
A Lifecycle for Models of
Large Multi-Agent Systems?

Wamberto Vasconcelos[y;a], David Robertson[y;b], Jaume Agust��[�;c],
Carles Sierra[�;d], Michael Wooldridge[z;e], Simon Parsons[z;f ],

Christopher Walton[y;g], and Jordi Sabater[�;h]

yDivision of Informatics, University of Edinburgh, Edinburgh EH1 1HN, UK
fawamb, bdr, gcdwg@dai.ed.ac.uk

�Institut d'Investigaci�o en Intel�lig�encia Arti�cial (IIIA)
Campus UAB, 08193 Bellaterra, Catalonia, Spain
fcagusti, dsierra, hjsabaterg@iiia.csic.es

zDepartment of Computer Science, University of Liverpool, Liverpool L69 7ZF, UK
feM.J.Wooldridge, f

S.D.Parsonsg@csc.liv.ac.uk

Abstract. Two key issues in building multi-agent systems concern their
scalability and engineering open systems. We o�er solutions to these po-
tential problems by introducing a lifecycle for models of large multi-agent
systems. Our proposal connects a model for the collective analysis of
agent systems with an individual-based model. This approach leads on
to a virtuous cycle in which individual behaviours can be mapped on to
global models and vice-versa. We illustrate our approach with a formal
example but relatively easy for engineers to follow and adapt.

1 Introduction
A key issue in building multi-agent systems (MASs) is that of scalability. Large
MASs are globally distributed intercommunicating collections of human, soft-
ware and hardware systems each with hundreds or thousands of components.
Such systems are becoming increasingly common and complex. Ensuring that
these systems do not fall into unstable or chaotic behaviour is a main challenge
designers face.

The wealth of knowledge about conventional information processing does not
seem to scale up nor adapt easily to MASs [8, 9]. It is important that we study
and understand the dynamics of MASs, the forces that de�ne these dynamics,
and how these can bene�t or impair a MAS. Hopefully this knowledge should
cast light on issues of design, performance and reliability of components of MASs.

Another key issue concerns engineering open systems. A canonical example
is the Internet: with the predicted increase in the number of personal agents
(information �ltering and shopping agents being two widely studied examples)
and commercial agents (shopbots and pricebots, for example) the Internet seems
likely to become an environment teeming with agents encountering situations for
which they were not explicitly designed.

At present we lack a theoretical understanding of how to design systems
which can be guaranteed to exhibit good performance in such a free-for-all, and
those empirical studies that have been carried out suggest that system behaviour
is likely to be extremely complex (e.g. [10, 11]). In contrast, as can be seen in
other papers in this volume, we already have a range of tools and techniques for
engineering closed agent systems.
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We can model very large MASs at di�erent levels of abstraction. At a very
high level of abstraction we want to study the aggregate behaviour of agent popu-
lations. For this we suggest the use of equations of continuous change, abstracting
away from the details of individual interaction. Such collective models can then
be used to drive more detailed modelling of individual agent interactions: the
global behaviour from our continuous models helps to map the behaviours we
examine in more detail when we devise an agent-based modelling. The issue is
then to build models of interaction at the level of individual agents which are as
small and simple as possible while allowing us to prove or disprove hypotheses
about the relation between agent structure (at the individual agent level) and
MAS behaviour (at the population level). We demonstrate by example how this
can be done using a method which is formal but is relatively easy for engineers
to apply.

In the next section we describe the example problem we shall use to describe
our approach. In Sections 3 and 4 we give more details of our proposed method
for the study of MASs. In our approach, we employ established analysis tech-
niques from dynamic systems, but we also use agent-based simulation. The two
apparently con
icting views are, in fact, means to exploit di�erent and comple-
menting aspects of MASs. Section 5 presents a lifecycle embodying the two steps
of our previous sections. In Section 6 we draw conclusions and give directions
for future work.

Our interest in this topic stems from our involvement in the research grant
Sustainable Lifecycles in Information Ecosystems (SLIE) [17]. The main
goal of this project is to develop robust methodologies for the design, analysis,
deployment and maintenance of successful components of MASs.

2 Example Problem
Our example concerns the distribution of resources in those supply systems for
which it is important to ensure some uniform distribution of resources amongst
a number of agents. If such a system has an uneven distribution of resources, we
would like to know what sorts of behaviours this might engender and whether
these behaviours are likely to di�er as the size of our system increases.

To perform coherent sets of experiments we must limit the variability of the
systems under study so we make the following idealisation assumptions in our
modelling:
1. Resources are neither created nor destroyed by any agent so the only issue

is transfer of resources from one agent to another. This rules out in
uences
of internal resource generation or import of resources.

2. Transfer of resource is \frictionless". There is no loss of resource in transit;
impediment to the amount of resource transferred; or disparity between the
amount of resource one expects to have and the amount held.

3. All agents have the same decision procedure for choosing how much resource
to o�er or request when trading.

4. Every transfer of resource involves a balance between the needs of the donor
and recipient so, for example, it is not possible for any agent to receive
resource beyond what it calculates it needs.

These are strong assumptions which allow us to build models of an ideal case.
This ideal case is valuable because it provides a baseline { a system which is



unstable under the ideal assumptions is likely to be even more unstable if the
assumptions are weakened. We do not expect the ideal case itself to occur in
real systems but we expect real systems to have at least as many problems as
we �nd in the ideal case.

3 Equation-Based Modelling (EBM)
Standard techniques and tools for dynamic systems analysis, modelling and sim-
ulation [4, 6] are used in this �rst step. Dynamic systems have been successfully
modelled and simulated by means of equations [6]. Standard techniques coupled
with practical tools make dynamic systems modelling and simulation a straight-
forward engineering e�ort. We intend to build on this state-of-the-art, our initial
model being equation-based.

We wish to relate behaviours hypothesised at the population level to fea-
tures at the individual level. The �rst modelling step is therefore to develop
our hypotheses about population behaviours. We do this by building a model
which describes the essence of the dynamics, at a population level, of our ide-
alised system. We hope that this model (although itself containing no agents)
will generate interesting behaviours which we can then seek to understand in
terms of agent structure using more detailed modelling. To be controllable and
easily analysed, we require this early model to be as simple as possible while still
generating insights into potential behaviours.

The model we use at this stage is expressed in a system dynamics modelling
style [4, 6]. We imagine the agent system to be composed of some number of
sub-populations (the number of agents in each of these being immaterial) with
the quantity of resource held by each sub-population being described by a single,
integer state variable. Resource 
ow between each sub-population is controlled
by a rate variable associated with that 
ow. Formally, this can be described by
the following equations:

statev(X; initial time) = initial value(X)
statev(X;T ) = statev(X; previous(T )) +P

fratev(Fi; previous(T ))j9Xi:
ow(Fi; Xi; X)g �
P
fratev(Fo; previous(T ))j9Xo:
ow (Fo; X;Xo)g

where statev(X;T ) is the value for the state variableX at time point T ; ratev(F; T )
is the value for the rate variable of 
ow F at time point T ; initial time is the
initial time point in the simulation; initial value(X) is the initial value for state
variable X ; previous(T ) is the time point previous to T ; and 
ow (F;Xi; Xo) is
true if there is a 
ow named F from state variable Xi to state variable Xo.

The de�nition above is generic for this sort of continuous 
ow model. We now
decide on the speci�c model topology needed for our example. Many topologies
are possible. For instance, we could have a fully connected distribution net-
work in which all sub-populations are connected by 
ows to each other or we
could select randomly which sub-populations are connected. One of the sim-
plest topologies for our purposes is a distribution ring, in which we have a chain
of sub-populations with the last link of the chain connecting back to the �rst.
This topology allows a simple measure of size of system: the number of sub-
populations in the ring, which we shall call the ring size and shall write as R.
It also allows a simple way of allocating an uneven distribution of resources to



sub-populations at the start of the simulation: the total amount of resource for
the population is distributed in proportion to its position in the ring. Some ex-
amples of distribution ring topologies generated in this way are shown in Fig. 1.
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Fig. 1: Possible Distribution Ring Topologies

Our entire model is now a function of the ring size (R). By setting R to
di�erent values we generate models of di�erent sizes and resource distributions
but with a uniform interaction between adjoining sub-populations in the ring.
The formal de�nitions needed to achieve this sort of parameterisable model are
shown in Fig. 2.


ow(transfer (N1; N2); stock (N1); stock (N2))  ring(R; N1; N2)
where ring(R; N1; N2) is true when N1 and N2 are
adjoining ring elements.

initial time = 1

parameter (purchase coeÆcient) = 0:2

parameter (maximum stock ) = 100

previous(T ) = T � 1

initial value(stock (N)) = R � parameter(maximum stock)
R!

ratev(transfer (N1; N2); T ) = parameter (purchase coeÆcient ; T ) �
statev(stock (N2); T ) �

1� (parameter(maximum stock)�statev(stock(N1);T )

parameter(maximum stock)
�

1� statev(stock(N2);T )
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stock(1)

stock(R) stock(2)

purchase_coefficient maximum_stock

Fig. 2: De�nitions of Continuous Change for Resource Ring of Size R

We are now in a position to run the model. We run a simulation for 1000
time steps for each value for R from 3 to 10. This simulation can be run with
any system dynamics modelling package or it can (for uniformity with our other
speci�cations) be run using a Prolog meta-interpreter. The meta-interpreter we
used for this example can be obtained on-line in [17].

Fig. 3 shows a plot of the resource held by the �rst sub-population of the
ring1 for each value of R. The lines for lowest ring sizes are those which start at
the highest resource level. We can see from Fig. 3 that the time taken to obtain a
stable distribution of resources increases, probably exponentially, with ring size
(for R = 3 stability is around time 180; for R = 4 stability is around time 450;

1 Notice that we must focus on one of the sub-populations rather than taking a mean
for the whole ring because the total resource for the ring remains constant through-
out.
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Fig. 3: Behaviours of Continuous Change Model

for R = 5 stability is just beyond time 1000). Furthermore, at larger ring sizes
we �nd sustained and pronounced oscillations which become more complex as
we increase the ring size.

These results show that we can quite rapidly obtain oscillatory behaviour in
resource distribution, even when we have a highly uniform distribution struc-
ture. This is the case for systems which are suÆciently large so that the trans-
actions between agents can be viewed as continuous 
ows of resource between
sub-populations. Since the time taken for these oscillations to dampen to a steady
state grows very quickly with increased system size, it would be possible for the
oscillations in a large system to persist beyond its life span. The form of these os-
cillations may not be simple and easily predictable for large systems so it would
be possible to have this sort of behaviour within a system without being aware,
when looking at a sample of the time series, that a real oscillation was at work.

4 Agent-Based Modelling (ABM)

What features of individual agent structure could account for the increased delay
in stabilisation with larger population sizes which we modelled in the previous
section? As before, we want a parsimonious agent model (the simplest which will
exhibit this sort of behaviour). However, parsimony must now be obtained with
a di�erent style of modelling in which the elements of the model are individual
agents and communication between individuals is through (possibly concurrent)
message passing.

When specifying our agent model we are not as constrained in our style of
speci�cation as we might be for speci�cations of agents which are to be deployed
in real systems. In particular, we are free to specify in a straightforward way
information about the global social structure of agents systems. For this we use
a simpli�ed form of the concept of electronic institutions [12, 14, 18], explained
in Section 4.1 and put to use in Section 4.2. This gives us a way of expressing the
agent system at the level of the potential interactions between agents, without
specifying exactly how these interactions occur. The speci�cation of potential
interactions then gives us starting points for de�ning the decision procedures of
types of individual agents, as we show in Section 4.3.



4.1 Electronic Institutions

The scenario in which the agents will perform should be formally described. For
this we use electronic institutions [12, 14, 18]. These are formal structures based
on process algebras that enable the speci�cation of conventions and norms of
individual and collective behaviour in a community of interacting agents. Some
notions of an electronic institution are:
{ Agents and Roles { agents are the players in an electronic institution, in-
teracting by the exchange of illocutions, whereas roles are de�ned as stan-
dardised patterns of behaviour. The identi�cation and regulation of roles
is considered as part of the formalisation process of any organisation. Any
agent within an electronic institution is required to adopt some role(s). As
actions are associated to roles, an agent adopting a given role is allowed to
perform the actions associated to that role. A major advantage of using roles
is that they can be updated without having to update the actions for every
agent on an individual basis.

{ Scene { interactions between agents are articulated through agent group
meetings, which we call scenes, with a communication protocol. We consider
the protocol of a scene the possible dialogues agents may have.

{ Performative Structures { scenes can be connected, composing a network
of scenes (the so-called performative structure) which captures the existing
relationships among scenes. The speci�cation of a performative structure
contains a description of how the di�erent roles can legally move from scene
to scene. A performative structure is to contain the multiple, simultaneous
ongoing activities, represented by scenes. Agents in a performative structure
may take part in di�erent scenes at the same time with di�erent roles.

{ Normative Rules { agent actions in the context of an institution may have
consequences that either limit or enlarge its subsequent acting possibilities.
Such consequences will impose obligations to the agents and a�ect their
possible paths within the performative structure.

Sophisticated interactions among agents can be elegantly expressed via institu-
tions. These can be seen as �nite-state machines describing all the possible mes-
sage exchanges that may take place in a certain situation. We have employed an
implementation of electronic institutions in our speci�cation and simulation of
MAS described below.

4.2 Speci�cation at Agent Interaction Level

To specify potential agent interactions we use a notation similar to a simpli�ed
form of CCS (Calculus of Communicating Systems, [13]) but with a syntax
adapted to agent modelling. In this section we describe the language and show
how it is applied to our running example. An interaction speci�cation is a set of
clauses, each of the form A ::= D, where:

{ A is an agent identi�er of the form agent(S;R;A), where S is the scene to
which the agent belongs; R is the agent's role in that scene; and A is the
unique name of that agent.

{ D can be of the form:
� D1 par D2 denoting that D1 and D2 occur in parallel.
� D1 then D2 denoting that D1 must occur before D2 (i.e. sequence).
� D1 or D2 denoting that D1 or D2 can occur but not both (i.e. choice).



� M => Ae where M is a message sent to an external agent Ae.
� M <= Ae where M is a message received from an external agent Ae.
� agent(S0; R0; A) where S0 is a scene (possibly di�erent from S) and R0

is the agent's role in the scene (possibly di�erent from R).

With this language we can describe a system of scenes for interaction between
agents, stipulate the roles played by agents in these scenes, and de�ne the or-
dering of interactions (through message passing) for di�erent types of agent
depending on which role and scene they inhabit. Our running example concerns
resource distribution and it is common for this type of agent system to involve
three sorts of scene: an agora in which agents with resource to buy or sell are put
in touch with each other by a broker; a negotiation scene in which agents which
were paired together in the agora interact to agree on a contract to transfer
resource; and a delivery scene in which contracts to supply resource are either
honoured or defaulted upon. Below we specify these in detail.

A broker agent in the agora can receive an o�er of stock and request for stock
(in parallel) from two traders in the agora; then may inform the trader o�ering
stock of the name of a potential buyer; then may inform the trader requesting
stock of the name of a potential supplier. Then it continues as a broker in the
agora. Formally:

agent(agora,broker,B) ::=

( offer(stock,_) <= agent(agora,trader,A1) par

request(stock,_) <= agent(agora,trader,A2) par

(offer(buyer(A2),_) => agent(agora,trader,A1) then

offer(seller(A1),_) => agent(agora,trader,A2) ) ) then

agent(agora,broker,B).

A trader in the agora can o�er stock to a broker and receive notice of a buyer
from the same broker, then it becomes a supplier in the negotiation scene, or it
can send a broker a request for stock and receive notice of a supplier, then it
becomes a customer in the negotiation scene:

agent(agora,trader,X) ::=

( offer(stock,_) => agent(agora,broker,B1) then

offer(buyer(_),_) <= agent(agora,broker,B1) then

agent(negotiation,supplier,X) ) or

( request(stock,_) => agent(agora,broker,B2) then

offer(seller(_),_) <= agent(agora,broker,B2) then

agent(negotiation,customer,X) ).

The remaining cases are depicted in Appendix A. We now use this as a framework
for introducing the de�nitions of individual agents.

4.3 Speci�cation at Agent Decision Level

The decision procedures for agents are expressed using two types of clause. The
�rst type de�nes the conditions under which a message can be sent and the
second stipulates the reaction when a message is received. The syntax of these
is, respectively, as follows:

A ::= Mr <-- C1 and C2 and : : : and Cn

A ::= Ms --> R1 and R2 and : : : and Rn

where A is the identi�er for an agent; Ms is a message sent to that agent; Mr

is a message received by an agent; Ci are conditions which can be proved true



in the agent and Ri are conditions which can be made true in the agent. In
the remainder of this section we show how clauses of this form can be used
to describe detailed decision procedures for the types of agent in our running
example.

A trader in the agora can send an o�er of stock to a broker if it knows the
name of the broker and it has a surplus of stock above 50 units. A trader in the
agora can send a request for stock to a broker if it knows the name of the broker
and it has a de�cit of stock below 50 units. More formally:

agent(agora,trader,_) ::=

offer(stock,N) => agent(agora,broker,B) <--

broker(B) and resource(stock,NS) and N is NS - 50 and N > 0.

agent(agora,trader,_) ::=

request(stock,N) => agent(agora,broker,B) <--

broker(B) and resource(stock,NS) and N is 50 - NS and N > 0.

The remaining cases are depicted in Appendix B.

4.4 Simulation Directly from Speci�cation

We now have enough detail in the speci�cation, both in possible interactions and
in individual decision procedures, to run a simulation of the system. This could
be done by translation to an execution language of choice or also by executing
our speci�cation directly, via a meta-interpreter.

Our speci�cations can be executed either sequentially or concurrently. In the
former case, the meta-interpreter takes turns executing portions of each agent
until it cannot progress due to an interaction (via message-passing) with another
agent; the meta-interpreter then chooses another agent to execute portions of
and so. In the concurrent execution, copies of the meta-interpreter are started up
simultaneously each with the speci�cation of the agent it should execute { the
agents are independently executed by their meta-interpreter, provided adequate
message-passing services are o�ered.

Ours is a sequential execution/simulation of our speci�cation that can repli-
cate runs { concurrent executions may be very diÆcult to re-enact when try-
ing to debug or understand phenomena that took place. The sequential meta-
interpreter, written in Prolog, we developed and employed can be obtained in
[17]. It works as follows:

1. We supply the interpreter with a list of agents in our population and condi-
tions for terminating the simulation.

2. Each agent in the list is replaced with a matching agent de�nition from the
interaction clauses of Section 4.2.

3. The interpreter then attempts to expand appropriate subterms in the agent
de�nitions according to the position of each subterm. For example if the
de�nition is of the form A then B, the subterm A will be expanded before
the subterm B.

4. Subterms corresponding to sending messages are expanded only when one
of the decision procedure clauses of Section 4.3 permits it. The resulting
message appears in the message queue.

5. Subterms corresponding to receiving messages are expanded only if a match-
ing message is in the message queue. An appropriate reaction clause from
Section 4.3 is matched and its consequences are made true in the agent.



6. This continues until no more rewrites of the current term are possible (in
which case the interpreter may backtrack to search for alternatives) or the
conditions for termination are satis�ed.

The term constructed by this rewriting system represents the history of interac-
tion in the simulation. An example of this sort of term is shown in Appendix C.
This was produced for the simplest possible trading system, consisting of two
traders (a1 and a2) and a broker. The appendix shows the formal structure of

agent(agora,broker,b1)

agent(negotiation,customer,a1)

agent(agora,trader,a1)

agent(delivery,customer,a1)

agent(agora,trader,a2)

agent(negotiation,supplier,a2)

agent(delivery,supplier,a2)

received(request(stock,17) received(offer(stock,17))

sent(offer(buyer(a1),17)) sent(offer(seller(a2),17))

sent(offer(stock,17))sent(request(stock,17))received(offer(seller(a2),17)) received(offer(buyer(a1),17))

received(offer(deal,17))

sent(offer(contract,17))

sent(offer(deal,17))

received(offer(contract,17))

sent(offer(delivery,17))received(offer(delivery,17))

Roles of agent a1 Roles of agent a2

Fig. 4: Graphic Representation of Interactions in the 2-Agent Model

the constructed term and, in Fig. 4, we present the interactions which took place
between agents. We can also analyse the interaction level of our speci�cation for
desirable/unwanted properties using standard model-checking techniques [1].

We now are in a position to return to the question with which we began
Section 4: what features of individual agent structure could account for the in-
creased delay in stabilisation with larger population sizes which we modelled in
the previous section? Speci�cally, does the agent model we have just de�ned have
this sort of behaviour? To test this we run the model with increasing numbers
of agents and measure the CPU time taken to obtain a uniform resource distri-
bution (at a level of 50 units) and the number of rewrite steps contained in the
�nal interaction term. The former is a measure of the amount of search needed
to obtain a uniform distribution; the latter is a measure of the complexity of
the distribution task. The table below shows results for models with 2, 4 and 6
trading agents:

Number of Traders CPU Time Rewrite Steps

2 70 19
4 220 40
6 6570 61

This shows that the number of rewrite steps needed to reach a stable resource
distribution does not rise sharply with increasing numbers of trading agents but
the CPU time taken to �nd the appropriate combination of rewrites rises very
sharply. Most of the cost in CPU time for larger systems is in backtracking:
when the simulator has to unravel a sequence of message passing which did not
lead to a stable resource distribution. In other words, quite simple solutions to
resource distribution problems may exist in this sort of agent model but simple
negotiation strategies can take a very long time to discover them and are very
likely to make local commitments which are sub-optimal for the global system.



5 A Lifecycle for Models of Large MASs
The basic idea grounding our methodology is that the two modelling views intro-
duced in the previous sections, i.e. EBM and ABM, correspond to subsequent
speci�cation steps. We take the stance that in order to build a model for a
society containing thousands or millions of agents, the general view provided
by an EBM provides succint descriptions of population-level behaviours which
we then attempt to replicate using models consisting of individual interacting
agents, that is, the ABM. When dealing with a small number of interacting
agents a di�erent approach could be taken (e.g. [22]). Our proposed lifecycle is
graphically depicted in Fig. 5. We note here that the focus of our attention is

Step 2: Electronic Institution

Step 1: EBM

Step 3: Agent Specification

Step 4: ABM

P1: Social Interaction Analysis 

P2: Individual Behaviour Analysis

P3: Experiment Design 

P4:Experiment Analysis

P5: Model Checking

P6: Experimental Analysis

P7: Experiment Analysis

(Automatic)

(Semi−Automatic)

(Manual)

(Manual)

(Manual)

(Semi−Automatic)

(Manual)

Fig. 5: A Lifecycle for Models of Large MASs

the experimentation of the interaction of groups of agents in a controlled envi-
ronment with the general objective of giving insights for the design of MASs and
not the deployment of stable agents.

An important characteristic of MASs from a software engineering perspective
is the decoupling of two aspects: the interaction process between agents from the
deliberative/reactive activity within each agent. This decoupling helps in sim-
plifying the development of complex software systems and has guided method-
ological approaches [3, 23]. We understand interaction as constrained by sets of
norms that are enforced by an intermediation infrastructure [14, 19, 15, 18]. The
notion of electronic institution, as described in Section 4.1, plays this role in
our methodology by establishing a framework that constraints and enforces the
acceptable behaviour of agents. The di�erent phases are:

Step 1 EBM { Equation-Based Model. In this �rst step, a set of state vari-
ables and equations relating them must be identi�ed. These equations have
to model the desired global behaviour of the agent society and will not con-
tain references to individuals of that society. Typically these variables will
refer to values in the environment and to averages of predictions for observ-
able variables of the agents. Methodologically speaking, our approach has
an essential di�erence with respect to the natural and social sciences that
model their systems using EBMs. All other �elds model existing systems:
ecosystems, economies, physical systems, and so on. We, instead, are mod-
elling yet-to-exist arti�cial systems. This distinction is crucial as the EBM
is the starting point of the construction of a system that later on { once
completely constructed { will be observed. Thus, a comparison between the
EBM predicted behaviour and the actual ABM behaviour will be obtained.



Step 2 EIM { Electronic Institution Model. In this step the possible interac-
tions among agents are the focus. It is a �rst \zoom in" of the methodology
from the global view towards the individual models. The EBM obtained in
the previous step determines di�erent relations between environment vari-
ables and the agent society observables. These relations will now guide the
building of an electronic institution permitting interactions between agents
supported by the EBM. This step is not a re�nement of the EBM but rather
the design of a set of social interaction norms that are consistent with the
relations established at Step 1. For instance, if in the EBM we model a
global transfer of resources from a population of agents to another popula-
tion of agents we will need to establish the means in the institution for the
individual agents of these populations to interact for the individual trans-
fers (aggregated in a variable in the EBM) to happen. Nonetheless, this is
not enough since the designer will have to make new decisions at this stage,
such as what type of interaction, what norms will determine each interaction
and whether there are going to be contracts between agents, under which
circumstances they will interact and so on. Additionally, constraints on the
individual behaviours have to be established.

Step 3 ABM { Agent-Based Model. Here, we focus in the individual. We have
to decide what decision models to use. This is the second \zoom in" of the
methodology. Once the interaction conditions have been established, it is
time in the methodology to design di�erent agent models that will show an
external behaviour that respects the interaction protocols and norms estab-
lished in the EIM. For instance, when designing a \producer", the concrete
strategy to interact { negotiate { with \consumer" agents, has to be decided.
All admissible strategies could be explored at this stage { in principle, all
strategies compatible with the EIM and EBM speci�ed before. New elements
of the requirement analysis (new variables) will be taken into account here.
For instance, some rationality principles associated to agents (e.g. producers
do not sell below production costs), or negotiation models to be used (e.g.
as those proposed in [20]) have to be selected.

Step 4 Multi-Agent System. Finally, the last step of our methodology consists
on the design of experiments for the interaction of very large numbers of
agents designed in the previous step. For each type of agent the number of
individuals and the concrete setting for the parameters will be the matter of
decision here. The results of these experiments will determine whether the
requirements of the arti�cial society so constructed have been consistently
interpreted throughout the methodology and thus whether the expected re-
sults according to the EBM are con�rmed or not. Moreover, our methodology
permits the developer to establish at this step sets of formal and veri�able
claims about the expected results and properties of the agents interaction in
that particular experiment.

The di�erent stages of the methodology are to be traversed from Step 1 to
Step 4, that is, from the desired global behaviour down to the experiments.
However, once the experiments designed at Step 4 are run and analysed, several
redesigns are possible. Next, we enumerate the di�erent feedback processes of
the methodology:



P1 Social Interaction Analysis. Once the EBM has been constructed, the
relations between the global variables and the analysis of the requirements
of the society to model will determine what sort of agents exist (i.e. the
roles), what sort of interactions the agents must have (i.e. the scenes), and
what sort of transactions or dialogues they will have (i.e. ontology). This
is an inherently manual process: there are many decisions to be made at
this stage that have not been speci�ed in the EBM. Experience in designing
electronic institutions will help in deciding what scenes are most appropriate.

P2 Individual Behaviour Analysis. Once a complete picture of the institu-
tion is ready, the �nal aspect to consider is the modelling of the behaviour
of the agents. Many aspects of this behaviour are already determined by
the institution. The performative structure, the protocol of the scenes and
the ontology de�nition enormously limit the repertoire of the decisions to
be made by the agents [12, 14, 18], hence in many cases the behaviour is
almost completely determined. For those aspects that are not completely
determined the methodology strongly encourages the design of parametric
decision models to �ll in the gaps. These parameters will be used to set
di�erent experiments and will be the target of the agent design rules.

P3 Experiment Design. By choosing agents to participate with (possibly) dif-
ferent decision mechanisms, and by giving concrete values to the parameters
of those decision mechanisms, di�erent experiments can be constructed. The
experiments should be set so as to explore all the possibilities and to see
whether the EBM is making the right prognosis.

P4 Experiment Analysis (ABM redesign). The analysis of the experiments
will be done by comparing the predicted values of the global variables by the
EBM and the actual values of agent variables and their averages. Deviations
on the values will be corrected at this stage by changes in the experiment
design. That is, agent-based model parameter values will be changed. This
phase will be semi-automatic, and we shall provide certain design rules that
will determine what changes are to be made depending on the deviation
detected, the current parameter value and the environment settings.

P5 Model Checking. The claims about the behaviour of a group of agents
that the developer establishes when specifying an experiment will be model-
checked [1] at this stage. The outcome of the model checking will help to
change the agent-based models, i.e. change the decision-making models.

P6 Experiment Analysis (EIM redesign). Additionally, when the model
checking determines that certain properties can never be guaranteed or that
after several trials it is impossible to �nd parameter values that lead to the
expected correct behaviour, di�erent constraints over the agents interactions
could be explored. This means that a redesign of the EIM may be in place.
This is an intrinsically manual task.

P7 Experiment Analysis (EBM redesign). Finally, and if everything fails,
it may happen that the part of the requirements that led to the initial EBM
was misunderstood and that a variation in the initial EBM is necessary to
explain why the experiments are showing a unexpected behaviours.



6 Conclusions and Directions of Research

Our proposal employs seemingly disparate approaches, equation-based (EBM)
and agent-based modelling (ABM), to the task of modelling and analysing large
MASs. System dynamics and EBM practitioners have a long-standing tradition
with a successful record in modelling complex systems and analysing their re-
sults. By using EBMs as our initial step, we build on this success. ABM, on the
other hand, has not been established as a rigorous practice and success may not
be directly transferred from one experience to another because of the lack of
standards and methodology.

The issue of scalability has been explicitly addressed by providing a means of
modelling system behaviour \in the large", that is at a high level of abstraction
at which instabilities in behaviour can be detected before the detailed design
of the agents is carried out. This is in agreement with conventional wisdom in
software engineering which advocates a top-down approach, on the grounds that
it is easier/cheaper to identify/�x such problems before the detailed design of
individual components has been carried out. The issue concerning the engineer-
ing of open systems has also been dealt with: we have made use of techniques for
structuring the space of possible interactions within a MAS, creating areas in
which interactions can be controlled, while leaving agents free to choose which
areas they want to interact in. Since we can predict the interactions within the
controlled areas, this allows us to ensure suitable system behaviour, while giving
agents the freedom to choose where to interact ensures that the system is not
closed.

EBM provides us with a technique for describing aspects of a MAS at a very
abstract level, and then exploring its behaviour. This gives the designer of such
a system a tool for ensuring that the overall shape of the system is within its
design parameters. It provides a means of checking for stability, identifying if
chaotic behaviour will occur, and ensuring that certain classes of agents can �nd
a suitable niche to survive (or indeed will not �nd a niche if that is a desirable
outcome). Thus equational modelling is a means of handling the scalability issue,
by allowing some experimental guarantees that the MAS will behave as expected
well in advance of its actual construction. When an EBM is built and tested,
it provides a �rst, high level, speci�cation of the system. However, EBMs con-
centrate on collective behaviour and interesting phenomena may only take place
on an individual level. Negotiation [16] and argumentation [21], for instance,
are two examples of interactions that are essentially and intrinsically performed
among individuals. Agent-based modelling is called in as a means to address
phenomena arising from the behaviour of individuals.

After the equational model has been developed, the next stage is to design
the relevant electronic institutions. Once the institutions have been identi�ed,
the sets of actions they permit and the roles of the agents within them have been
speci�ed, they then place conditions on the agents which can use them. Thus,
from the speci�cation of an institution we can derive a partially-instantiated
speci�cation of an agent which can use that institution. This can then be 
eshed
out with what we might consider the \personality" of the agent, that is, the way
that it operates within the rules of the institution. This re�nement of the design



of individual agents will be carried out in exactly the same way as for existing
agent-oriented software engineering techniques.

We have devised a preliminary formalism and the underlying machinery for
the speci�cation of ABMs and their simulation. An appropriate interface for
users to interact with experimental scenarios, that is, customising and chang-
ing parameters of agents, is under way. The speci�cation of electronic institu-
tions which will help de�ne our experiments is a diÆcult and error-prone task.
ISLANDER, a language to de�ne institutions (and with which one can prove
properties about it) has been de�ned with an associated visual tool to help the
design (and test) of institutions [2, 7].

Our experiments demonstrate fundamental limitations of size in multi-agent
resource distribution systems. The basic structural problem is that negotiation
strategies operate locally between agents, which seek individually to obtain re-
source stability. At a local level these choices may be rational. However, as we
increase the size of the system the chances of a local decision being optimal with
respect to global resource stability diminish. The time taken to reach stability
tends to increase exponentially, as we saw in the agent model of Section 4. Fur-
thermore, it may not be possible to know at any given point in the evolution
of such a system whether or not we are converging on a stable distribution,
since our experiments with a continuous 
ow model in Section 3 demonstrate
that systems of very large size may produce complex patterns of oscillation.
These oscillations, although repeating on a long time scale, may appear chaotic
if observed only during a short segment of time.

There are two things to note here. The �rst is that these simulations are
just another means of checking the design, one that operates at a lower level of
abstraction than the equational model. We are not aiming to be able to directly
execute the agents in a MAS. The entities in a simulation will be abstractions
of the agents in the MAS itself. The second thing to note is that the simulations
have an important complementary role to play alongside model checking. While
model checking is to some extent a stronger way of verifying the behaviour of
the system, in the sense that it is possible to prove that it behaves in a certain
way, model checking itself is suÆciently computationally expensive that it is
unlikely to be possible to model check an entire MAS at anything other than
quite a high level of abstraction. But settling for the weaker guarantees o�ered
by simulation, we can get results for a description of the MAS at a much lower
level of abstraction.

Our proposed lifecycle for models of large MASs consists of constructive steps
with connecting procedures/processes. Starting from an EBM, and following a
sequence of well-de�ned processes, distinct stages/steps are reached with inter-
mediate results that lead on to the �nal ABM. Some of the processes contemplate
the analysis of such intermediate results with a view to correct or improve them
(feedback). Ideally the activities of a lifecycle should be automatic, however in
our proposal we have come across tasks that seem to be intrinsically manual,
such as analysing the behaviours of an experimental electronic institution or the
behaviours of an EBM.

The agents in our experimental framework have a clear distinction between
their behaviour (as speci�ed by the institutions they follow) and their deci-
sion procedures, that is, how agents decide on possible behaviours prescribed



within an institution. This division is a pro�table one: the behaviours of an
institution can be proved/checked for desirable properties, and later run with
di�erent agents. The theoretical underpinning of institutions are �nite state ma-
chines which enjoy desirable model-checking properties. Di�erent languages can
be used to de�ne the decision procedures of agents. We have been experiment-
ing with MABLE [24] a procedural language enriched with constructs from the
agent-oriented programming paradigm. A MABLE system contains a number of
agents, each of which has a mental state consisting of beliefs, desires and in-
tentions; mental states may be nested, so that (for example), one agent is able
have beliefs about another agent's intentions. MABLE agents are able to com-
municate with one-another using performatives in the style of the fipa agent
communication language [5].

Having developed a way of formally describing institutions in the language
ISLANDER, we can do more than just identify the conditions that participation
in an institution places upon agents. We can actually generate a partial speci�-
cation of an agent automatically from the institution speci�cation and the role
(or roles) that the agent will play in the institution. Currently we translate the
ISLANDER speci�cations intoMABLE. The reason for doing this is that MABLE
programs can be model checked. Thus we can take the speci�cation of an insti-
tution and the conditions it imposes on agents that will use it and compile this
into a partialMABLE program. It will be partial because the \personality" of the
individual agents will be missing. Once these are added, it is possible to model
check the resulting program, formally verifying the behaviour of the institution
and the agents which will make use of it, allowing the system designer to check
that undesirable conditions like deadlocks do not occur. If they do, then either
the institution or the agent \personalities" need to be altered.
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A Interaction Speci�cation: Remaining Cases
A customer in a negotiation can receive an o�er of a deal from a supplier; then o�ers
a contract to that supplier and moves to the delivery scene; or refuses the deal and
moves to the agora as a trader:

agent(negotiation,customer,X) ::=

offer(deal,_) <= agent(negotiation,supplier,Y) then

( ( offer(contract,_) => agent(negotiation,supplier,Y) then

agent(delivery,customer,X)) or

( refuse(deal,_) => agent(negotiation,supplier,Y) then

agent(agora,trader,X) ) ).

A supplier in a negotiation scene sends an o�er of a deal to a customer; then receives
a contract from that customer and moves to the delivery scene; or receives a refusal
from the customer and moves to the agora as a trader:

agent(negotiation,supplier,X) ::=

offer(deal,_) => agent(negotiation,customer,Y) then

( ( offer(contract,_) <= agent(negotiation,customer,Y) then

agent(delivery,supplier,X) ) or

( refuse(deal,_) <= agent(negotiation,customer,Y) then

agent(agora,trader,X) ) ).



A customer in a delivery scene receives noti�cation of delivery or is informed of failure
to deliver; then becomes a trader in the agora:

agent(delivery,customer,X) ::=

( offer(delivery,_) <= agent(delivery,supplier,Y) or

inform(failure,_) <= agent(delivery,supplier,Y) ) then

agent(agora,trader,X).

A supplier in a delivery scene sends noti�cation of delivery or informs a customer of
failure to deliver; then becomes a trader in the agora:

agent(delivery,supplier,X) ::=

( offer(delivery,_) => agent(delivery,customer,Y) or

inform(failure,_) => agent(delivery,customer,Y) ) then

agent(agora,trader,X).

This completes our speci�cation of the potential interactions in the agent model.

B Decision Procedures: Remaining Cases
A broker that receives a message o�ering stock or requesting stock from a trader notes
that it received the message:

agent(agora,broker,_) ::

offer(stock,N) <= agent(agora,trader,X) -->

assert(made_offer(X,N)).

agent(agora,broker,_) ::

request(stock,N) <= agent(agora,trader,X) -->

assert(made_request(X,N)).

A broker in the agora sends an o�er of a buyer,X, to a trader, Y , if Y has made an o�er
to the broker and X has made a request to the broker and the amount requested is at
least as much as that o�ered. The broker forgets about the original o�ers and requests
and notes that it has chosen a seller. A broker will o�er a seller, Y , to a trader, X, if
it has a note that it chose Y as a seller to X:

agent(agora,broker,_) ::

offer(buyer(X),No) => agent(agora,trader,Y) <--

made_offer(Y,No) and made_request(X,Nr) and Nr >= No and

retract(made_offer(Y,No)) and

retract(made_request(X,Nr)) and assert(chose_seller(X,Y,Nr)).

agent(agora,broker,_) ::

offer(seller(Y),Nr) => agent(agora,trader,X) <--

chose_seller(X,Y,Nr) and retract(chose_seller(X,Y,Nr)).

A trader in the agora that receives an o�er of a buyer notes that it has a potential
customer. A trader in the agora which receives an o�er of a seller notes that it has a
potential supplier:

agent(agora,trader,_) ::

offer(buyer(X),N) <= agent(agora,broker,_) -->

assert(customer(X,N)).

agent(agora,trader,_) ::

offer(seller(Y),N) <= agent(agora,broker,_) -->

assert(supplier(Y,N)).

A customer in a negotiation scene can o�er a contract to a supplier if the amount of
stock it would have if it accepts the amount on o�er from the supplier would top up
its stock to no more than 50 units. Otherwise, if the amount o�ered would increase its
stock to more than 50, it sends a message refusing the deal:



agent(negotiation,customer,_) ::

offer(contract,N) => agent(negotiation,supplier,Y) <--

received_offer(Y,N) and resource(stock,NS) and

NT is N + NS and NT =< 50 and retract(received_offer(Y,N)) and

retract(supplier(Y,_)) and assert(contract_to_buy(Y,N)).

agent(negotiation,customer,_) ::

refuse(deal,N) => agent(negotiation,supplier,Y) <--

received_offer(Y,N) and resource(stock,NS) and

NT is N + NS and NT > 50 and

retract(received_offer(Y,N)) and retract(supplier(Y,_)).

A customer in a negotiation scene that receives an o�er of a deal from a supplier notes
that it received an o�er:

agent(negotiation,customer,_) ::

offer(deal,N) <= agent(negotiation,supplier,Y) -->

assert(received_offer(Y,N)).

A supplier in a negotiation scene can send an o�er of a deal to a customer if it has a
surplus of stock above 50 units. It o�ers the whole surplus:

agent(negotiation,supplier,_) ::

offer(deal,N) => agent(negotiation,customer,Y) <--

customer(Y,NC) and resource(stock,NS) and

NL is max(NS - 50,0) and N is min(NL,NC) and N > 0.

A supplier in a negotiation scene that receives an o�er of a contract notes that it has a
contract to deliver and deletes its note of a potential customer. If it receives a refusal
of a deal it simply deletes its note of a potential customer:

agent(negotiation,supplier,_) ::

offer(contract,N) <= agent(negotiation,customer,Y) -->

assert(contract_to_deliver(Y,N)) and retract(customer(Y,_)).

agent(negotiation,supplier,_) ::

refuse(deal,_) <= agent(negotiation,customer,Y) -->

retract(customer(Y,_)).

A supplier in a delivery scene can send an o�er of delivery to a customer if it has a
contract to deliver to that supplier and it has a surplus of stock above 50 units which
it can commit. Otherwise, it informs the customer of its failure to deliver:

agent(delivery,supplier,_) ::

offer(delivery,N) => agent(delivery,customer,Y) <--

contract_to_deliver(Y,NC) and resource(stock,NS) and

NL is max(NS - 50,0) and N is min(NL,NC) and N > 0 and

retract(contract_to_deliver(Y,N)) and decrement(stock,N).

agent(delivery,supplier,_) ::

inform(failure,N) => agent(delivery,customer,Y) <--

contract_to_deliver(Y,NC) and resource(stock,NS) and

NL is max(NS - 50,0) and N is min(NL,NC) and N =< 0 and

retract(contract_to_deliver(Y,N)).

A customer in a delivery scene that receives an o�er of delivery deletes its note of a
contract to buy and increments its stock by the amount committed. If it receives a
message informing it of failure it deletes its contract note:

agent(delivery,customer,_) ::

offer(delivery,N) <= agent(delivery,supplier,Y) -->

retract(contract_to_buy(Y,_)) and increment(stock,N).

agent(delivery,customer,_) ::

inform(failure,_) <= agent(delivery,supplier,Y) -->

retract(contract_to_buy(Y,_)).



C Formal Interactions in the 2-Agent Model
Given the speci�cation above, we can simulate the interactions between agents for given
sizes of rings. In the case of R = 2, our interpreter obtains the term below, representing
the sequence of message exchanges and changes in roles/scenes as the agents follow the
electronic institution.

a(agent(agora,trader,a1),

sent(request(stock,17)=>agent(agora,broker,b1)) then

received(offer(seller(a2),17)<=agent(agora,broker,b1)) then

a(agent(negotiation,customer,a1),

received(offer(deal,17)<=agent(negotiation,supplier,a2)) then

sent(offer(contract,17)=>agent(negotiation,supplier,a2)) then

a(agent(delivery,customer,a1),

received(offer(delivery,17)<=agent(delivery,supplier,a2)) then

agent(agora,trader,a1)))),

a(agent(agora,trader,a2),

sent(offer(stock,17)=>agent(agora,broker,b1)) then

received(offer(buyer(a1),17)<=agent(agora,broker,b1)) then

a(agent(negotiation,supplier,a2),

sent(offer(deal,17)=>agent(negotiation,customer,a1)) then

received(offer(contract,17)<=agent(negotiation,customer,a1)) then

a(agent(delivery,supplier,a2),

sent(offer(delivery,17)=>agent(delivery,customer,a1)) then

a(agent(agora,trader,a2),

(offer(stock,_)=>agent(agora,broker,A) then

offer(buyer(_),_)<=agent(agora,broker,A) then

agent(negotiation,supplier,a2))or

request(stock,_)=>agent(agora,broker,B) then

offer(seller(_),_)<=agent(agora,broker,B) then

agent(negotiation,customer,a2))))),

a(agent(agora,broker,b1),

(received(offer(stock,17)<=agent(agora,trader,a2)) par

received(request(stock,17)<=agent(agora,trader,a1)) par

sent(offer(buyer(a1),17)=>agent(agora,trader,a2)) then

sent(offer(seller(a2),17)=>agent(agora,trader,a1))) then

a(agent(agora,broker,b1),

(offer(stock,_)<=agent(agora,trader,_) par

request(stock,_)<=agent(agora,trader,_) par

offer(buyer(_),_)=>agent(agora,trader,_) then

offer(seller(_),_)=>agent(agora,trader,_)) then

agent(agora,broker,b1)))


