions.

1 Introduction

Case-based reasoning systems are based on the hypothesis that “similar problems
have similar solutions”, and thus new problems are solved by reusing or adapting
solutions of past problems. However, how to reuse or adapt past solutions to new
problems is one of the least understood problems in case-based reasoning. There
are multiple open problems such as what knowledge is required for adaptation
and how to acquire it [15], the relation between solution reuse and case retrieval
[13], and solution revision [9]. In this paper we will focus on one of such problems,
namely how to reuse solutions originating from multiple cases.

The three most common approaches to reuse are: substitutional adaptation,
transformational adaptation, and generative adaptation [9]. In this paper we
will focus on transformational adaptation techniques, and in particular in search-
based approaches. In search-based approaches to reuse, the solution to a problem
is seen as a description (or term) in a search space. The retrieved solution is seen
as the starting point of a search process, which explores the search space by ap-
plying adaptation operators to the retrieved solution until a satisfactory solution
to the problem at hand is found. These techniques are common, for instance, in
CBR systems applied to planning domains [10]. Imagine a trip planning CBR
system that has to generate a trip to go from city A to city C, and has been
able to retrieve a case with a solution to go from A to B and another case that
has a solution to go from B to C. If search-based techniques are used, the start-
ing point of the search will be one of those two solutions, but the solution to



the problem at hand could be generated by combining the solutions in the two
retrieved cases. Therefore, a better starting point would be one which combines
both (parts of) solutions.

This paper introduces the amalgam operation as a formal operation through
which, given two terms, a third term which combines as much as possible from
the two original terms is generated. We will also discuss how this operation can be
used to define search-based approaches to reuse which can, in a natural way, reuse
solutions from more than one case at a time. Our amalgam operation is applicable
whenever the solutions to be generated by a CBR system can be represented as
terms in a search space, and where a more general than (subsumption) relation
exists in such space (which we wil call “generalization space”).

The rest of the paper is organized as follows. Section 2 introduces and moti-
vates, in an informal way, the notion of amalgam. Then, Section 3 presents the
concepts of generalization space needed in Section 4, where the formal definition
of amalgam is presented. Finally, Section 5 discusses how amalgams may be used
in the CBR Reuse process. The paper closes with related work and conclusions.

2 The notion of Amalgam

The notion of amalgam can be conceived of as a generalization of the notion
of unification over terms. Unification of two terms (or descriptions) builds a
new term, the unifier, by adding the content of these two terms. Thus, if a
term φ is a unifier of two other terms (φ = ψa t ψb), then all that is true
for one of these terms is also true for φ. For instance, if ψa describes “a red
vehicle” and ψb describes “a German minivan” then their unification φ is the
description “a red German minivan.” Two terms are not unifiable when they
possess contradictory information; for instance “a red French vehicle” is not
unifiable with “a red German minivan” since being French and German at the
same time is not possible for vehicles.

The strict definition of unification means that any two descriptions with
only one item with contradictory information cannot be unified. Now, imagine
a scenario where two such descriptions have a large part of complementary in-
formation, which a CBR system would be interested in reusing: unification is
not useful. Thus, what we would be interested in CBR is considering how to
reuse their complementary information setting aside, at least momentarily, the
contradictory aspects.

This is the idea that we intend to formalize with the notion of amalgam
of two descriptions (or terms). Term is an amalgam of two terms whenever it
contains parts from these two terms while forming a new coherent description.
For instance, an amalgam of “a red French vehicle” and “a German minivan”
is “a red German minivan”; clearly there are always multiple possibilities for
amalgams, since “a red French minivan” is another example of amalgam.

Given to terms ψa and ψb, their possible amalgams constitutes a set of terms,
and we propose that Case Reuse can exploit this set as a search space of possible
solutions achieved by combining (amalgamating) descriptions ψa and ψb.
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Fig. 1. An example of an amalgam of two cubicles.

Intuitively, since formalization will be presented later, let us consider the
content of ψa with respect to ψb divided in two parts: Ca, and Ia, where Ca is
the information that is compatible with ψb, and Ia is that content in ψa that is
not compatible with the content in ψb. If, for any two terms ψa and ψb, we are
able to identify their parts (〈Ca, Ia〉 and 〈Cb, Ib〉) there is a clear way to reuse
content from both into an amalgam: Ca tCb, i.e. unifying what is compatible of
both terms. Nevertheless, there is part of the content in Ia and Ib that can be
reused and added to an amalgam: it’s just that some cannot be used together
(like “German” and “French” in vehicles). Thus, reusing content in Ia and Ib
to form different coherent combinations will constitute the space of possible
amalgams that can be built from two (non-unifiable) descriptions.

Figure 1 shows an example of an amalgam of two descriptions of cubicles,
where the signature “M” shape of the amalgam is made clear: given two cubicles,
each one is generalized to one of their possible generalizations, and then they are
unified, yielding new cubicle that amalgams aspects of both original cubicles.

3 Generalization Space

In this paper we will make the assumption that solutions in cases are terms in
some language L, and that there exists a subsumption relation among terms.

We say that a term ψ1 subsumes another term ψ2 (ψ1 v ψ2) when ψ1 is more
general (or equal) than ψ2

1. Another interpretation of subsumption is that of an
“information content” order: ψ1 v ψ2 means that all the information in ψ1 (all
that is true for ψ1) is also contained in ψ2 (is also true for ψ2).

The subsumption relation induces a partial order in the terms in a language
L, thus, the pair 〈L,v〉 is a poset (partially ordered set) for a given set of terms

1 In machine learning terms, A v B means that A is more general than B, while in
description logics it has the opposite meaning, since it is seen as “set inclusion” of
their interpretations.
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Fig. 2. A schema of the relationships between two terms ψa and ψb and their unification
(below) and antiunification (above).

L; additionally, we assume that L contains the infimum element ⊥ (or “any”),
and the supremum element > (or “none”) with respect to the subsumption order.
In the rest of this paper we will call a pair 〈L,v〉 a generalization space.

Given the subsumption relation, for any two terms ψ1 and ψ2 we can define
the anti-unification of two terms (ψ1 u ψ2) as their least general generalization,
representing the most specific term that subsumes both. If two terms have noth-
ing in common, then ψ1 u ψ2 = ⊥. Thus, anti-unification encapsulates in a
single description all that is shared by two given terms. Moreover, depending on
the language L, the anti-unification might be unique or not. Anti-unification is
defined as follows:

ψ1 u ψ2 = ψ : (ψ v ψ1 ∧ ψ v ψ2) ∧ (@ψ′ A ψ : ψ′ v ψ1 ∧ ψ′ v ψ2)

The dual operation to the anti-unification is that of unification (ψ1 t ψ2),
which is the most general specialization of two given terms:

ψ1 t ψ2 = ψ : (ψ1 v ψ ∧ ψ2 v ψ) ∧ (@ψ′ @ ψ : ψ1 v ψ′ ∧ ψ2 v ψ′)

That is to say, the unifier’s content is the addition of the content of the two
original terms (all that is true in ψ1 or ψ2 is also true in ψ1 tψ2). However, not
every pair of terms may be unified: if two terms have contradictory information
then they have no unifier —which is equivalent to say that their unifier is “none”:
ψ1 t ψ2 = >. Moreover, depending on the language L, the unification of two
terms, when exists, may be unique or not.

Figure 2 shows both anti-unification (the most specific common generaliza-
tion), and unification (the most general common specialization). Moreover, uni-
fication and anti-unification might be unique or not depending on the structure
induced by subsumption over the terms in a language L.

In our framework, a refinement operator ρ : L → ℘(L) is a function that,
given a term in L, yields the set of direct (or minimal) generalizations or spe-
cializations of that term. In short, given a term ψ, a refinement yields a gen-
eralization (resp. specialization) ϕ such that there is no generalization (resp.
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Fig. 3. Three schemas showing a generalization refinement operator γ, a specialization
refinement operator ρ, and the distance between two terms.

specialization) between ψ and ϕ in the language L. We will first define a refine-
ment relation between terms:

Definition 1. (Refinement Relation) Two feature terms hold a refinement
relation ψ1 ≺ ψ2 iff

ψ1 v ψ2 ∧ @ψ′ ∈ L : ψ1 @ ψ′ @ ψ2

That is to say, the relation ψ1 ≺ ψ2 holds when specializing from ψ1 to ψ2 is a
minimal specialization step: there is no intermediate term ψ′ in L between ψ1

and ψ2. Now a specialization refinement operator can be defined as follows:

ρ(ψ) = {ψ′ ∈ L|ψ ≺ ψ′}

whereas a generalization refinement operator is defined as follows:

γ(ψ) = {ψ′ ∈ L|ψ′ ≺ ψ}

Figure 3 illustrates the idea of both generalization and specialization refinement
operators. Refinement operators can be used to navigate the space of terms using
search strategies, and are widely used in Inductive Logic Programming [8]. In
previous work, we made use of refinement operators to define similarity measures
for CBR systems [11]. For instance, in the vehicle example used above, if we have
a term representing “a German minivan”, a generalization refinement operator
would return generalizations like “a European minivan”, or “a German vehicle”.
If we apply the generalization operator again to “a European minivan”, we can
get terms like “a minivan”, or “a European vehicle”. A specialization refinement
operator would perform the opposite task, and given a term like “a German
minivan”, would return more specific terms like “a Mercedes minivan”, or “a
red German minivan”.

The length of the path between two terms ψ and ψ′, noted as λ(ψ → ψ′), is
the number of times a refinement operator has to be used to reach ψ′ from ψ.
Moreover, the minimal path between two terms estimates their distance in the
generalization space, as illustrated in Figure 3.c. Finally, the distance λ(⊥ → ψ)
measures the amount of information contained in one term (as discussed in [11]).
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Fig. 4. A schema of the most specific unifiable generalizations Γ (ψa, ψb) of term ψa

with respect to ψb and Γ (ψb, ψa) of term ψb with respect to ψa.

ψa ψb

ψa � ψb

ψa � ψb

ψa = ψa � ψb

ψb = ψa � ψb

a) b)

ψa♦ψb ψa♦ψb

Fig. 5. Two schemas of the interstice space ψa♦ψb between two terms ψa and ψb: a)
the general schema and b) the special case where ψa v ψb.

4 Amalgams on a Generalization Space

This section formally defines the notion of amalgam over a generalization space.
Let us introduce some auxiliary definitions first. First, when two terms are not
unifiable, some of their generalizations, however, may be unifiable:

Definition 2. The set G of unifiable generalizations of a term ψa with respect
to another term ψb is: G(ψa, ψb) = {ψ ∈ L|ψ v ψa ∧ ψ t ψb 6= >}.
that is to say, the generalizations of ψa that are unifiable with ψb. Moreover, we
are interested in the most specific unifiable generalizations in G.

Definition 3. (MUG) The set Γ of most specific unifiable generalizations
(mug) of term ψa with respect to ψb is:

Γ (ψa, ψb) = {ψ ∈ G(ψa, ψb)|@ψ′ ∈ G(ψa, ψb) : ψ′ @ ψ}
In other words, the most specific unifiable generalizations of a term ψa with
respect to another term ψb (see Fig. 4) is the set of most specific generalizations
of ψa which unify with ψb. Notice that if they are unifiable (ψa t ψb 6= >) then
Γ (ψa, ψb) = {ψa}.
Definition 4. (Interstice) The interstice (ψa♦ψb) between two unifiable terms
ψa and ψb, is the set of terms such that:

ψa♦ψb = {ψ ∈ L|(ψa u ψb) v ψ ∧ ψ v (ψa t ψb)}
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Fig. 6. Schema showing the sets of amalgamable generalizations ι(ψa, ψb) of a term ψa

with respect to a term ψb.

that is to say, the interstice (as shown in Fig. 5.a) is the set of terms in the ♦-
shaped space defined by ψa and ψb (metaphorically “right and left”), and their
antiunification ψauψb and unification ψatψb (metaphorically “up and down”).
Notice that when ψa and ψb are not unifiable (ψa t ψb = >) there is not strict
limit below (the supremum > denotes failure to unify).

Particularly interesting is the interstice between two terms ψa and ψb when
ψa v ψb (see Figure 5.b): this interstice contains all the terms ψ such that
ψa v ψ v ψb — i.e. all terms between ψa and ψb in the generalization space.

Out of all the terms in the interstice, we are interested in the subset of terms
that contain the maximum amount of information from ψa and ψb, and which
we will call the amalgam space.

Definition 5. The set ι(ψa, ψb) of generalizations of a term ψa amalgamable
with another term ψb is the following:

ι(ψa, ψb) =
⋃

ϕa∈Γ (ψa,ψb)

ϕa♦ψa

that is to say, for each mug ϕa of ψa with respect to ψb there is an interstice
between ψa and this mug ϕa; the terms in these interstices are amalgamable
with ψb, and their union is the set of all amalgamable generalizations of a term
ψa with another term ψb. Figure 6 illustrates this idea where the mug of ψa with
respect to ψb is a set Γ (ψa, ψb) with a single term, and where we can see that
the terms in ι(ψa, ψb) correspond to the terms in the interstices between ψa and
the mug, i.e. in the paths going from ψa to the mug.

Definition 6. (Amalgam) The amalgams of two terms ψa and ψb is the set
of terms such that:

ψaΥψb = {φ ∈ L|∃ϕa ∈ ι(ψa, ψb) ∧ ∃ϕb ∈ ι(ψb, ψa) : φ = ϕa t ϕb}

We call amalgamation operation the function Υ : L×L → ℘(L) that determines
the set of amalgam terms for any pair of terms, and we call amalgam space of two
terms the part of the generalization space that contains their amalgams. Thus,
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Fig. 7. Schema showing (in grey) the space of the amalgams ψaΥψb between two terms
ψa and ψb.
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Fig. 8. Schema showing the set of upper bounds ψaΥ̂ψb of the space of amalgams
ψaΥψb (in grey) between two terms ψa and ψb.

a term φ is an amalgam of ψa and ψb if φ is a unification of two terms ϕa and ϕb
that are amalgamable with ψb and ψa respectively. Figure 7 illustrates this idea,
showing as a grey area the space of amalgams, and showing one point in that
space as the amalgam corresponding to φ = ϕa t ϕb. In the special case where
two terms are unifiable (ψa t ψb 6= >), then unifiers and amalgams coincide:
ψaΥψb = ψa t ψb.

Next we will define the upper bounds of a space of amalgams:

Definition 7. The set of upper bounds ψaΥ̂ψb of an amalgam space ψaΥψb is
the minimum set such that ∀φ ∈ ψaΥψb, ∃φ′ ∈ ψaΥ̂ψb : φ′ v φ.

The set of upper bounds can be determined as follows:

ψaΥ̂ψb = {φ ∈ L|∃ϕa ∈ Γ (ψa, ψb) ∧ ∃ϕb ∈ Γ (ψb, ψa) : φ = ϕa t ϕb}

That is to say, given two terms, ψa and ψb, the set of pair-wise unifications of
terms in their mugs Γ (ψa, ψb) and Γ (ψa, ψb) produces the set of upper bounds
of the space of amalgams. Figure 8 shows the upper bounds of two terms in the
special case where their mugs are unique.

Figure 9 shows an example where two trains, ψa and ψb are represented using
feature terms [2]. Each train is represented as a set of cars, where the first car is
an engine. Each car has a type, and can be loaded with items, where each item
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Fig. 9. Amalgam between two trains, represented using a feature terms.

is of a certain type (triangles or squares), and the number of items as an integer.
The two trains in Fig. 9 do not unify, since the first car after the engine is an open
hexagon for ψa, while it is a rectangle for ψb. Additionally, the number of items
do not match. However, the description of the left train ψa can be generalized
by removing the restriction that the number of items loaded in the second car is
1 (yielding the term ϕa), and the right train ψb can be generalized by removing
the restriction that the car after the engine is a rectangle car (yielding the term
ϕb). Noo, the two generalizations (ϕa and ϕb) unify in a term φ, which is an
amalgam of both original trains. Notice that the resulting amalgam has features
of both trains: φ has two cars after the engine, like the left train, but the load
of the rectangle car are two squares, like in the right train.

The next section addresses the role of amalgams in the CBR Reuse process.

5 CBR Reuse through Amalgams

In this section we will discuss how the amalgam operation can be used for reuse.
We’d like to emphasize that amalgams are not proposed as a complete reuse
technique, but as a piece that can be used inside of CBR reuse techniques.
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Fig. 10. Search-based case reuse: a single case is retrieved, and its solution neighbor-
hood is explored using search.

Search in the solution space is an approach to case reuse which is commonly
used for tasks where the solution is a complex structure, such as in configuration
[16] or planning tasks [1]. CBR systems which use search for reuse typically
retrieve a single case, and use the solution in that case as the starting point of a
search process in the solution space. The main idea is that it is expected that the
solution to the problem at hand will be close to the solution in the retrieved case.
Figure 10 illustrates this idea, where given a target problem, the most similar
case (according to a similarity in the problem space) is retrieved, and then the
neighborhood of the solution of the retrieved case is explored using search.

When using a search-based reuse technique, we need both a) a strategy to
(systematically) explore the solution space in a neighborhood of the retrieved
solution and b) a criteria to stop the search. In our framework we model a)
using refinement operators (introduced in Section 3) that define a systematic
way to traverse the solution space, and concerning b) we will assume the ex-
istence of a predicate, v(P, S), which given a problem and a candidate solu-
tion, determines whether a term is a valid solution for the problem at hand:
v : P × S → {true, false}, where P is the problem space, S is the solution
space, and v(P, S) = true when S is a valid solution for P . For example, in a
configuration task, such predicate would return true when a particular solution
is a valid configuration and false when it is an invalid or incomplete configura-
tion; in a planning domain, it would return true when the solution is a complete
plan consistent with the problem specification. If no known restrictions about
solutions exist in a domain, then v would just return true for any solution.

Search-based approaches to reuse are, often, limited to reusing a solution
from a single case. This is because search techniques typically require a starting
point for the search process, which corresponds to the solution of the retrieved
case. However, if we wanted to reuse solutions from more than one case, there is
no clear starting point. Our proposal is to use an amalgam as the starting point
to search for solutions to the problem at hand, as illustrated in Figure 11.

An underlying assumption of search-based reuse approaches is that it is
preferable to preserve as much from the retrieved solution as possible 2. If we use

2 Although this assumption is only true for conservative adaptation techniques.
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Fig. 12. A schema illustrating the preservation degree p(ψ) of an amalgam ψ.

amalgams to generate a starting point for searching, we need a way to measure
how much information of the original solutions an amalgam still preserves. For
that purpose, we define the preservation degree of an amalgam.

Definition 8. (Preservation Degree) Given an amalgam ψ ∈ ψaΥψb which
is a unification ψ = ϕa t ϕb of two terms such that ϕa ∈ ι(ψa, ψb) and ϕb ∈
ι(ψb, ψa), its preservation degree p(ψ) is:

p(ψ) =
λ(⊥ → ϕa) + λ(⊥ → ϕb)

λ(⊥ → ψa) + λ(⊥ → ψb)

where λ(ψ → ψ′) is the number of times a refinement operator has to be used to
reach ψ′ from ψ —i.e. the distance between ψ and ψ′ in the generalization space.

The preservation degree (see Fig. 12) is the ratio of information preserved in
the amalgam ψ with respect to the information present in the original terms ψa
and ψb. The information preserved is measured by the addition of the information
contained in the two amalgamable terms ϕa and ϕb yielding the amalgam ψ.
When nothing is preserved p(ψ) = 0 since ψ = ⊥, while p(ψ) = 1 when ψ =
ψa = ψb.

As shown in Fig. 12, the preservation degree is high when ψa and ψb had to
be generalized very little in order to obtain the amalgam ψ. In other words, if
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Fig. 13. The search space defined by the process of amalgamating a tentative solution
ψa with other solutions from cases in the case base.

the λ-distances between ψa and ϕa and between ψb and ϕb are low, preservation
is high. If ψa and ψb had to be greatly generalized before finding amalgamable
generalizations, then the preservation degree of the resulting amalgam will be
low. Thus, the higher the λ-distances between ψa and ϕa and between ψb and
ϕb, the lower the preservation degree.

Using the previous notions, we can define a basic way of reusing the solutions
ψa and ψb from two cases to solve a particular problem P in the following way:

1. Compute the amalgam ψ ∈ ψaΥψb with the highest preservation degree.
2. Search in the neighborhood of ψ (the neighborhood can be searched using

refinement operators) until we find a solution ψ∗ such that v(P,ψ∗) = true.

This section has presented amalgam as a solution to reusing solutions from
multiple cases in the context of search-based reuse. We have focused our expla-
nation on reusing solutions from two cases, but the techniques generalize easily
to reusing three or more solutions. The amalgam operation can be extended to
amalgamate more than two terms in an straightforward way.

Let us now consider a different scenario, where a CBR system initially finds a
tentative solution ψa and, later, transforms this solution by adding elements from
another solution ψb. For instance, let us consider the first cubicle of Fig. 1 as the
initial solution, and let us imagine there are certain aspects of the second cubicle
that we would like to add to the initial solution: the result is the “amalgam
cubicle” in Fig. 1. If we iterate these amalgamation operations, as shown in
Fig. 13, we have a search process over the solution space. Starting from ψa, the
initial solution, we can amalgamate ψa with ψb (or with ψc) obtaining a new
solution ψ1

a (resp. ψ2
a). Next, we can iteratively produce new amalgams over ψ1

a

and ψba, obtaining a search tree like that of Fig. 13.
Thus, the amalgam operation provides a theoretical framework for combin-

ing case solutions, which can be used inside of case reuse strategies in different
ways, only a few of which we have discussed here. Finally, recall that the only
assumption required for working with amalgams is that the solution space of a
CBR system can be expressed as a generalization space. Tasks such as config-
uration or planning naturally suit this framework; but even classification tasks
may fit in our framework in a straightforward way.



6 Related Work

The notion of amalgam is closely related to that of merge in the formalism of fluid
construction grammar (FCG) [14] in that both relax or generalize the notion of
unification. The merge operation is defined in FGC, a formalism in the family of
unification-based grammars [6, 5] used in computational linguistics. Specifically,
FGC has been proposed as a framework for language emergence and evolution, a
process in which new structures are created or invented. This goal requires more
flexibility than the operations used in unification-based grammars, which leaded
to FGC defining operations like merge and an extended form of unification.

The merge operation is informally defined as follows: “[...] merging a source
expression s and a pattern expression p means changing the source expression
such that it unifies with the pattern expression” [14]. That is to say, merge(p, s)
is a an operation that finds a changed source expression s′ and yields as result
their unification (p t s′). Notice that merge is asymmetric, since the two terms
being merged are distinguished: one is changed (because it is the source) while
the other remains unchanged (because it is the pattern). Our notion of amalgam
of two terms ψ1 and ψ2, however, is symmetric: both terms are in equal standing,
both are “changed” by generalization, eliminating some parts, in order to obtain
an amalgam by the unification of those generalizations.

Merging operators have also been studied in belief merging [7], where the
goal is to merge two knowledge bases (beliefs plus integrity constraints) while
maintaining consistency. This approach was applied to CBR [3] by viewing case
combination in reuse as a belief merging problem. Specifically, each case is viewed
as a knowledge base, and the merging is generating a new knowledge base that
preserves the relevant integrity constraints. Integrity constraints play a similar
role to our validity predicate. Moreover, CBR techniques for adapting solutions
are also relevant to this paper, since the main research goal for introducing
amalgams is to provide a formalization, as a search process, of reusing past
solutions to build a new solution adapted to the current problem. Several reuse
techniques can be understood as search processes over the solution space: local
search, Abstract-Refine, compositional adaptation, and plan adaptation.

Compositional adaptation are reuse techniques that find new solutions from
multiple cases, which were analyzed for configuration tasks in [16], where the
approach adaptation-as-configuration is also presented. This approach has two
specific operators (compose and decompose) that achieve compositional adapta-
tion in “conceptual hierarchy oriented configuration.” Compose merges multiple
concept instances that have already been configured, while Decompose gives the
subconcept instances of a given concept instance. These operations work upon
is-a and part-of relations in an object-oriented hierarchy. Our notions of amal-
gam and interstice space are intended to formalize the process of combining parts
of different case solutions in a more abstract, domain-independent way. We do
not assume that the task is configuration or that an object-oriented hierarchy is
present, only that solutions are in a generalization space. Moreover, amalgams
allow us to characterize the solution space of CBR as a search space for the
purposes of combining multiple solutions into a new solution.



The Abstract-Refine approach to case-based planning [1] performs reuse in
two steps: first a description is abstracted (not generalized), and second the
abstract description is refined in search of an adapted description. The main
difference with our approach is that Abstract-Refine starts from one description
in the solution space and then explores the neighborhood of that description,
while the starting point using amalgams is a term which is a combination of the
solutions in 2 or more cases.

Finally, local search uses a taxonomy of classes to perform a Generalize-Refine
process in search for an adapted solution and, as before, the main difference
from our approach is that it explores the neighborhood of one description. SPA
(Systematic Plan Adapter) [4] is an approach for adapting plans as search in a
refinement graph of plans. SPA is systematic and complete and, as local search, is
based on adapting a single plan. MPA (Multi-Plan Adapter) [12] is an extension
which allows for reusing multiple plans. MPA breaks the different plans into
smaller pieces, which are then recombined together. The complexity breaking
these plans into smaller pieces, however, is very high and MPA uses only a
heuristic. Compared to MPA, our approach avoids the need of this previous
process of breaking down while providing a systematic way to combine multiple
solutions into a single one.

7 Conclusions

This paper has presented a new operation between terms called amalgam. This
operation can be seen as a relaxation of unification. An amalgam of two terms
is a new term which contains as much information from the two original terms
as possible. This new term is constructed by generalizing the two original terms
as little as possible, and then unifying them. Moreover, we have presented how
can the amalgam between two solutions be used for multiple solution reuse in
CBR systems. The framework presented in this paper is domain-independent,
and does not assume anything about the task the CBR system has to solve other
than being able to express the solution as a term in a generalization space.

CBR systems typically only exploit similarity in the problem space, but do-
mains where solutions are complex structures could also benefit from analyzing
and exploiting similarity in the solution space. The amalgam operation pre-
sented in this paper explores such idea, since the amalgam space defines a sub-
set of terms in the solution space which are similar not to one but to two given
solutions. We are already working on a technique implementing the amalgam
operator for feature terms, but it’s out of the scope of this paper.

As future work, we’d like to continue exploring the idea of using similarity
relations in the solution space. More specifically, we plan to explore the appli-
cations of the amalgam operation to develop search-based techniques for CBR
Reuse for specific tasks like configuration and hierarchical planning. Finally,
amalgamating more than two solutions is also part of future work, since amal-
gamating more than two terms increases the number of constraints and, thus,
enlarges the search space for the techniques implementing amalgamation.
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