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Abstract. Designing protocols that align with organisational values,
and training members of an organisation to respect those values is key
for ensuring value-aligned behaviour. However, both problems are diffi-
cult, especially if there are multiple conflicting values that need to be
respected. This work proposes to apply multi-objective reinforcement
learning (MORL) to tackle both problems. First, we prove how current
formal models of value-alignment are compatible with MORL models.
Then, we present a novel process for computing and evaluating value-
aligned protocols. Finally, we illustrate our protocol design process with
an example scenario involving firefighters.
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1 Introduction

The process of aligning a new member with the values of an existing group or
organisation is of paramount importance. Many organisations already have writ-
ten codes of ethics that enumerate their values, but it is often difficult to apply
them in practice. Consider, for instance, a new firefighter in a fire department.
The new member will need to make an effort and learn how their actions align
with the department’s values at the same time that they are working in a stress-
ful environment. This situation will be prone to cause misaligned behaviour at
times.

A solution that organisations have found is to develop protocols that establish
how to behave in case of doubt. These protocols consist of a written set of norms
that describe the approved, forbidden, and recommended actions or sequence of
actions to perform under challenging decisions [6]. They are more specific and
detail-oriented than codes of ethics because they specify who does 'what’, "'when’
and ’how’ on each decision.

Both documents, codes of ethics and protocols should always be aligned
with the same group values. For example, a fire department expects a firefighter
protocol to align with values such as proximity, professionalism, or teamwork
[1-3]. Once a protocol is established, new members must learn and apply it to
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align with the organisational values. Typical approaches end here by proposing
that the new members memorise all protocols.

However, developing protocols takes much work for organisations. Moreover,
it is singularly difficult if the organisation’s code of ethics contains multiple, pos-
sibly conflicting, values. As argued by Sierra et al. in [10], computing protocols
aligned with multiple values is still an open problem. Protocols have a second
associated open problem. Assume that an organisation reaches an agreement on
its protocols. Then, its new members still have to learn them. However, it may
be unrealistic to expect that these members will memorise all protocols by only
reading them. Against this background, this paper presents a novel model for
computing and teaching value-aligned protocols providing the following three
contributions:

1. First, we prove how the value-alignment problem can be reformulated as
a multi-objective reinforcement learning (MORL) problem. MORL litera-
ture deals with sequential decision-making problems in which agents need to
manage multiple objectives [7, 8, 4].

2. Second, our theoretical results lead us to a novel process for computing
the most value-aligned protocols for any simulated scenario with MORL
algorithms.

3. Third, we present a reinforcement learning model to evaluate a group mem-
ber’s behaviour in any simulated scenario in terms of alignment with respect
to all organisational values.
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Fig. 1. Pareto-optimal protocol computation process design. Rectangles stand for ob-
jects whereas rounded rectangles correspond to processes.

The remainder of this paper is structured as follows. First, Section 2 offers the
necessary background to understand our formal definitions of value-alignment
and protocols. Then, Section 3 presents our novel process for computing and
evaluating value-aligned protocols with respect to multiple values. Subsequently,
Section 4 presents an example application of our model in a toy problem in a
firefighters’ context. Finally, Section 5 summarises the main contributions of this
paper and sets paths for future work.
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2 Background

2.1 Value-alignment

An agent (either software agent, robot agent, or human agent) is said to behave
value-aligned if their actions promote a given human value.

Values can be abstract concepts such as proximity or professionalism. How-
ever, to compute whether a specific behaviour is value-aligned, we must first
formalise value alignment. In this work, we follow the definitions of [10] and
consider values as preferences that allow us to compare different states of the
world.

The world is defined as the environment in which an agent can behave and
whose actions have consequences. Formally [10]:

Definition 1 (World). The world is defined as a labelled transition system
W =(S,A,T), where S is a set of states, A is a set of actions, and T is a set
of labelled transitions (T CS x A x S)

A value V, in a given world W, then specifies which states of the world
are preferred to which other states and to what degree. These preferences are
numerically established using an alignment function align. The align function
may compare two states s and s’ resulting from a transition (s, a, s’) [9], or may
also take into account the action performed in the transition a € (s,a,s’) [6].
We present here its most general form, evaluating the whole transition:

Definition 2 (Action alignment). Let W = (S, A, T) be a world. The action
alignment function align of W is defined as a function align : S X Ax S xV —
[—1,1] where V is a set of values. We want the range of alignment to be [—1,1] so
that positive alignment would represent the action promoting the value, negative
alignment would represent the action demoting the value, and an alignment of
zero would represent the action not affecting the value.

Moreover, an agent can repeatedly act upon the world, creating a sequence
of transitions. This sequence is called a path [10]:

Definition 3 (Path). A path p in a world W = (S, A,T) is a sequence of
transitions p = {T}};, with each T; = (s;,ai,8;) € T such that, for every i,
it holds that s; = s;y1. In other words, every transition’s final state equals the
following transition’s initial state.

Given a path p, we refer to the initial state S; of each transition T; of p
as ps,, to its final state s, as ps;, and to its action as p,,. For each path p of
finite length, we can compute its alignment as the average alignment over all its
transitions. Formally [10]:

Definition 4 (Finite path alignment). Let W = (S, A, T) be a world. The
path alignment function alignp of VW is defined as a function alignp : Py xV —
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[—1,1] where Py is the set of all possible paths of finite length in W, and V is a
set of values, such that:

gl V) = Eie:%gth(p) align(psi,pai,psg,V) 1)
IR, V) = length(p) ’

Given a world W with a set of actions A4, norms are a means to regulate the
permitted behaviours of the agent interacting upon it. Each norm regulates an
action a under a given state s of the world W, indicating whether such action is
permitted, obligatory, or forbidden. Formally:

Definition 5 (Norm). Let W = (S, A, T) be a world. A norm N = D(a, s) in
W is defined as a tuple of one action a € A, and one state s € S affected by one
deontic operator D € {F, P,O} (where F' describes what is forbidden, P what is
permitted, and O what is obligatory).

As mentioned, a given world W can be regulated by a set N of multiple
norms. This set of norms A also establishes a normative world Wy with a
smaller subset of transitions T C 7. Given a set of norms N, Sierra et al. in [9]
defined the norm alignment alignN (N, V') as the average path alignment over
all possible paths in a normative world Wy regulated by A. Here, we consider
an alternative definition for norm alignment, formalised in Definition 12.

Finally, to compute value alignment concerning a set of multiple values, we
require an aggregation function Fy : [-1,1]" — [—1,1] that can be composed
with the previous alignment functions to return a single scalar metric [9, 5]. This
function F), was left unspecified as future work. In this work, we offer more
structure to the value aggregation function in the next Section 3.

2.2 Reinforcement learning

Reinforcement learning (RL) is the area of machine learning which formalises and
aims to solve sequential decision-making problems [11]. In RL, an agent repeat-
edly interacts with an environment, called a Markov decision process (MDP),
acting upon it, observing how the MDP transitions to a different state and re-
ceiving a reward signal. This reward signal is aligned with the agent’s objective.
In multi-objective reinforcement learning (MORL), the agent has multiple objec-
tives, and thus, for each action, it receives multiple reward signals [7]. Formally:

Definition 6 (Multi-objective Markov decision process). A (finite) n-
objective Markov Decision Process (MOMDP) is defined as a tuple (S, A, R, T)
where S is a (finite) set of states, A(s) is the set of actions available at state s,
and R and T are functions defined as:

— R=(Ry,...,R,), the vectorial reward function with each R; : SxAxS — R
being the associated scalar reward function to objective i € {1,...,n}. For
each objective i, the reward R;(s,a,s’) indicates the goodness of applying
action a € A upon state s € S if it transitions to state s'.
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-T:8xAxS8 — [0,1], the transition function, returns the probability
T(s,a,s8') = P(s’ | s,a) of s’ being the next state if action a is applied
upon sate s.

In general, the probability of transitioning to a given state s’ € S and re-
ceiving a reward r € R depends on the whole history of the agent (i.e., all states
previously visited, all actions previously applied, and all rewards previously re-
ceived). However, since in every MOMDP the Markov property is satisfied, we
only need to care about the immediately previous state and action. Hence, the
reward and transition functions are well-defined for every MOMDP.

In reinforcement learning, the behaviour of an agent upon its environment
(the MOMDP), is formalised as a policy. Formally, for every state-action pair
(s,a) of the MOMDP, a policy indicates the probability of performing action a
upon state s:

Definition 7 (Policy). Given an MOMDP M, a policy p: Ax S — [0,1] is a
conditional probability defined as p(a,s) =P(a | s).

For every MOMDP M, the policy p of the agent characterises the amount of
rewards R that it will obtain by following it. For each objective i of the MOMDP
M, each policy’s expected accumulation of reward is computed by its associated
value function v;. Formally:

Definition 8 (Vector value function). Given a multi-objective MDP M, and
a policy p, its vector value function v” returns the expected accumulation of
vector rewards that p will obtain given an initial state s € S:

Up(s) = E[Z’YtR | S0 = 57/)]7 (2)
t=0

discounted by a discount factor v € (0,1), indicating the importance of future
rewards.

The associated vector value function of any given policy can be computed
with algorithms such as policy evaluation or Monte Carlo prediction [11].

In single-objective RL, the agent only has a single reward signal and thus only
needs to maximise its associated value function. The optimal policy p. is defined
as the policy whose associated value function maximises the accumulation of
rewards [11]:

Definition 9 (Optimal policy). Given a single-objective MDP M, its optimal
policy p« is the policy with maximum accumulation of discounted rewards:

v (s) = rn:xxvp(s)7 (3)

for every state s of M.
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All algorithms aim to compute an optimal policy in the single-objective rein-
forcement learning literature. A classical algorithm is value iteration (VI) [11],
which is guaranteed to always obtain an optimal policy in a finite amount of
iterations.

In multi-objective reinforcement learning, there are multiple objectives to
satisfy simultaneously. A policy that is optimal for all objectives rarely exists.
Alternatively, the MORL literature has focused on learning all policies that are
at least Pareto-optimal [7]. A policy p is Pareto-optimal if there is no alternative
policy p’ such that it improves p on all objectives. Notice that, in particular, all
policies that are optimal for at least one objective are also Pareto-optimal. To
illustrate the concept of Pareto-optimality, we provide a simple example:

Ezample 1. Consider the vectors vy = (5,0), va = (7,2), v3 = (6,3) in R% The
vector v; is not Pareto-optimal because 5 < 7 and 0 < 2. Meanwhile, both vs
and v3 are Pareto-optimal because 7 > 6 and 2 < 3.

In MORL, the set of Pareto-optimal policies m, and their associated value
vectors V™ receives the name of Pareto front [7].

The multi-objective equivalent of the Value Iteration algorithm is Pareto
Multi-Objective Value Iteration (PMOVI) [7]. While PMOVTI cannot obtain poli-
cies, it is guaranteed to obtain the associated value functions v for all Pareto-
optimal policies in a finite amount of iterations. Afterwards, the Pareto-optimal
policies can be recovered by the so-called policy-tracking-process from [12, 7].

3 Value-aligned protocols

This section presents our multi-objective reinforcement learning model for eval-
uating and computing protocols while considering multiple values. This Section
is structured as follows. First, Section 3.1 provides a formal definition of a pro-
tocol aligned with multiple values, which extends the previously presented path
alignment definition. After that, Section 3.2 proves that our protocol alignment
definition can be expressed in terms of MORL concepts. Finally, exploiting this
theoretical result, Section 3.3 details our process for computing value-aligned
protocols with MORL algorithms.

3.1 Formalising value-alignment for multiple values

As previously explained, protocols are sets of norms that all members of an
organisation must follow. We first require a formalisation of protocol alignment
based on the action alignment definition to compute if a given protocol is aligned
or misaligned.

While protocols are typically defined simply as sets of norms [6], we provide a
more general definition in this work. We consider protocols of worlds analogously
to policies of MOMDPs. A protocol tells us how much recommended is a given
action for every possible state of the world WW. Hence, for every state-action pair
(S, A), any protocol 7 returns a number between 0 and 1, indicating the degree
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of recommendation of the action. A 0 indicates that the action A is forbidden
at state S, while the other extreme 1 indicates that the action A is obligatory
at state S. Anything in between indicates that the action A is permitted at
state S (and how much it is recommended) but not obligatory (i.e., at least one
alternative action A’ permitted in the currently considered state S). Formally:

Definition 10 (Protocol). Let W = (S, A, T) be a world. A protocol m: A x
S — [0, 1] comprises the recommended actions that an agent should do for every
possible state S € S.

Given our definition of protocol, we will say that a protocol 7 includes a
given norm N if and only if:

— N = F(a,s) and 7(a,s) =0,
— N =0(a,s) and 7(a,s) =1, and
— N = P(a,s) and 7(a,s) € (0,1).

Notice how our definition of protocol is more expressive than a set of norms.
Given a state-action pair (s, a), the degree of recommendation 0 < 7(a,s) <1
can also be understood as the probability of an agent following it to perform
action A at state S. Thus, the value-alignment of a protocol 7 can be directly
formalised as the expected average action alignment that an agent following 7
would receive. By abuse of notation, in this paper, we also formalise the be-
haviour of any agent as a protocol 7.

We first require an auxiliary term: path alignment, to measure protocol align-
ment. Recall that path alignment for paths of finite length has already been for-
malised according to Definition 4. However, one may think of many situations
in which an agent is expected to continuously apply a protocol without a clear
end. In other words, we also need to consider paths of possibly infinite length.
Following the reinforcement learning literature [11], we consider that, when fol-
lowing a path of possibly infinite transitions, we need to evaluate future actions
less importantly than current ones. Analogously to RL, the degree of importance
of future transitions is set by means of a discount factor v € (0, 1), such that the
greater 7y, the more we care about future events.

Given a discount factor 7, we define the path alignment of a given path of
arbitrary length as the discounted accumulation of alignment that following such
path would entail. Formally:

Definition 11 (Path alignment). Let W = (S, A, T) be a world. Its path
alignment function alignp., is defined as a function align, : P xV — [—1,1]
where P is the set of all possible paths in W, v € (0,1) is the discount factor,
and V is a set of values, such that:

alZgnp’Y (pa V) = (]' - ’V) Z Pyl . allgn(psmpamps;a V) (4)
=0

Given a discount factor 7y, Definition 11 multiplies the obtained alignment by
(1 — ). This normalisation factor is applied to guarantee that alignp. always
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returns a number between 0 and 1.! By abuse of notation, we will refer to the
path alignment function of paths of finite length alignp also as alignp; (i.e.,
corresponding to a discount factor v = 1).

Definition 11 of path alignment allows us to formalise a protocol alignment
function as the average path alignment that an agent would obtain by following
a protocol 7 for all possible paths that start at a given initial state S. Formally:

Definition 12 (Protocol alignment). Let W = (S, A,T) be a world. Let
v € (0,1] be a real number. The protocol alignment function alignP., of W is
defined as a function alignPy : II x § x V — [—1,1] where V is a set of values
such that:

alignPy (7, S, V') = Z P(p | ) - alignp(p, V), (5)
pEPs

where I1 is the set of possible protocols, Pg is the set of paths of W such that the
initial state so of their initial transition Ty = (so, ao, Sj) i So = S, and P(p | 7)
is the probability of each path p of Ps occurring subject to protocol .

Definition 12 provides us with a tool to evaluate, and optimise protocols with
respect to values. In particular, given the action alignment function align(-,-, V)
of a value V, for every initial state s of the world W, we can define its opti-
mal protocol 7y as the protocol that obtains the maximum amount of protocol
alignment. Formally:

Definition 13 (Optimal protocol). Let W = (S, A, T) be a world, let IT be
the set of possible protocols of W, and let V' be a value. We define the optimal
protocol my of W according to the value V' at state s € S as:

Ty = max alignP (7, s, V). (6)

Definition 13 provides us with a way of defining the most value-aligned pro-
tocol with respect to a single value. However, as we have previously argued,
many organisations consider multiple values. Regarding our formalisation, the
ideal protocol would need to be optimal with respect to all values.

Since not all actions are always equally aligned to all values, we require a
trade-off between values. As explained in Section 2, Sierra et al. in [10] argued
that in such cases, we require a value aggregation function capable of computing
the alignment of each action weighing the importance of all considered values.

However, defining the optimal value aggregation function f, that perfectly
represents the preferences between the different values is a difficult task. We can
assume that at least this function will be strictly monotonically increasing. That
is, when comparing two protocols, we will always prefer the one that Pareto-
dominates the other in terms of protocol alignment. For this reason, following
the MORL literature, we aim to find the set of protocols that cannot be Pareto-
dominated (i.e., that are Pareto-optimal). Formally:

! Notice that 372 7" = ﬁ for any v € (0,1).
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Definition 14 (Pareto-optimal protocol). Let W = (S, A, T) be a world,
let IT be the set of possible protocols of W, and let V be a finite set of values. A
protocol w, € II is Pareto-optimal at state s € S if and only if, for every other
protocol m € II, if alignP(m,s,V;) > alignP (7., s,V;) for some value V; € V,
then alignP(w, s, V;) < alignP(m., s,V;) for another value V; € V.

Our goal is to find, given the initial state sy of a world W, its set of Pareto-
optimal protocols IT,. Then, amongst these Pareto-optimal protocols, the organ-
isations’ decision-makers can select which one they prefer. Before entering into
details on how to compute Pareto-optimal protocols. Next Section 3.2 presents
our process for computing Pareto-optimal protocols.

3.2 Value-aligned protocols computation

Recall that our goal is to obtain a set of candidate protocols for the decision-
maker, so they can later decide the one they prefer. All these candidate protocols
will be Pareto-optimal. Thus, we require a process for computing all Pareto-
optimal protocols given a world W.

Our present process transforms our value-alignment problem into a multi-
objective reinforcement learning problem. We first prove that such conversion is
possible and how. After that, we provide a process guaranteed to obtain Pareto-
optimal protocols with MORL algorithms.

In the remainder of this Section we assume that the considered W satisfies
the Markov property on its transitions. Formally:

Assumption 1 The world W = (S, A, T) is such that for every t € N:

P(Siy1 =S"| St, A, Se—1, Av_1, .., S0, a0) = (7)
]P(St+1 = Sla | StaAt)' (8)

Assumption 1 is satisfied in a wide range of worlds. In particular, any de-
terministic world (i.e., a world where applying an action a to a state s always
transitions to the same state s') fulfils Assumption 1.

For any world W satisfying Assumption 1, given a value V| we can read-
ily create an associated Markov decision process Wy,. In Wy, its sets of states
and actions, and the transition function are determined by W, and the reward
function is the associated action alignment function align(-,-, V') of V. If we con-
sider multiple values, we can generalise this procedure to create an associated
MOMDP. Formally:

Lemma 1. Let V = (V4,...,V,) be a set of n values. Let W = (S, A, T) be a
world satisfying Assumption 1. Then, the tuple Wy, = (S, A, T, align(-,-,V1),...,
align(-,-, V) is a multi-objective Markov decision process, where T is a transi-
tion function determined by the transition set T, and align(-,-,V;) is the action
alignment function of value Vj.
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The natural conclusion from Lemma 1 is that we can also draw a paral-
lelism between Pareto-optimal policies and Pareto-optimal protocols. In fact,
next Theorem 1 proves that, as long as Assumption 1 holds, any Pareto-optimal
protocol 7, of the world W is also a Pareto-optimal policy of the MOMDP W),
and vice-versa. Formally:

Theorem 1. Let V be a set of values and W a world that fulfils Assumptions
1. Let Wy be the associated MOMDP of W and V. Set the discount factor ~y
smaller than 1. Then, any protocol in W is a Pareto-optimal if and only if it is
also a Pareto-optimal policy in Wy.

Proof. 1t suffices to prove that, for each value V;, the protocol alignment function
alignP,(m, s, V;) with v < 1 and the value function v] (s) are proportional in W
if Assumption 1 holds:

alignPy(m,s,V;) = (9)
> Blp | ) - alignp(p, Vi) = (10)
pEPs
E[(l - ’7) : Z’Yi ! align(psmpamps;a‘/i) | S0 = 577(] = (11)
i=0
(1= )vi(s). (12)

Notice that the proof of Theorem 1 teaches us how to evaluate any protocol.
We can directly apply any reinforcement learning algorithm designed for com-
puting the associated vector value function of a policy 7 (such as Monte Carlo
prediction or policy evaluation) to obtain the protocol alignment of any protocol
alignP. Formally:

Corollary 1. Let V be a set of values and W a world that fulfils Assumptions
1. Let Wy, be the associated MOMDP of W and V. Set the discount factor ~y
smaller than 1. Then, for any protocol 7w, and every value V; € V, for every state
s:

alignP, (x5, V;) = (1 7)o (s). (13)

3.3 Protocols Pareto-optimisation process

Our proposed process for computing Pareto-optimal protocols consists of the
following four steps:

1. First, given a set of values V and a world W, we compute the associated
MOMDP Vyy in which MORL algorithms can be applied.

2. Then, we feed the MOMDP Vyy as input for any MORL algorithm to com-
pute the Pareto front PF of the associated protocol alignment v™ of all
Pareto-optimal protocols 7, € II,. In our case, we apply PMOVI.
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Algorithm 1 Pareto-optimal protocol computation

Input: World W = (S, A, T), action  alignment  functions
align(-,+,V1),...,align(-,-, V).

1: Set Wy as the associated MOMDP of W and V as defined in Lemma 1.

2: Apply PMOVI [7] to Wy to obtain the Pareto Front PF of the MOMDP W),.

3: Select one of the Pareto-optimal values v™ from PF.

4: Apply policy-tracking-process [12] to compute the policy 7. associated with the

selected value v™*.
5: return Pareto-optimal protocol ..

3. After that, the stakeholders in charge of deciding the protocol select their
preferred protocol 7, based on their respective protocol alignment v™ from
the Pareto Front PF'.

4. Finally, we need to use an MORL algorithm to recover the protocol 7, from

its protocol alignment v™*. In our case, we apply the policy-tracking-process
of [12].

Algorithm 1 implements our four-step process to obtain the desired Pareto-
optimal protocol. It receives as an input both a world W and the action alignment
functions align for all values V that need to be taken into consideration.

4 Experimental analysis

The purpose of this section is twofold. First, it illustrates how to evaluate a
protocol according to our protocol alignment function with an example. Second,
it also shows an example application of our process for computing value-aligned
protocols, as detailed in Algorithm 1. Due to the lack of benchmark environ-
ments that consider several values in MORL, we propose a novel firefighters
environment which includes the values of prozimity and professionalism?.

This section is structured as follows. First, Section 4.1 presents the formali-
sation of the world W that simulates a firefighters’ scenario. After that, Section
4.2 formalises the relevant values in this scenario (proximity and professional-
ism) and details their respective alignment functions. We proceed in Section 4.3
by showing an example of evaluating a given protocol by applying our definition
of protocol alignment in this scenario. Finally, 4.4 applies Algorithm 1 to this
firefighters’ scenario to obtain a Pareto-optimal protocol.

4.1 World specification

We model this firefighters’ scenario as a world W = (S, A,7T) with a finite
amount of states and actions.

2 Implementation code: https://github.com/Lenmaz/VALE2024-Firefighters/
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State Space Each state s € S of the environment is defined as a tuple (f, 0, e, v, m),
where each state variable represents:

— f: Fire intensity (None, Low, Moderate, High, Severe). Indicates the sever-

ity of the fire at the current state.

0: Occupancy (0 to 4 people). Indicates whether there are people to be

rescued and how many.

— e: Equipment readiness (Ready, Not Ready). Indicates if the firefighters
have all the equipment in the current state to advance safely.

— v: Visibility (Good, Poor). Represents the environmental condition affect-
ing firefighting efforts.

— m: Medical condition of the firefighter (incapacitated, moderately in-
jured, slightly injured, perfect health). Shows if the firefighter can continue
or not and how endangered they are.

There is a total of 5-5-2-2-4 = 400 states. Some of them are terminal states
(i.e., they do not transition to any other state). There are two separate groups
of terminal states:

— States in which the medical condition of the firefighter is incapacitated.
— States in which there is occupancy 0 and no fire intensity.

The initial state of all paths is Sy =(Moderate fire intensity, four
occupants, Equipment Not Ready, Poor Visibility, Perfect health).

Action Space and transitions The action space A consists of 5 actions:

— Evacuate occupants: Reduces the current level of occupancy by 1. If the
action is performed under both poor visibility and not ready equipment,
and also a moderate fire intensity or worse, the firefighter’s medical
condition gets reduced by 1. If the action is performed under a severe
fire intensity, the equipment becomes not ready.

— Contain fire: Reduces the level of fire intensity by 1.

— Aggressive fire suppression: Reduces the current level of fire intensity
by 2. If the action is performed under either poor visibility or not ready
equipment, and also a moderate fire intensity or worse, the firefighter’s
medical condition getsreduced by 1. Also, if the action is performed under
a severe fire intensity, the equipment becomes not ready.

— Coordinate with other agencies: Sets the equipment as ready.

— Assess and plan: Sets the visibility as good.

4.2 Firefighters’ values specification

We consider two firefighters’ values for this scenario: professionalism and prox-
imity:

— Professionalism: The degree of agreement with the organisation’s rules
and principles of action.
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— Proximity: The degree of knowledge and understanding of the society and
the territory, and how the incident impacts them.

Professionalism dictates adherence to organisational standards and princi-
ples, which might involve following strict protocols that prioritise firefighter
safety over aggressive firefighting tactics. However, proximity emphasises un-
derstanding the societal and territorial impact of the incident, pushing for a
more aggressive approach to save lives and property, knowing the significant im-
pact a complete burnout would have on the community. The conflict arises when
the need to act according to official safety protocols conflicts with the urgent
community-focused response demanded by the situation.

Alignment Functions This scenario contemplates two firefighter values: Prox-
imity Vjpop and Professionalism V),.,¢. Each value has its corresponding action
alignment function align. We proceed to formalise both alignment functions for
each possible action.

— Evacuate occupants:

e The professionalism alignment is computed as maxz(0,1 — 0.2f —
0.1v). This implies a reduction in professionalism with increasing fire in-
tensity and reduced visibility, reflecting the escalating risk and difficulty
in managing the situation professionally under deteriorating conditions.
However, if no occupants are present o = 0, a significant penalty is ap-
plied align = —1, indicating a gross misjudgment in evacuating an empty
area.

e The proximity alignment is align = 1 if there is at least one occupant
needing to be rescued. If no occupants are present o = 0, a significant
penalty is also applied align = —1.

— Contain fire: For both values, it returns an negative alignment align = —1
when trying to contain fire if there is none left. Otherwise:

o Professionalism alignment: 0.8, since it is highly aligned with the
value of professionalism.

e Proximity alignment: 0.2, since it is moderately aligned with the value

proximity.
— Aggressive fire suppression: For both values, it returns an negative align-
ment align = —1 when trying to contain fire if there is none left. Otherwise:

e Professionalism alignment: 0.6, since it is aligned with the value of
professionalism, but not as much as if it normally contained fire. The
alignment goes down to align = 0.3 if the action is performed with
Equipment Not Ready.

o Proximity alignment: 0.5, since it is aligned with the value proximity.

— Coordinate with other agencies: For both values, it returns an negative
alignment align = —1 when trying to coordinate when the equipment is
already ready. Otherwise:

e Professionalism alignment: 0.5, since it is aligned with the value of
professionalism.



14 M. Rodriguez-Soto et al.

e Proximity alignment: -0.1, since it is not aligned with the value prox-
imity, and even slightly misaligned because the firefighter is losing time

to rescue the people or suppress the fire.
— Assess and plan: For both values, it returns an negative alignment align =

—1 when trying to assess when the visibility is already good. Otherwise:
e Professionalism alignment: 1, since it is totally aligned with the value

of professionalism.

o Proximity alignment: -0.5, since it is highly misaligned with the value
proximity. The firefighter is losing time to rescue the people or extinguish
the fire.

Finally, if any transition (s,a,s’) goes to the terminal state S’ with the
firefighter incapacitated, both alignment functions return align(s,a,s’, V) =
—1, since it will allow the firefighter to neither rescue the people nor extinguish
the fire.

4.3 Protocol evaluation

Having formalised the world W and values V of our scenario, we can now evaluate
protocols within it. Given any protocol 7, we can apply Monte Carlo prediction
to compute its degree of protocol alignment with respect to this world W. Monte
Carlo predictions work by averaging the protocol alignment obtained in multiple
path executions.

For this section we consider the protocol 7 that: (1) it obligates to always
assess and plan prior to doing anything else; then, (2) it obligates to always
contain fire completely before rescuing anyone; and finally, (3) it Obligates to
evacuate occupants if there is no fire left. This protocol would produce the
following path execution p:

1. At initial state Sy, it applies action assess and plan, receiving an alignment
of 1 for professionalism and —0.5 for proximity.

2. At the following states S1, Sy and S3, the agent applies action contain fire
to suppress the fire. It receives an alignment of 0.8 for professionalism and
0.2 for proximity the three times. Fire intensity gets reduced from 3 to 0.

3. At the following state Sy, S5, Sg, and S7, the agent applies action evacuate
occupants again to safely evacuate all occupants. It receives an alignment
of 0.9 for professionalism because there is no fire left. and 1.0 alignment
for proximity.

4. The world finally reaches a terminal state because there are no occupants
left to be rescued and the fire is extinguished.

Since all transitions are deterministic in our example world W, we can directly
compute the protocol alignment of 7 from the path p. We apply now the equation
from Definition 12 to obtain the protocol alignment of :

alignPoj(ﬂ', So, ‘/pTOf) = (1 - 07) S2.77 = 0837 (14)
alignPo 7(m, S0, Vpresz) = (1 —0.7) - 0.41 = 0.12. (15)

With this process, any firefighter can evaluate their behaviour and assess how
value-aligned it is to their organisation’s values.
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4.4 Pareto-optimal protocols computation

Setting the associated MOMDP First, we considered the world W =
(8, A, T) defined in Section 4.1, and the two alignment functions from values
V = {Vprox, Vpros } defined in Section 4.2. We combined these elements (world
and alignment functions) to set the associated MOMDP

Wy = (S, A, T, align(-, -, Vproz), align(-, -, Vprof))

in which MORL algorithms can be applied.

Computing the set of Pareto-optimal policies The next step of our pro-
cess consisted of applying the MORL algorithm PMOVI to our MOMDP Vyy
to compute the associated alignment of all Pareto-optimal policies. PMOVT is
guaranteed to converge in a finite amount of iterations. PMOVTI requires one hy-
perparameter: the discount factor «. This discount factor is exactly the same one
we will set for our protocol alignment function alignP,. In our case, we selected
v = 0.7. Afterwards, PMOVI needed 4 iterations to converge. For the initial
state Sp, it computed 50 different Pareto-optimal protocols. Figure 2 shows the
50 protocols.

Pareto Front

L
4
s
o
)

Proximity alignment

o
Y]
°

05 08

0.‘6 0.7
Professionalism alignment

Fig. 2. Pareto front of the firefighters’ scenario. Each point corresponds to the nor-
malised value vector v of a Pareto-optimal protocol (i.e., its protocol alignment).

Selecting a policy In the next step, we would require the decision-maker to
select from the list of 50 candidate Pareto-optimal protocols the one they prefer,
strictly focusing on their value alignment.

For example, we assume that the decision-maker selected the protocol with
the maximum amount of proximity alignment 7, = 7, with an alignment of
(0.48,0.74). (left-most protocol in Figure 2).
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Recovering the policy from its value Finally, we applied the policy-tracking-
process to recover 7, from its value v™ (Sp). This tracking process consists of
exploiting the Bellman equation, that all policies satisfy:

v (s) = Y m(as)[ Y T(s,a,8') - (R(s,a,8") +7-0™ (s (16)

acA s'eS

The Bellman equation allows us to recursively express the value of any policy
(protocol). The policy-tracking-process works as follows:

First, for every state .S, it computes all possible transitions ¢ that have as a
starting state Sp. This information can be directly accessed from the transition
function if available or estimated via Monte Carlo prediction. Then, the policy-
tracking-process aims to find the actions satisfying the Bellman equation in
Equation 16 for every state.

However, the are two unknowns in Eq. 16: the probability 7. (a, s) of selecting
each action a by 7, at state s, and v*(s’), and an unknown value vector v*(s’)
from the set of value vectors V*(s’) computed by PMOVI for state s’. To solve
Equation 16, we search for the action a and value vector v*(s’) that satisfy the
following equation:

0™ (s) = > T(s,a,5') - (R(s,a,') +7-v"(s)]| = 0. (17)

min
ac€A,v*(s')eV*(s") Vs

Solving Equation 17 provides us with the action that protocol 7, applies at
state s. This way, we could recover the policy m,. To illustrate, we show the
policy-tracking-process for the initial state Sp:

— First, we computed all five transitions ¢ starting at state Sy, one per action.
We denote the final state of each of them as S1,...,S§.
— For each of them, we extracted their respective value vectors V*(S1), ..., V*(S;)
computed by PMOVI.
— Afterwards, we computed the left side of Eq. 17 for each action a:
1. For action evacuate occupants: 0.
2. For action contain fire: 0.6.
3. For action aggressive fire suppression: 0.21.
4. For action coordinate with other agencies: 0.69.
5. For action assess and plan: 1.06.
— The policy-tracking-process therefore sets 7.(Sy) = evacuate occupants
since it satisfied Equation 17. We obtained the whole protocol 7, by repeat-
ing this process for each state.

5 Conclusions

This paper has tackled the open problem of designing and evaluating proto-
cols that align with multiple values. Our novel contributions are based on the
framework of multi-objective Markov decision processes (MOMDP). First, we
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have proven that value-aligned protocols can be expressed in terms of Pareto-
optimal policies of MOMDPs. Based on our theoretical findings, we have pro-
vided a four-step process for computing value-aligned protocols that computes
the Pareto Front of an MOMDP. Similarly, our theoretical findings pave the way
for evaluating protocols, as we have proven that they can be evaluated with the
same reinforcement learning tools to evaluate policies. In future work, we expect
to analyse the effect of our process on the protocols of real organisations.
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